(完整版)焊接热影响区的组织和性能

合集下载

热影响区的组织与性能

热影响区的组织与性能

焊接热影响区的性能
软化
热影响区软化是指焊后其强度、硬度低 于焊前母材的现象。
软化主要出现在:焊前经过调质处理的 钢;具有沉淀强化的钢;弥散强化合金。
焊接热影响区的性能
调质钢焊接时热影响区软化
钢经过淬火处理后,在回火过程中随回 火温度提高,强度与硬度逐渐下降。
焊接条件下,如热影响区的加热温度超 过了焊前回火温度,相当于提高了回火 温度,强度必然比焊前低。
不同位置的最高加热温度不同 加热温度高
热处理:AC3以上100-200℃,如45号钢AC3:770 ℃; 焊接近缝区:接近熔点,钢的熔点1350 ℃左右。 加热速度快 比热处理快几十倍甚至上百倍。
高温停留时间短 手工电弧焊:4-20S;
埋弧焊:20-40S。
自然条件下连续冷却
焊接热循环条件下
焊接热循环条件下
加热时组织转变特点
影响冷却时的组织转变
焊接热循环条件下
冷却时的组织转变特点
组织转变向低温推移 马氏体转变临界冷速发生变化
焊接条件下
连续组织转变与CCT图
CCT图是连续冷却转变曲线的简称,可以比 较方便的预测焊接热影响区的组织和性能。
CCT图绘制时,将奥氏体化试件以各种冷却 速度连续冷却到室温、测定冷却过程中过冷 奥氏体转变的开始点(温度和时间)与终了点。 把测到的数据描绘在温度—时间坐标平面上, 最后将分别连结各个开始点与终了点.就得 到CCT图。
CCT图的应用
焊接热影响区的组织特征
焊接热影响区上距焊缝远近不同的部位 组织不同
不同的钢材,焊接热影响区的组织也不 同
焊接热影响区的组成
低碳钢
过热区 相变重结晶区 不完全重结晶 区 再结晶区

第五章 焊接热影响区的组织和性能

第五章 焊接热影响区的组织和性能

第五章焊接热影响区的组织和性能焊接分为三大类:熔化焊、压力焊和钎焊。

其中熔化焊是最常见最广泛的焊接方法。

而本书讨论的焊接冶金主要是以熔化焊为基础进行讨论的。

所谓熔化焊是采用一种高温热源使两种同质或非同质的材料利用原子间或分子间的分散与聚合而形成一个整体的过程。

这个热源贯穿于焊接过程的始终:一部分热量用于加热焊件和母材,一部分用于热损失(飞溅、周围介质等)。

用于加热母材和焊材的热功率称为有效功率,其实这部分热量:一部分用于熔化金属形成焊缝,另一部分用于热传导而流失于母材形成HAZ (包含熔合线)。

HAZ:熔焊时在集中热源的作用下,焊缝两侧发生组织和性能变化的区域。

焊接接头:焊缝和和热影响区p161 图4-1焊接热影响区示意图前面讨论焊缝的合金化,焊缝金属的脱S、脱O、脱P、H及晶粒的细化等,均是如何控制焊缝的质量,主要是焊缝区的问题。

由于早些年代里,制造焊接结构所采用的钢种是低碳钢,焊缝是至关重要的环节。

HAZ一般不会出现什么问题,但随着科学技术和生产规模的发展,各种高温、耐压、耐蚀、低温容器、深水潜艇、宇航设备以及核电站锅炉、管道等不断建造,各种高强钢、高合金钢以及某些特种材料(Al合金、钛合金、镍基合金、复合材料和陶瓷等)也得到广泛的应用,这种情况下,焊接的质量不仅仅取决于焊缝,同时取决于HAZ,有时HAZ存在的问题比起焊缝更为复杂。

如:如今大型水电站,尤其高水头电站(包括抽水蓄能电站)的建造要求提供流量大、承压高的输水压力管道,如果采用普通钢材,必须增加管壁的厚度,无疑给压力钢管的制造、运输和安装带来极大的困难。

随之发展起来的适用于压力钢管的焊接结构用高强钢,如700MPa,800Mpa级钢具有很高的屈服强度和抗拉强度,同普通钢相比,可以大大减少压力钢管壁的厚度,克服了普通钢的局限性,(WEL—TEN80 WCF—62(80))它具有良好的低温冲击韧性也为钢管的可靠运行提供了保证,但它焊接时,易出现HAZ软化(投影)或产生裂纹。

第十章 焊接热影响区的组织和性能

第十章 焊接热影响区的组织和性能
焊接热影响区的硬化 焊接热影响区的脆化
焊接热影响区的软化
焊接热影响区的性能控制
1、焊接热影响区的硬化
母材的淬硬倾向(内因) HAZ的硬度 化学成分 HAZ的冷却速度(外因) 焊接规范
焊接热影响区的最高硬度Hmax:
高低取决于
Hmax(HV10)= 140 + 1089 Pcm- 8.2 t 8 / 5
缝相当于低碳钢过热区的部位,得到粗大的马氏体,
而相当于正火区的部位则得到细小的马氏体。当焊
件母材的淬透性不是太高时,还会出现贝氏体、索
氏体等正火组织与马氏体共存的混合组织。
2、 不完全淬火区
母材被加热到Ac1~Ac3温度之间的热影响区,
相当于不易淬火钢的不完全重结晶区。在快速加热
条件下,铁素体很少溶入奥氏体,而珠光体、贝氏
熔焊时在高温热源作用下,靠近焊缝两侧 一定范围内发生组织和性能变化的区域称
为“焊接热影响区” 。
图10-1 焊接接头示意图 1-焊缝;2-熔合区;3-热影响区;4-母材
第一节 焊接热循环 第二节 焊接热循环下的金属组织转变特点 第三节 焊接热影响区的组织与性能
第一节 焊接热循环
一、研究焊接热循环的意义 二、焊接热循环的参数及特征 三、焊接热循环参数的计算
材料淬硬倾向的评价指标 — 碳当量
钢中含碳量显著影响奥氏体的稳定性,对淬硬倾向影响最大。
含碳量越高,越容易得到马氏体组织,且马氏体的硬度随含
碳量的增高而增大。 合金元素的影响与其所处的形态有关。溶于奥氏体时提高淬 硬性(和淬透性);而形成不溶碳化物、氮化物时,则可成为 非马氏体相变形核的核心,促进细化晶粒,使淬硬性下降。 碳当量(Carbon Equivalent)是反映钢中化学成分对硬化 程度的影响,它是把钢中合金元素(包括碳)按其对淬硬 (包括冷裂、脆化等)的影响程度折合成碳的相当含量。

焊接热影响区显微组织及性能分析

焊接热影响区显微组织及性能分析

焊接热影响区显微组织及性能分析当我们进行焊接工艺时,焊接热影响区(HAZ)往往会被忽略。

这个区域受到了高温,快速冷却和热应力的影响,导致了焊接材料性能的改变。

因此,对焊接热影响区的显微组织及性能分析至关重要,以便确保焊接后材料的质量和可靠性。

1. 焊接热影响区的显微组织分析焊接热影响区受到的热影响主要包括多种因素,例如熔池温度、加热速率、冷却速率和焊接残余应力。

这导致了焊接热影响区显微组织的改变。

在焊接中,焊接热影响区可以分为三个区域:粗晶区、细晶区和回火区。

(1) 粗晶区:在这个区域,材料暴露在高温下的时间更长,导致了晶粒的长大。

这进一步导致晶粒间的间隔增加,因此这个区域的强度和韧性都会下降。

(2) 细晶区:这个区域中的晶粒被迅速加热并迅速冷却,导致了晶粒尺寸的减小。

然而,这个区域的强度和韧性仍然会下降。

因为这个区域,晶界比粗晶区更脆弱。

(3) 回火区:当焊接完成后,渐进升温,晶格结构变松弛,导致材料中的应力逐渐减小。

这个区域的显微组织与原始材料相似,因为它经历了温度和压力的缓慢升高。

2. 焊接热影响区的性能分析焊接热影响区的性能分析往往涉及到强度和韧性这两个方面。

焊接热影响区不仅影响焊接点的性能,还对整个结构的性能产生影响。

(1) 焊接强度:焊接热影响区的强度是由显微组织和残余应力共同决定的。

因此,在评估焊接强度时,必须对热影响区进行适当的检测。

(2) 焊接韧性:焊接热影响区的韧性能够反应焊接后材料的冲击韧性和裂纹扩展性。

由于热影响区的强度下降,它的韧性也会受到影响,并可能导致焊接点的脆性断裂。

3. 如何提高焊接后材料的性能为了提高焊接点的性能,需要在选择焊接材料、焊接工艺和焊接参数时进行仔细的选择和控制。

同时,还需要进行适当的后处理,例如回火和淬火,以降低焊接热影响区的残余应力和提高焊接点的强度和韧性。

在焊接材料的选择时,必须选择适用于特定应用的焊接材料。

它的成分、热特性和机械特性等方面必须与基础材料相匹配。

5焊接热影响区的组织和性能

5焊接热影响区的组织和性能

5焊接热影响区的组织和性能焊接热影响区(Heat Affected Zone, HAZ)是指在焊接过程中,未被完全熔化但受到高温加热的区域。

在焊接过程中,高温会引起HAZ的组织和性能发生变化,这可能会对焊接接头的性能和可靠性产生重要影响。

本文将讨论HAZ的组织和性能的变化,并重点介绍几个重要的影响因素。

首先,HAZ的组织变化是由高温引起的。

在焊接过程中,焊接电弧和熔化池的高温作用下,HAZ的温度会迅速升高,达到几百摄氏度甚至更高的温度。

高温会导致HAZ中的晶粒长大、晶格变形和相结构改变。

通常情况下,HAZ中的晶粒比母材中的晶粒要大,且晶格常常发生变形。

晶粒尺寸的增加和晶格变形会导致材料硬度的提高,并可能降低材料的韧性。

其次,HAZ的性能变化是由组织变化引起的。

HAZ中的晶粒长大和晶格变形会导致材料的硬度提高,但与此同时,硬度的增加也会导致韧性的降低。

在一些情况下,HAZ还可能出现脆性相的形成,这会极大地降低焊接接头的可靠性。

此外,HAZ还可能出现裂纹和变形等缺陷,这也会对焊接接头的性能产生严重影响。

因此,在焊接接头设计和制造过程中,必须对HAZ的组织和性能进行充分考虑,以确保焊接接头的质量和可靠性。

HAZ的组织和性能变化受多种因素影响,以下列举几个重要因素:1.焊接热输入:焊接热输入是指在单位长度或单位面积上输送到工件中的热量。

热输入的大小与焊接电压、电流和焊接速度等参数有关。

过高或过低的热输入都会导致HAZ中的晶粒长大和晶格变形,从而影响HAZ的性能。

2.材料的化学成分和微观结构:不同材料的化学成分和微观结构会对HAZ的组织和性能产生重要影响。

一些合金元素的存在可以改变晶粒的生长速率和晶格的变形行为。

此外,材料的粗晶相和弥散相等局部微观结构也会对HAZ的性能产生重要影响。

3.冷却速率:冷却速率是指焊接过程中HAZ冷却的速度。

冷却速率的快慢会影响晶粒生长和晶格变形行为。

通常情况下,快速冷却会导致HAZ 中的晶粒更细小,且硬度更高。

焊接热影响区的组织和性能 PPT

焊接热影响区的组织和性能 PPT
第二章
焊接热影响区的组 织和性能
第二章 焊接热影响区的组织
第一节 焊接热循环
第二节 焊接热循环条件下的金属 组织转变特点
第三节 热影响区组织和性能
焊接热影响区:熔焊时在集中热 源的作用下,焊缝两侧发生组织和性 能变化的区域称为“热影响区”
(Heat Affected zone,简称HAZ)
或称“近缝区”(Near Weld Zone) 焊接接头是由两个主要部分组成,即 焊缝和焊接热影响区,如图4-1所示。
3.高温停留时间短 手弧,4~20秒; 埋弧,30~100秒 4.自然条件下连续冷却 5.局部加热
一、焊接时加热过程组织转变特点
1.加热速度对相变点的影响
焊接时的加热速度很快,各种金属的相变温度 发生了很大的变化。加热速度越快,Ac1和Ac3 的温度越高,而且Ac1和Ac3的温差越大。 焊接时,由于采用的焊接方法不同,规范不同,加 热速度可在很大的范围内变化。
表4-9 焊接及热处理条件下的组织百分比
表4-9是45钢和40Cr钢在焊接和热处理时同样冷 却速度条件下的组织百分比。由图 4-21、图4-22和 表4-9可以看出,45钢在焊接条件比在热处理条件下 的CCT曲线稍向右移(主要考虑Ms附近)。说明在相同 冷却速度条件下,焊接时比热处理时的淬硬倾向大。 如冷却速度为30℃/s,焊接时可得到92%马氏体, 而热处理时只得到69%马氏体。
2.加热速度对A均质化影响
加热速度不但对相变点有影响,对A均质化也 有影响.因为A均质化属扩散过程。在快速加 热条件下,来不及完成扩散过程。
3.近缝区的晶粒长大
在焊接条件下,近缝区由于强烈过热使晶粒发 生严重长大,影响焊接接头塑性,韧性,产生热 裂纹,冷裂纹.
二.焊接时冷却过程组织转变特点

熔焊原理-焊接热影响区的组织和性能

熔焊原理-焊接热影响区的组织和性能
钢时形成,残余A增碳后在焊接冷却时易形成孪晶M,在界面 上产生显微裂纹沿M-A组元的边界扩展。→低、中温回火 析出脆化:析出产物(主要是碳、氮化物)引起 →位错理论 遗传脆化:常见于有脆硬倾向大的调质钢,在快速加热或 冷却的非平衡组织中产生。
4.2 焊接热影响区的组织和性能
• 热应变时效脆化HSE
(1)控制焊接工艺 (焊前预热、焊后热处理、焊接热输入)
(2)选用高韧性母材 (低碳微量多元素强化的钢种)
焊前预热:
• 降低焊后冷却速度,对于易淬火钢,减少HAZ淬硬程度, 防止产生焊接裂纹。 • 减少HAZ的温度差别,在较宽范围内得到较均匀的温度分 布而减少因温度差别引起的焊接应力。
焊后热处理:
4.2 焊接热影响区的组织和性能
• 粗晶脆化 产生原因:靠近熔合线附近和过热区,晶粒粗化 影响因素:母材的化学成分、组织状态、加热温度 和时间、 焊接线能量等。 防止措施:合金化、合理选择焊接线能量等。
4.2 焊接热影响区的组织和性能
• 组织脆化
产生原因:HAZ中出现脆硬组织如M-A组元、上贝氏 体、粗大的魏氏组织,以及“组织遗传”而造成。 M-A组元脆化:在中等的冷却速度条件下焊接低合金高强
完全淬火区-不完全淬火区
母材焊前为调质状态:
完全淬火区-不完全淬火区-回火区
易淬火钢焊接热影响区的分布特征
4.2 焊接热影响区的组织和性能
2 焊接热影响区的性能
硬化 Hardening 脆化 Embrittling 韧化 Toughing 软化 Softening
4.2 焊接热影响区的组织和性能
熔L焊O原G理O
4.2 焊接热影响区的组织和性能
4.2 焊接热影响区的组织和性能

焊接热影响区的组织

焊接热影响区的组织
加热温度处于固液相之间,该区范围窄,但组织合性能 存在较大不均匀性,对接头的强度、韧性有很大影响。
许多情况下,熔合区是产生裂纹、脆性破坏的发源地。
过热区
温度处于固相线下到1100℃ 左右,金属处于过热状态,奥 氏体晶粒严重长大,冷却得到 粗大组织。 韧性很低,通常降低20~30%,刚度较大的结构常产 生脆化和裂纹。 过热区大小与焊接方法、焊接线能量和母材厚度有关。
3.2.3 焊接热影响区的组织和性能
由于焊接时母材热影响区上各点距焊缝远近不同, 所经历热循环不同,会出现不同组织,具有不同性能。 因此焊接热影响区的组织和性能是不均匀的。
焊接热影响区的组织分布
对于常用低碳钢和低合金钢 (不易淬火钢),在焊接热 影响区根据组织特征,可分 为四个区。
熔合区(半熔化区)
由于不断深入对熔合 区微观形态的研究, 焊接热影响区划分 更明确:
人有了知识,就会具备各种分析能力, 明辨是非的能力。 所以我们要勤恳读书,广泛阅读, 古人说“书中自有黄金屋。 ”通过阅读科技书籍,我们能丰富知识, 培养逻辑思维能力; 通过阅读文学作品,我们能提高文学鉴赏水平, 培养文学情趣; 通过阅读报刊,我们能增长见识,扩大自己的知识面。 有许多书籍还能培养我们的道德情操, 给我们巨大的精神力量, 鼓舞我们前进。
不完全淬火区
被加热到Ac1~Ac3之间的区域,快速加热条件下, 铁素体很少溶入奥氏体,其它组织转变为奥氏体, 冷却转变为马氏体,铁素体保持不变,并有不同程 度长大,形成马氏体-铁素体组织。
如母材焊前是调制状态,焊接热影响区的组织除上述的 完全淬火区和不完全淬火区外,还可能。在加热温度 在Ac1至调质回火温度的区域发生回火,称为回火区。
焊接热影响区大小受许多因素的影响,如焊接方法、板 厚、线能量及施工工艺等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
钢种HT50~HT100 板厚25~50mm, E=17KJ/cm,t8/5=6.5s
图4-37 Hmax与CE的关系
钢种HT50~HT100 板厚25~50mm, E=17KJ/cm,t8/5=6.5s
图4-38 Hmax与t8/5及Pcm的关系 钢材:18MnMoNb 板厚16~36mm
t8/5(s)
(2) 析出脆化
图4-47 析出物的间距λ与位错运动及脆性的关系
(三)调质钢HAZ软化
1.调质钢HAZ软化
图4-48 调质钢HAZ的硬度分布 A-焊前淬火+低温回火 B-焊前淬火+高温回火 C-焊前退火
图4-49
图4-50
2.热处理强化合金焊接HAZ软化
Thanks
国产低合金钢公式
(二)焊接热影响区脆化
1. 粗晶脆化
晶粒长大影响因素:
化学成分、组织状态、加热温度、时间
碳化物形成元素:Ti、Nb、Mo、V、W
lg( D 4
D04 )
2 lg E
l
0.129
/E 1.587
10 3
92.64
焊接HAZ晶粒尺寸与焊接线能量的关系
图4-41 碳锰钢HAZ的脆化分布
24 16 15 20
5
A(C) 0.75 0.25tgh[20(C 0.12)]
(4-24)
适用于 C含量0.034~0.254%范围内的钢 A(C)-碳的适应系数
2. 碳当量及冷却时间t8/5与HAZ最高硬度Hmax的关系
Hmax=1274Pcm+45
Hmax=559CE+100
图4-36 Hmax与Pcm的关系
埋弧自动焊 电渣焊
氧乙炔气焊 真空电子束焊
各区的平均尺寸(mm)


相变重结晶区
总 不完全重结晶区
宽 (mm)
2.2~3.0 0.8~1.2 18~20
21 -
1.5~2.5 0.8~1.7 5.0~7.0
4.0 -
2.2~3.0 0.7~1.0 2.0~3.0
2.0 -
6.0~8.5 2.3~4.0 25~30
Ceq C Mn Si Ni Cr Mo V 6 24 40 5 4 14
(4-21)
适用于C-Mn钢的碳当量公式( C>0.18%)
Pcm
C
Si 30
Mn Cu 20
Cr
Ni 60
Mo 15
V 10
5B
(4-23)
适用于低合金高强钢( C<0.17%)
CEN C A(C)( Si Mn Cu Ni Cr Mo V Nb 5B
(一)焊接热影响区的硬化
表4-13 不同混合组织及金相组织的硬度
金相组织百分比
FP BM
F
显微硬度 HV
P
B
10 7 83 0
240~285
1
0
70
29
202~246 232~249
273~336
0 0 19 81 216~258
293~323
0 0 0 100
M
245~383 446~470 454~508
宏观维氏硬度 HV 212 298 384 393
1. 碳当量
碳当量,简称Ceq或CE是反映钢中化学成分对硬化程度的影响,它 是把钢中合金元素(包括碳)按其对淬硬(包括冷裂、脆化等)的影 响程度折合成碳的相当含量。
Mn Cu Ni Cr Mo V
CE(IIW) C 6 15
5
(4-20)
图4-39 Hmax与t8/5的关系 板厚16~36mm C=0.12%,Mn=1.4% Si=0.48%,Cu=0.15%
3. 焊接HAZ的Hmax计算
H max
884C
K
1
K
exp (lg
t8 / 5
y
2Байду номын сангаас7
K 237 1533C 1157Pcm
日本铃木公式
H max 140 1089 Pcm 8.2t8 / 5
一、焊接热影响区的组织分布
图4-29 焊接热影响区的分布特征
1-熔合区 2-过热区 3-相变重结晶区 4-部分重结晶区 5-母材 6- 淬火区 7-部分淬火区 8-回火区
焊缝金属
过热区
相变重结晶区
熔合区 不完全重结晶区
母材 16Mn钢焊接热影响区
表4-10 不同焊接方法热影响区的尺寸
焊接方法焊接 手弧焊
27.0 0.05~0.75
表4-11 低碳钢热影响区的组织分布特征及性能
部位 焊缝 熔合区及过热区
相变重结晶 不完全重结晶 时效脆化区
母材
加热温度范围 >1500
1400~1250 1250~1100 1100~900 900~730
730~300
300~室温
组织特征及性能 铸造组织柱状树枝晶 晶粒粗大,可能出现魏氏组织,塑性不好 粗晶与不均匀晶粒合并,塑性差 晶粒细化,力学性能良好 粗大铁素体和细小的珠光体,铁素体力学性能不均匀 由于热应力及脆化物析出,经时效而产生脆化现象, 在显微镜下观察不到组织上的变化 没有受到热影响的母材部分
图4-42 含Nb钢HAZ晶粒尺寸与 Tm、E与t8/5的关系
图4-43 晶粒直径d对VTrs的影响
2. 组织脆化
(1) M-A组元脆化
图4-44 15MnVN钢HAZ的粒状 贝氏体 1000×
图4-45 粒状贝氏体中M-A组 元 4800×
图4-46 HT80钢粗晶区M-A组元数量与t8/5的关系和t8/5与脆性转变温度VTrs的关系
相关文档
最新文档