立体几何几种常见题型
高一立体几何题型及解题方法

高一立体几何题型及解题方法
高一立体几何是数学中的一个重要部分,也是高中数学中难度较大的内容之一。
下面介绍一些高一立体几何的题型及解题方法。
1. 空间向量题型
空间向量题型是高一立体几何中比较基础的题型,需要掌握空间向量的基本概念和运算规律。
解题时需要根据向量的定义和性质,运用向量加法、数乘等基本运算法则,求解向量的模长、方向余弦等相关量。
2. 空间几何体积题型
空间几何体积题型是高一立体几何中比较常见的题型,需要掌握各种几何体的面积和体积公式,并能够灵活运用这些公式进行计算。
解题时需要注意几何体的立体图形,确定所求的体积或面积,再根据公式进行计算。
3. 立体图形的相似题型
立体图形的相似题型需要掌握几何体的相似性质和基本比例关系,能够根据相似性质推导出几何体的相关量。
解题时需要注意几何体的相似条件,确定所求的比例关系,再根据比例关系求解相关量。
4. 空间几何位置关系题型
空间几何位置关系题型需要掌握空间中点、线、面的位置关系及相关性质。
解题时需要注意点、线、面的位置关系,确定所求的相关量,再根据相关性质进行计算。
总之,高一立体几何的题型比较多,需要学生具备扎实的基础知
识和灵活的解题思路,加强对几何图形和空间位置关系的理解和掌握,才能顺利解决高一立体几何的各种题型。
高中必修二数学 立体几何题型总结

高中必修二数学立体几何题型总结
高中数学必修二中的立体几何部分是高考的重要考点之一,下面是一些常见的立体几何题型及其解题方法:
1. 空间几何体的表面积和体积
解题方法:熟练掌握各种空间几何体的表面积和体积的公式,根据题目要求进行计算。
2. 空间几何体的直观图和三视图
解题方法:通过观察和分析空间几何体的直观图和三视图,掌握几何体的形状和大小,进而解决相关问题。
3. 空间点、线、面的位置关系
解题方法:理解空间点、线、面的位置关系,掌握各种位置关系的判定定理和性质定理,能够灵活运用解决相关问题。
4. 空间几何体的旋转体问题
解题方法:掌握旋转体的形成过程和性质,通过分析旋转体的轴和母线,利用旋转体的性质进行计算和证明。
5. 空间几何体的平行和垂直问题
解题方法:掌握空间几何体的平行和垂直的判定定理和性质定理,能够灵活运用解决相关问题。
6. 空间几何体的最值问题
解题方法:通过分析几何体的结构特征,利用几何体的性质和不等式等数学知识,求得空间几何体的最值。
7. 空间几何体的实际应用问题
解题方法:通过建立空间几何模型,将实际问题转化为数学问题,利用几何体的性质和数学知识解决实际问题。
以上是高中数学必修二中立体几何部分的一些常见题型及解题方法,掌握这些题型和方法对于提高立体几何部分的解题能力非常有帮助。
立体几何题型及解题方法

立体几何题型及解题方法
立体几何是数学中研究三维空间几何图形的学科。
以下是一些常见的立体几何题型及其解题方法:
1. 计算体积和表面积:这类题目通常涉及到三维空间中的几何形状,如长方体、圆柱体、圆锥体等。
解题方法包括使用体积和表面积的公式,以及根据题目描述建立数学模型。
2. 证明定理和性质:这类题目通常涉及到几何图形的性质和定理,如平行线性质、勾股定理等。
解题方法包括使用已知定理和性质进行推导,以及通过构造辅助线或辅助图形来证明。
3. 求解最值问题:这类题目通常涉及到求几何图形中的最值,如最短路径、最大面积等。
解题方法包括使用不等式、极值定理和优化方法等。
4. 判定和性质应用:这类题目通常涉及到判定几何图形是否满足某个性质,或应用某个性质到实际场景中。
解题方法包括根据性质进行推导和判断,以及根据实际场景建立数学模型。
以上是一些常见的立体几何题型及其解题方法,当然还有其他的题型和解题方法。
在解决立体几何问题时,需要灵活运用几何知识和方法,多做练习,提高自己的解题能力。
四类立体几何题型-新高考数学大题秒杀技巧(解析版)

四类立体几何题型-高考数学大题秒杀技巧立体几何问题一般分为四类:类型1:线面平行问题类型2:线面垂直问题类型3:点面距离问题类型4:线面及面面夹角问题下面给大家对每一个类型进行秒杀处理.技巧:法向量的求算待定系数法:步骤如下:①设出平面的法向量为n =x ,y ,z .②找出(求出)平面内的两个不共线的向量a =a 1,b 1,c 1 ,b =a 2,b 2,c 2 .③根据法向量的定义建立关于x ,y ,z 的方程组n ⋅a =0n ⋅b =0④解方程组,取其中的一个解,即得法向量.注意:在利用上述步骤求解平面的法向量时,方程组n ⋅a =0n ⋅b =0有无数多个解,只需给x ,y ,z 中的一个变量赋于一个值,即可确定平面的一个法向量;赋的值不同,所求平面的法向量就不同,但它们是共线向量.秒杀:口诀:求谁不看谁,积差很崩溃(求外用外减,求内用内减)向量a =x 1,y 1,z 1 ,b =x 2,y 2,z 2 是平面α内的两个不共线向量,则向量n =y 1z 2−y 2z 1,x 2z 1−x 1z 2,x 1y 2−x 2y 1 是平面α的一个法向量.特别注意:空间点不容易表示出来时直接设空间点的坐标,然后利用距离列三个方程求解.类型1:线面平行问题方法一:中位线型:如图⑴,在底面为平行四边形的四棱锥P -ABCD 中,点E 是PD 的中点.求证:PB ⎳平面AEC .分析:方法二:构造平行四边形如图⑵, 平行四边形ABCD 和梯形BEFC 所在平面相交,BE ⎳CF ,求证:AE ⎳平面DCF .分析:过点E作EG⎳AD交FC于G,DG就是平面AEGD与平面DCF的交线,那么只要证明AE⎳DG即可。
方法三:作辅助面使两个平面是平行如图⑶,在四棱锥O-ABCD中,底面ABCD为菱形,M为OA的中点,N为BC的中点,证明:直线MN‖平面OCD分析::取OB中点E,连接ME,NE,只需证平面MEN∥平面OCD。
立体几何大题题型总结

立体几何大题题型总结
立体几何大题包括以下几种题型:
1. 体积计算题:给定一个几何体的形状和尺寸,求其体积。
2. 表面积计算题:给定一个几何体的形状和尺寸,求其表面积。
3. 三视图综合题:给定一个几何体的三视图,通过推理和计算求出其体积和表面积。
4. 截面综合题:给定一个几何体的各个截面的形状和尺寸,通过推理和计算求出其体积和表面积。
5. 相似几何体综合题:给定多个几何体的形状和尺寸,在它们之间应用相似性质,求出它们各自的体积和表面积。
6. 空间几何关系题:给定多个几何体之间的位置关系,例如相切、相交、包含等,求出它们各自的体积和表面积。
7. 作图求解题:通过构造一些几何形状,例如放射形、圆锥、圆台等,求出特定几何体的体积和表面积。
8. 混合几何体综合题:将以上多种题型进行综合,考查学生的综合运用能力。
立体几何(7大题型)(解析版)2024年高考数学立体几何大题突破

立体几何立体几何是高考数学的必考内容,在大题中一般分两问,第一问考查空间直线与平面的位置关系证明;第二问考查空间角、空间距离等的求解。
考题难度中等,常结合空间向量知识进行考查。
2024年高考有很大可能延续往年的出题方式。
题型一:空间异面直线夹角的求解1(2023·上海长宁·统考一模)如图,在三棱锥A-BCD中,平面ABD⊥平面BCD,AB=AD,O为BD的中点.(1)求证:AO⊥CD;(2)若BD⊥DC,BD=DC,AO=BO,求异面直线BC与AD所成的角的大小.【思路分析】(1)利用面面垂直的性质、线面垂直的性质推理即得.(2)分别取AB,AC的中点M,N,利用几何法求出异面直线BC与AD所成的角.【规范解答】(1)在三棱锥A-BCD中,由AB=AD,O为BD的中点,得AO⊥BD,而平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AO⊂平面ABD,因此AO⊥平面BCD,又CD⊂平面BCD,所以AO⊥CD.(2)分别取AB,AC的中点M,N,连接OM,ON,MN,于是MN⎳BC,OM⎳AD,则∠OMN是异面直线BC与AD所成的角或其补角,由(1)知,AO ⊥BD ,又AO =BO ,AB =AD ,则∠ADB =∠ABD =π4,于是∠BAD =π2,令AB =AD =2,则DC =BD =22,又BD ⊥DC ,则有BC =BD 2+DC 2=4,OC =DC 2+OD 2=10,又AO ⊥平面BCD ,OC ⊂平面BCD ,则AO ⊥OC ,AO =2,AC =AO 2+OC 2=23,由M ,N 分别为AB ,AC 的中点,得MN =12BC =2,OM =12AD =1,ON =12AC =3,显然MN 2=4=OM 2+ON 2,即有∠MON =π2,cos ∠OMN =OM MN =12,则∠OMN =π3,所以异面直线BC 与AD 所成的角的大小π3.1、求异面直线所成角一般步骤:(1)平移:选择适当的点,线段的中点或端点,平移异面直线中的一条或两条成为相交直线.(2)证明:证明所作的角是异面直线所成的角.(3)寻找:在立体图形中,寻找或作出含有此角的三角形,并解之.(4)取舍:因为异面直线所成角θ的取值范围是0,π2,所以所作的角为钝角时,应取它的补角作为异面直线所成的角.2、可通过多种方法平移产生,主要有三种方法:(1)直接平移法(可利用图中已有的平行线);(2)中位线平移法;(3)补形平移法(在已知图形中,补作一个相同的几何体,以便找到平行线).3、异面直线所成角:若n 1 ,n 2分别为直线l 1,l 2的方向向量,θ为直线l 1,l 2的夹角,则cos θ=cos <n 1 ,n 2 > =n 1 ⋅n 2n 1 n 2.1(2023·江西萍乡·高三统考期中)如图,在正四棱台ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,CD 的中点.(1)证明:EF ⎳平面AB1C 1D ;(2)若AB =2A 1B 1,且正四棱台的侧面积为9,其内切球半径为22,O 为ABCD 的中心,求异面直线OB 1与CC 1所成角的余弦值.【答案】(1)证明见解析;(2)45【分析】(1)根据中位线定理,结合线面平行判定定理以及面面平行判定定理,利用面面平行的性质,可得答案;(2)根据题意,结合正四棱台的几何性质,求得各棱长,利用线线角的定义,可得答案.【解析】(1)取CC 1中点G ,连接GE ,GF ,如下图:在梯形BB 1C 1C 中,E ,G 分别为BB 1,CC 1的中点,则EG ⎳B 1C 1,同理可得FG ⎳C 1D ,因为EG ⊄平面AB 1C 1D ,B 1C 1⊂平面AB 1C 1D ,所以EG ⎳平面AB 1C 1D ,同理可得GF ⎳平面AB 1C 1D ,因为EG ∩FG =G ,EG ,FG ⊆平面EFG ,所以平面EFG ⎳平面AB 1C 1D ,又因为EF ⊆平面EFG ,所以EF ⎳平面AB 1C 1D ;(2)连接AC ,BD ,则AC ∩BD =O ,连接A 1O ,A 1C 1,B 1O ,在平面BB 1C 1C 中,作B 1N ⊥BC 交BC 于N ,在平面BB 1D 1D 中,作B 1M ⊥BD 交BD 于M ,连接MN ,如下图:因为AB =2A 1B 1,则OC =A 1C 1,且OC ⎳A 1C 1,所以A 1C 1CO 为平行四边形,则A 1O ⎳CC 1,且A 1O =CC 1,所以∠A 1OB 1为异面直线OB 1与CC 1所成角或其补角,同理可得:B 1D 1DO 为平行四边形,则B 1O =D 1D ,在正四棱台ABCD -A 1B 1C 1D 1中,易知对角面BB 1D 1D ⊥底面ABCD ,因为平面ABCD ∩平面BB 1D 1D =BD ,且B 1M ⊥BD ,B 1M ⊂平面BB 1D 1D ,所以B 1M ⊥平面ABCD ,由内切球的半径为22,则B 1M =2,在等腰梯形BB 1C 1C 中,BC =2B 1C 1且B 1N ⊥BC ,易知BN =14BC ,同理可得BM =14BD ,在△BCD 中,BN BC=BM BD =14,则MN =14CD ,设正方形ABCD 的边长为4x x >0 ,则正方形A 1B 1C 1D 1的边长为2x ,MN =x ,由正四棱台的侧面积为9,则等腰梯形BB 1C 1C 的面积S =94,因为B 1M ⊥平面ABCD ,MN ⊂平面ABCD ,所以B 1M ⊥MN ,在Rt △B 1MN ,B 1N =B 1M 2+MN 2=2+x 2,可得S =12⋅B 1N ⋅B 1C 1+BC ,则94=12×2+x 2×4x +2x ,解得x =12,所以BC =2,B 1C 1=1,BN =14BC =12,B 1N =32,则A 1B 1=1,在Rt △BB 1N 中,BB 1=B 1N 2+BN 2=102,则CC 1=DD 1=102,所以在△A 1OB 1中,则cos ∠A 1OB 1=A 1O 2+B 1O 2-A 1B 212⋅A 1O ⋅B 1O=1022+102 2-12×102×102=45,所以异面直线OB 1与CC 1所成角的余弦值为45.2(2023·辽宁丹东·统考二模)如图,平行六面体ABCD -A 1B 1C 1D 1的所有棱长都相等,平面CDD 1C 1⊥平面ABCD ,AD ⊥DC ,二面角D 1-AD -C 的大小为120°,E 为棱C 1D 1的中点.(1)证明:CD ⊥AE ;(2)点F 在棱CC 1上,AE ⎳平面BDF ,求直线AE 与DF 所成角的余弦值.【答案】(1)证明见解析;(2)37【分析】(1)根据面面垂直可得线面垂直进而得线线垂直,由二面角定义可得∠D 1DC =120°,进而根据中点得线线垂直即可求;(2)由线面平行的性质可得线线平行,由线线角的几何法可利用三角形的边角关系求解,或者建立空间直角坐标系,利用向量的夹角即可求解.【解析】(1)因为平面CDD 1C 1⊥平面ABCD ,且两平面交线为DC ,AD ⊥DC ,AD ⊂平面ABCD , 所以AD ⊥平面CDD 1C 1,所以AD ⊥D 1D ,AD ⊥DC ,∠D 1DC 是二面角D 1-AD -C 的平面角,故∠D 1DC =120°.连接DE ,E 为棱C 1D 1的中点,则DE ⊥C 1D 1,C 1D 1⎳CD ,从而DE ⊥CD .又AD ⊥CD ,DE ∩AD =D ,DE ,AD ⊂平面AED ,所以CD ⊥平面AED ,ED ⊂平面AED ,因此CD ⊥AE .(2)解法1:设AB =2,则DE =D 1D 2-12D 1C 1 2=3,所以CE =AE =AD 2+DE 2=7.连AC 交BD 于点O ,连接CE 交DF 于点G ,连OG .因为AE ⎳平面BDF ,AE ⊂平面AEC ,平面AEC ∩平面BDF =OG ,所以AE ∥OG ,因为O 为AC 中点,所以G 为CE 中点,故OG =12AE =72.且直线OG 与DF 所成角等于直线AE 与DF 所成角.在Rt △EDC 中,DG =12CE =72,因为OD =2,所以cos ∠OGD =722+72 2-(2)22×72×72=37.因此直线AE 与DF 所成角的余弦值为37.解法2;设AB =2,则DE =D 1D 2-12D 1C 1 2=3,所以CE =AE =AD 2+DE 2=7.取DC 中点为G ,连接EG 交DF 于点H ,则EG =DD 1=2.连接AG 交BD 于点I ,连HI ,因为AE ⎳平面BDF ,AE ⊂平面AGE ,平面AGE ∩平面BDF =IH ,所以AE ∥IH .HI 与DH 所成角等于直线AE 与DF 所成角.正方形ABCD 中,GI =13AG ,DI =13DB =223,所以GH =13EG ,故HI =13AE =73.在△DHG 中,GH =13EG =23,GD =1,∠EGD =60°,由余弦定理DH =1+49-1×23=73.在△DHI 中,cos ∠DHI =732+73 2-223 22×73×73=37.因此直线AE 与DF 所成角的余弦值为37.解法3:由(1)知DE ⊥平面ABCD ,以D 为坐标原点,DA为x 轴正方向,DA为2个单位长,建立如图所示的空间直角坐标系D -xyz .由(1)知DE =3,得A 2,0,0 ,B 2,2,0 ,C 0,2,0 ,E (0,0,3),C 1(0,1,3).则CC 1=(0,-1,3),DC =(0,2,0),AE =(-2,0,3),DB =(2,2,0).由CF =tCC 1 0≤t ≤1 ,得DF =DC +CF =(0,2-t ,3t ).因为AE ⎳平面BDF ,所以存在唯一的λ,μ∈R ,使得AE =λDB +μDF=λ2,2,0 +μ(0,2-t ,3t )=2λ,2λ+2μ-tμ,3μt ,故2λ=-2,2λ+2μ-tμ=0,3μt =3,解得t =23,从而DF =0,43,233 .所以直线AE 与DF 所成角的余弦值为cos AE ,DF =AE ⋅DF|AE ||DF |=37.题型二:空间直线与平面夹角的求解2(2024·安徽合肥·统考一模)如图,三棱柱ABC -A 1B 1C 1中,四边形ACC 1A 1,BCC 1B 1均为正方形,D ,E 分别是棱AB ,A 1B 1的中点,N 为C 1E 上一点.(1)证明:BN ⎳平面A 1DC ;(2)若AB =AC ,C 1E =3C 1N,求直线DN 与平面A 1DC 所成角的正弦值.【思路分析】(1)连接BE ,BC 1,DE ,则有平面BEC 1⎳平面A 1DC ,可得BN ⎳平面A 1DC ;(2)建立空间直角坐标系,利用空间向量进行计算即可.【规范解答】(1)连接BE ,BC 1,DE .因为AB ⎳A 1B 1,且AB =A 1B 1,又D ,E 分别是棱AB ,A 1B 1的中点,所以BD ⎳A 1E ,且BD =A 1E ,所以四边形BDA 1E 为平行四边形,所以A 1D ⎳EB ,又A 1D ⊂平面A 1DC ,EB ⊄平面A 1DC ,所以EB ⎳平面A 1DC ,因为DE ⎳BB 1⎳CC 1,且DE =BB 1=CC 1,所以四边形DCC 1E 为平行四边形,所以C 1E ⎳CD ,又CD ⊂平面A 1DC ,C 1E ⊄平面A 1DC ,所以C 1E ⎳平面A 1DC ,因为C 1E ∩EB =E ,C 1E ,EB ⊂平面BEC 1,所以平面BEC 1⎳平面A 1DC ,因为BN ⊂平面BEC 1,所以BN ⎳平面A 1DC .(2)四边形ACC 1A 1,BCC 1B 1均为正方形,所以CC 1⊥AC ,CC 1⊥BC ,所以CC 1⊥平面ABC .因为DE ⎳CC 1,所以DE ⊥平面ABC ,从而DE ⊥DB ,DE ⊥DC .又AB =AC ,所以△ABC 为等边三角形.因为D 是棱AB 的中点,所以CD ⊥DB ,即DB ,DC ,DE 两两垂直.以D 为原点,DB ,DC ,DE 所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系D -xyz .设AB =23,则D 0,0,0 ,E 0,0,23 ,C 0,3,0 ,C 10,3,23 ,A 1-3,0,23 ,所以DC =0,3,0 ,DA 1=-3,0,23 .设n=x ,y ,z 为平面A 1DC 的法向量,则n ⋅DC=0n ⋅DA 1 =0,即3y =0-3x +23z =0 ,可取n=2,0,1 .因为C 1E =3C 1N ,所以N 0,2,23 ,DN =0,2,23 .设直线DN 与平面A 1DC 所成角为θ,则sin θ=|cos ‹n ,DN ›|=|n ⋅DN ||n |⋅|DN |=235×4=1510,即直线DN 与平面A 1DC 所成角正弦值为1510.1、垂线法求线面角(也称直接法):(1)先确定斜线与平面,找到线面的交点B 为斜足;找线在面外的一点A ,过点A 向平面α做垂线,确定垂足O ;(2)连结斜足与垂足为斜线AB 在面α上的投影;投影BO 与斜线AB 之间的夹角为线面角;(3)把投影BO 与斜线AB 归到一个三角形中进行求解(可能利用余弦定理或者直角三角形)。
立体几何大题15种题型全归纳

【题型一】 平行1:四边形法证线面平行【典例分析】如图,在正方体中,E ,F 分别是,CD 的中点.(1)求证:平面;(2)求异面直线与所成角的余弦值.【答案】(1)证明见解析;(2(1)在正方体中,取中点G ,连接FG ,,如图,而F 是CD 的中点,则,,又E 是的中点,则,, 因此,,,四边形是平行四边形,有,而平面,平面,平面.【经验总结】基本规律1.利用平移法做出平行四边形2.利用中位线做出平行四边形【变式演练】1.如图所示,在四棱锥P -ABCD 中,PC ⊥底面ABCD ,,,,E 是PB 的中点.(1)求证:平面PAD ;(2)若,求三棱锥P -ACE 的体积.【答案】(1)证明见解析(2) 【分析】(1)取PA 的中点F ,连接EF ,DF ,利用平行四边形证明,再由线面平行的判定定理即可得证;(2)根据等体积法知,即可由棱锥体积公式求解.(1)取PA 的中点F ,连接EF ,DF ,∵点E ,F 分别为PB ,PA 的中点,1111ABCD A B C D -1AA //EF 11A CD 1ED 1A C 1111ABCD A B C D -1CD 1GA 1//FG DD 112FG DD =1AA 11//A E DD 1112A E DD =1//A E FG 1A E FG =1FGA E 1//EF GA EF ⊄11A CD 1GA ⊂11A CD //EF 11A CD AB AD ⊥//AB CD 222AB AD CD ===//CE 2PC =13//EC DF P ACE E ACP V V --=∴,,∴四边形EFDC 是平行四边形,∴,又∵平面PAD ,平面PAD ,∴平面PAD ;2.如图,在四棱锥中,面,,且,,,,为的中点.(1)求证:平面;(2)求平面与平面所成二面角的余弦值;(3)在线段上是否存在一点,使得直线与平面若存在求出的值,若不存在说明理由. 【答案】(1)证明见解析(2)(3)存在, (1)证明:取CP 中点F ,连接NF 、BF ,因为F ,N 分为PC ,PD 的中点,则,且, 又,且,,所以四边形NABF 是平行四边形, ,又面PBC ,面PBC 。
高中数学立体几何题型归纳

高中数学立体几何题型归纳
高中数学立体几何是高考数学的一个重要组成部分,其题型归纳如下:
1. 计算题:主要要求异面直线所成的角、直线与平面所成的角、二面角、点到面的距离、表面积、体积等。
2. 证明题:主要证明线线平行或垂直、线面平行或垂直、面面平行或垂直、多点共线、多点共面、多线共面等。
3. 三视图问题:要求画出简单空间图形 (长方体、球、圆柱、圆锥、棱柱等的简易组合) 的三视图,并能识别上述三视图所表示的立体模型。
4. 空间直线与平面的位置关系问题:要求判断直线与平面的位置关系 (包括平行、垂直、相交等),并求解距离、角度等。
5. 空间向量问题:要求理解空间向量的概念,掌握空间向量的加减法和数量积运算法则,能够运用空间向量求解立体几何问题。
6. 空间点、线、面之间的位置关系问题:要求判断点、线、面之间的位置关系 (包括平行、垂直、相交等),并求解距离、角度等。
7. 立体几何中的证明题:主要证明线线平行或垂直、线面平行或垂直、面面平行或垂直、多点共线、多点共面、多线共面等。
此外,还有一些特殊的立体几何问题,如立方体问题、圆锥问题、球体问题等。
对于这些问题,需要结合实际情况进行具体分析,并注重理解和掌握相关的概念、定理和公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体几何几种常见题型一、求体积,距离型1.(2013年高考陕西卷(文))如图, 四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中心, A 1O ⊥平面ABCD , 12AB AA ==.OD 1B 1C 1D ACBA 1(Ⅰ) 证明: A 1BD // 平面CD 1B 1;(Ⅱ) 求三棱柱ABD -A 1B 1D 1的体积. 12.(2013年高考福建卷(文)如图,在四棱锥P ABCD-中,PD ABCD ⊥面,//AB DC ,AB AD ⊥,5BC =,3DC =,4AD =,60PAD ∠=.(1)当正视图方向与向量AD 的方向相同时,画出四棱锥P ABCD -的正视图.(要求标出尺寸,并画出演算过程);(2)若M 为PA 的中点,求证://DM PBC 面; (3)求三棱锥D PBC -的体积. 83D PBC V -=3.(2013年高考湖南(文))如图2.在直菱柱ABC-A 1B 1C 1中,∠B AC=90°,AB=AC=错误!未找到引用源。
,AA 1=3,D 是BC 的中点,点E 在菱BB 1上运动.(I) 证明:AD⊥C 1E; (II)当异面直线AC,C 1E 所成的角为60°时,求三菱子C 1-A 2B 1E 的体积.324.(2013年高考课标Ⅰ卷(文))如图,三棱柱111ABC A B C -中,CA CB =,1AB AA =,160BAA ∠=. (Ⅰ)证明:1AB AC ⊥; (Ⅱ)若2AB CB ==,16AC =求三棱柱111ABC A B C -的体积.3C 1B 1AA 1B C5.(2013年高考课标Ⅱ卷(文))如图,直三棱柱ABC-A 1B 1C 1中,D,E 分别是AB,BB 1的中点.(1) 证明: BC 1//平面A 1CD;(2) 设AA 1= AC=CB=2,AB=2错误!未找到引用源。
,求三棱锥C 一A 1DE 的体积.6.(2013年高考安徽(文))如图,四棱锥P ABCD -的底面ABCD 是边长为2的菱形,60BAD ∠=.已知2,6PB PD PA ===.(Ⅰ)证明:PC BD ⊥(Ⅱ)若E 为PA 的中点,求三菱锥P BCE -的体积.0.5【答案】解:(2) 由(1)BD ⊥面PAC︒⨯⨯⨯==45sin 3262121PAC PEC S S △△=32236=⨯⨯ 111132322P BEC B PEC PEC V V S BO --∆==⋅⋅=⨯⨯=7.(2013年高考江西卷(文))如图,直四棱柱ABCD – A 1B 1C 1D 1中,AB//CD,AD ⊥AB,AB=2,AD=错误!未找到引用源。
,AA 1=3,E 为CD 上一点,DE=1,EC=3(1) 证明:BE ⊥平面BB 1C 1C;(2) 求点B1 到平面EA 1C 1 的距离1052,5d d ==(2)1111111123A B C E A B C V AA S ∆-•三棱锥的体积==221111111112Rt A D C AC A D D C ∆+在中,==3 , 同理,22112EC EC CC +==3 ,222113EA AD ED AA ++==2因此115A C E S ∆=3.设点B1到平面11EA C 的距离为d,则111B EAC -三棱锥的体积11153A EC V d S d ∆••==,从而1052,5d d == 二、有关折叠型。
8.(2013年高考广东卷(文))如图4,在边长为1的等边三角形ABC 中,,D E 分别是,AB AC边上的点,AD AE =,F 是BC 的中点,AF 与DE 交于点G ,将ABF ∆沿AF 折起,得到如图5所示的三棱锥A BCF -,其中22BC =. (1) 证明:DE //平面BCF ;(2) 证明:CF ⊥平面ABF ; (3) 当23AD =时,求三棱锥F DEG -的体积F DEG V -.图 4GEF ABCD图 5DGBFCAE9.如图1所示,在Rt △ABC 中,AC =6,BC =3,∠ABC =90°,CD 为∠ACB 的平分线,点E 在线段AC 上,CE =4.如图2所示,将△BCD 沿CD 折起,使得平面BCD ⊥平面ACD ,连接AB ,BE ,设点F 是AB 的中点. (1)求证:DE ⊥平面BCD ;32(2)若EF ∥平面BDG ,其中G 为直线AC 与平面BDG 的交点,求三棱锥B -DEG 的体积.(1)证明 ∵AC =6,BC =3,∠ABC =90°,∴∠ACB =60°. ∵CD 为∠ACB 的平分线,∴∠BCD =∠ACD =30°. ∴CD =2 3.∵CE =4,∠DCE =30°,∴DE 2=CE 2+CD 2-2CE ·CD ·cos 30°=4, ∴DE =2,则CD 2+DE 2=EC 2. ∴∠CDE =90°,DE ⊥DC .又∵平面BCD ⊥平面ACD ,平面BCD ∩平面ACD =CD ,DE ⊂平面ACD ,∴DE ⊥平面BCD .(2)解 ∵EF ∥平面BDG ,EF ⊂平面ABC ,平面ABC ∩平面BDG =BG , ∴EF ∥BG .∵点E 在线段AC 上,CE =4,点F 是AB 的中点,∴AE =EG =CG =2. 如图,作BH ⊥CD 于H . ∵平面BCD ⊥平面ACD , ∴BH ⊥平面ACD . 由条件得BH =32,S △DEG =13S △ACD =13×12AC ·CD ·sin 30°=3,∴三棱锥B -DEG 的体积V =13S △DEG ·BH=13×3×32=32.10. (2012·北京)如图(1),在Rt △ABC 中,∠C =90°,D ,E 分别为AC ,AB 的中点,点F 为线段CD 上的一点,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1F ⊥CD ,如图(2).(1)求证:DE ∥平面A 1CB .(2)求证:A 1F ⊥BE . (3)线段A 1B 上是否存在点Q ,使A 1C ⊥平面DEQ ?说明理由.(1)证明 因为D ,E 分别为AC ,AB 的中点,所以DE ∥BC .又因为DE ⊄平面A 1CB ,所以DE ∥平面A 1CB . (2)证明 由已知得AC ⊥BC 且DE ∥BC , 所以DE ⊥AC .所以DE ⊥A 1D ,DE ⊥CD . 又A 1D ∩CD =D ,所以DE ⊥平面A 1DC . 而A 1F ⊂平面A 1DC ,所以DE ⊥A 1F . 又因为A 1F ⊥CD ,所以A 1F ⊥平面BCDE , 又因为BE ⊂平面BCDE ,所以A 1F ⊥BE .(3)解 线段A 1B 上存在点Q ,使A 1C ⊥平面DEQ .理由如下: 如图,分别取A 1C ,A 1B 的中点P ,Q ,则PQ ∥BC . 又因为DE ∥BC ,所以DE ∥PQ . 所以平面DEQ 即为平面DEP .由(2)知,DE ⊥平面A 1DC ,所以DE ⊥A 1C . 又因为P 是等腰三角形DA 1C 底边A 1C 的中点,所以A 1C ⊥DP .所以A 1C ⊥平面DEP . 从而A 1C ⊥平面DEQ . 故线段A 1B 上存在点Q ,使得A 1C ⊥平面DEQ . 三、 线面位置关系中的存在性问题11、 如图,在矩形ABCD 中,AB =2BC ,P 、Q 分别是线段AB 、CD 的 中点,EP ⊥平面ABCD . (1)求证:DP ⊥平面EPC ;(2)问在EP 上是否存在点F ,使平面AFD ⊥平面BFC ?若存在,求出FPAP的值;若不存在,说明理由.思维启迪 先假设EP 上存在点F 使平面AFD ⊥平面BFC ,然后推证点F 的位置. (1)证明 ∵EP ⊥平面ABCD , ∴EP ⊥DP .又ABCD 为矩形,AB =2BC ,P 、Q 分别为AB 、CD 的中点,连接PQ , 则PQ ⊥DC 且PQ =12DC .∴DP ⊥PC .∵EP ∩PC =P ,∴DP ⊥平面EPC .(2)解 假设存在F 使平面AFD ⊥平面BFC ,∵AD ∥BC ,BC ⊂平面BFC ,AD ⊄平面BFC ,∴AD ∥平面BFC . ∴AD 平行于平面AFD 与平面BFC 的交线l .∵EP ⊥平面ABCD ,∴EP ⊥AD ,而AD ⊥AB ,AB ∩EP =P ,∴AD ⊥平面EAB , ∴l ⊥平面F AB .∴∠AFB 为平面AFD 与平面BFC 所成二面角的平面角. ∵P 是AB 的中点,且FP ⊥AB ,∴当∠AFB =90°时,FP =AP . ∴当FP =AP ,即FPAP =1时,平面AFD ⊥平面BFC .如图,在直四棱柱ABCD -A 1B 1C 1D 1中,已知DC =DD 1=2AD =2AB ,AD ⊥DC ,AB ∥DC . (1)求证:D 1C ⊥AC 1;(2)问在棱CD 上是否存在点E ,使D 1E ∥平面A 1BD .若存在,确定 点E 位置;若不存在,说明理由.(1)证明 在直四棱柱ABCD -A 1B 1C 1D 1中,连接C 1D , ∵DC =DD 1,∴四边形DCC 1D 1是正方形,∴DC 1⊥D 1C . 又AD ⊥DC ,AD ⊥DD 1,DC ∩DD 1=D ,∴AD ⊥平面DCC 1D 1, 又D 1C ⊂平面DCC 1D 1,∴AD ⊥D 1C .∵AD ⊂平面ADC 1,DC 1⊂平面ADC 1,且AD ∩DC 1=D , ∴D 1C ⊥平面ADC 1,又AC 1⊂平面ADC 1,∴D 1C ⊥AC 1. (2)解 假设存在点E ,使D 1E ∥平面A 1BD . 连接AD 1,AE ,D 1E ,设AD 1∩A 1D =M ,BD ∩AE =N ,连接MN ,∵平面AD 1E ∩平面A 1BD =MN , 要使D 1E ∥平面A 1BD ,可使MN ∥D 1E , 又M 是AD 1的中点,则N 是AE 的中点. 又易知△ABN ≌△EDN ,∴AB =DE .即E 是DC 的中点.综上所述,当E 是DC 的中点时, 可使D 1E ∥平面A 1BD . 四、有关角度问题。
12、如图,在三棱锥P ABC -中,PA ⊥底面ABC ,D 是PC 的中点,已知∠BAC =2π,2AB =,23AC=,2PA=,求:-的体积(1)三棱锥P ABC(2)异面直线BC与AD所成的角的大小(结果用反三角函数值表示)13、空间四边形ABCD中,AB=CD且AB与CD所成的角为30°,E、F分别为BC、AD的中点,求EF与AB所成角的大小.五、共线共面问题。