南师大概率论与数理统计2015期末试卷
2015年概率论考试题答案

2005级建筑工程(本)自考班 概率统计期末考试题(A 卷)参考答案一、填空 1. ABBC AC 或 ABC ABC ABC ABC2. 出现的点数恰为53. r p -A 与B 互斥∴ ()()()P A B P A P B =+ 则 ()()()P B P A B P A r p =-=-4.21 ()22~21124()114412X e EX DX EX DX EX ∴===+=+=,则5. 0.25由题设,可得X sin 的概率分布为{}sin 00.250.250.5P X ==+={}5.021sin =⎭⎬⎫⎩⎨⎧===πX P X P则 ()sin 0.5E X =,()sin 0.50.50.25D X =⨯=二、单项选择 1.D 2. A 3. A利用集合的运算性质可得. 4.DA 与B 互斥()0P AB ∴=故 ()()()()P A B P A P AB P A -=-= 5.BB A ⊂ AB B ∴=故 ()()P AB P B = 6. (C )由已知X 服从二项分布(,)B n p ,则()1DX np p =- 又由方差的性质知,(21)4(1)D X np p -=-7. (B )()04X N 服从,04EX DX ∴==,于是 ()222E X X EX EX -=-⎡⎤⎣⎦()24DX EX EX =+-=28. (A ) 由正态分布密度的定义,有 22()2()()x p x x μσ--=-∞<<+∞24()()x x x ϕ--∞<<+∞⇒由 22242σσ=⇒=9. (D )X EX DX λ==若服从泊松分布,则∴如果EX DX ≠时,只能选择泊松分布. 10. (D )∵ X 为服从正态分布N (-1, 2), EX = -1 ∴ E (2X - 1) = -3三、计算与应用题 1. 解:设 A 表示“取到的两球颜色不同”,则1153A n C C =而样本点总数28C n =故 ()1153281528A C C n P A n C ===2. 解:设 A 表示“能把门锁打开”,则112373A n C C C =+,而210C n = 故 ()1123732108A 15A C C C n P n C +=== 3. 解:设 A 表示“有4个人的生日在同一月份”,则21124611C C n A =而样本点总数为612=n故 412612611()0.007312A C C n P A n === 4. 解:设 A 表示“至少取到一个次品”,因其较复杂,考虑逆事件A =“没有取到次品”则 A 包含的样本点数为A n 346C =。
04183概率论与数理统计(经管类)2015年真题2套及标准答案

全国高等教育自学考试概率论与数理统计(经管类)2015年10月真题(课程代码:04183)一、单项选择题(本大题共10小题,每小题2分,共20分)1.设事件A 与B 互不相容,且P(A)=0.4,P(B)=0.2,则P(A∪B)=( )A.0B.0.2C.0.4D.0.62.设随机变量X ~B(3,0.3),则p={X-2}=( ) A.0.189 B.0.21 C.0.441 D.0.73.设随机变量X 的概率密度为( )=⎩⎨⎧≤≤=a x ax x f ,则常数其他,,0,10,)(2 A.0 B.31 C. D.3214.设随机变量X 的分布律为( ){}==-12.06.02.01012X P P X ,则 A.0.2 B.0.4C.0.6D.0.85.设二维随机变量(x,y)的分布律为( ){}==11.02.01.013.02.01.00210\X P YX 则 A.0.1 B.0.2C.0.3D.0.46.设随机变量X ~N(3,),则E(2X+2)=( )22 A.3 B.6 C.9 D.157.设随机变量X 服从参数为3的泊松分布,Y 服从参数为的指数分布,且X,Y51互相独立,则D(X-2Y+1)=( ) A.23 B.28C.103D.1048.已知X 与Y 的协方差Cov (X,Y )=,则Cov (-2X,Y )=( )21- A. B.021- C. D.1219.设为总体X 的一个样本,且为样本均值,)2(,...,,21>n x x x n ,未知)()(μμ=X E x 则的无偏估计为( )μ A. B.x n xC. D.x n )1(-x n )1(1-10.设a 是假设检验中犯第一类错误的概率,为原假设,以下概率为a 的是( )0H A. B.{}不真接受00|H H P {}真拒绝00|H H P C. D.{}不真拒绝00|H H P {}真接受00|H H P 二、填空题(本大题共15小题,每小题2分,共30分)11.袋中有编号为0,1,2,3,4的5个球,从袋中任取一球,取后放回;再从袋中任取一球,则取到两个0号球的概率为_____.12.设A,B 为随机事件,则事件“A,B 至少有一个发生”可由A,B 表示为_____.13.设事件A,B 相互独立,且P(A)=0.3,P(B)=0.4,则=_____.)(B A P 14.设X 表示某射手在一次射击命中目标的次数,该射手的命中率为0.9,则P{x=0}=_____.15.设随机变量X 服从参数为1的指数分布,则P{X >2}=_____.16.设二维随机变量(X,Y)的分布律为则c=_____.cYX 2561256259010\17.设二维随机变量(X,Y)的分布函数为F(x,y),则P{X≤0,Y≤0}用F(x,y)表示为_____.18.设二维随机变量(X,Y)服从区域D:-1≤x≤2,0≤y≤2的均匀分布,则(X,Y)概率密度f(x,y)在D 上的表达式为_____.19.设X 在区间[1,4]上服从均匀分布,则E(X)_____.20.设,则D(X)=_____.⎪⎭⎫⎝⎛515~B ,X 21.设随机变量X 与Y 的协方差Cov(X,Y)=,E(X)=E(Y)=1,则E(XY)=_____.21-22.设二维随机变量(X,Y)服从区域D:0≤x≤4,0≤y≤4上的分布,则____.=+)(22Y X E 23.设总体X ~N(0,1),为来自总体X 的一个样本,且123x x x ,,,则n=______.2222123~()x x x n χ++24.设X ~N(0,1),Y ~(10),且X 与Y 互相独立,则_____.2X =10/Y X25.设某总体X 的样本为_____.=⎪⎭⎫⎝⎛=∑-n i l n x n D X D x x x 12211,)(,,...,,则σ三、计算题(本大题共2小题,每小题8分,共16分)26.已知甲袋中有3个白球、2个红球;乙袋中有1个白球、2个白球,现从甲袋中任取一球放入乙袋,再从乙袋中任取一球,求该球是白球的概率。
2015-2016学年第二学期数理统计期末考试原卷及标准答案

XX师范大学2015–2016学年第二学期
期末考试试卷(B卷)参考答案
课程名称数理统计课程编号 XXXXXXX 任课教师
题型选择题填空题计算题证明题总分
分值15 15 50 20 100
得分
得分评阅人
一、:选择题(共5题,每题3分,共15 分)
1、样本取自正态分布总体,已知,但= 未知,则下列随机变量中不能作为统计量的是( C )
A. ;
B. ;
C. ;
D.
2、设总体,为其子样,,
,则有( B )
A.是2的矩估计量B.是2的极大似然估计
量 C.是2的最优无偏估计量D.是的优效估计量
3、在假设检验中,犯第二类错误概率的意义是( C )
A. 原假设H成立,经检验否定H的概率
00
B. 原假设H成立,经检验不否定H的概率
00
C. 备择假设成立,经检验否定的概率
D. 备择假设
H成立,经检验不否定的概率
1
4、设为正态总体的一个样本,表示样本均值,则的置信度为的
置信区间为( C )
A. B.
C. D.
5、关于最小二乘法估计量的性质,下面说法不正确的是( B )
A. 是的线性无偏估计量
B. 不是一个统计量
C. 是的极大似然估计量
D. 在的线性估计量中最优。
《概率论与数理统计》期末考试试题及答案

专业、班级:姓名:学号:
题号
一
二
三
四
五
六
七
八
九
十
十一
十二
总成绩
得分
一、单项选择题(每题3分共18分)
1.D 2.A 3.B 4.A5.A6.B
(1)
(2)设随机变量X其概率分布为 X -1 0 1 2
P 0.2 0.3 0.1 0.4
则 ( )。
(A)0.6(B)1(C)0 (D)
(3)
设事件 与 同时发生必导致事件 发生,则下列结论正确的是()
(A) (B)
(C) (D)
(4)
(5)设 为正态总体 的一个简单随机样本,其中
未知,则()是一个统计量。
(A) (B)
(C) (D)
(6)设样本 来自总体 未知。统计假设
为 则所用统计量为()
(A) (B)
(C) (D)
2、填空题(每空3分共15分)
解:因为 ,所以
(1)根据边缘概率与联合概率之间的关系得出
-1 0 1
0
1
0
0
0
………….4分
(2)因为
所以与 不相互独立
…………8分
七、(8分)设二维随机变量 的联合密度函数为
求:(1) ;(2)求 的边缘密度。
解:(1) …………..2分
=
=[ ] ………….4分
(2) …………..6分
……………..8分
解:用 表示第 户居民的用电量,则
………2分
则1000户居民的用电量为 ,由独立同分布中心极限定理
………3分
= ………4分
……….6分
概率论与数理统计期末试卷及答案(最新8)

2016-2017学年第二学期期末考试课程试卷(A )校察看,直至开除学籍处分! 一、 选择题(每题3分,共15分)1. 设事件1A 与2A 同时发生必导致事件A 发生,则下列结论正确的是( B ). A .)()(21A A P A P = B. 1)()()(21-+≥A P A P A P C. )()(21A A P A P = D. 1)()()(21-+≤A P A P A P2.假设连续型随机变量X 的分布函数为()F x ,密度函数为()f x .若X 与-X 有相同的分布函数,则下列各式中正确的是( C ).A .()F x =()F x -B .()F x =()F x --C .()f x =()f x -D .()f x =()f x --3. 已知随机变量X 的概率密度为)(x f X ,令X Y 2-=,则Y 的概率密度)(y f Y 为( D )。
A. )2(2y f X -B. )2(yf X -C. )2(21y f X --D. )2(21y f X - 4. 设随机变量X 服从正态分布)1,0(N , 对给定的)1,0(∈α, 数αu 满足αu X P α=>}{, 若αx X P =<}|{|, 则x 等于( A )。
请考生将答案写在试卷相应答题区,在其他地方作答视为无效!………………………………………………………………………………………………………………A. 12u α-B. 21u α-C. 2u αD. 1u α- 5. 12,,n X X X 是来自正态总体()2,μσXN 的样本,其中μ已知,σ未知,则下列不是统计量的是( C )。
A. 4114i i X X ==∑ B. 142X X μ+-C. 42211()i i K X X σ==-∑ D. 4211()3i i S X X ==-∑二、 填空题(每题3分,共15分)1.设,,A B C 为三个随机事件,则“事件,A B 发生但C 不发生”表示为 。
概率论及数理统计期末试卷习题及标准答案.doc

概率论及数理统计期末试卷习题及标准答案.doc概率论与数理统计期末试卷及答案一、填空题:1、一袋中有50 个球,其中20 个红球, 30 个白球,现两人从袋中各取一球,取后不放回,则第二个人取到白球的概率为3/5。
2、设 P(A)=1/2, P(B|A)=1/3, P(A|B)=1/2,那么P( A U B )2/3。
3、若随机变量X 的概率密度为 f ( x ) Ax 2 , 1 x 1, 那么A=3/2。
4、若二维随机变量(X,Y )在以原点为圆心的单位圆内的概率密度函数是1/,其它区域都是 0,那么P( X2Y 21 )1/2。
25、掷 n 枚骰子,记所得点数之和为X,则 EX = 。
6、若 X, Y, Z 两两不相关,且DX=DY=DZ=2,则 D(X+Y+Z) = 6 。
7、若随机变量X1 , X 2 ,L , X n相互独立且同分布于标准正态分布N(0,1) ,那么它们的平方和 X 12 X 22 L X n2 服从的分布是2 ( n) 。
8、设n A是 n 次相互独立的试验中事件A 发生的次数,p是事件 A 在每次试验中发生的概率,则对任意的n Ap | } =0 。
0 ,lim {|n n9 、设总体X : N ( , 2 ),其中 2 已知,样本为X 1 , X 2 ,L , X n,设 H 0 :0 ,H 1 :X 0z 。
0 ,则拒绝域为n10、设总体 X 服从区间 [1, a] 上的均匀分布,其中 a 是未知参数。
若有一个来自这个总体的样本 2, , , , , 那么参数 a 的极大似然估计值$2.7 。
a = max{ x1 , x2 ,L , x n }二、选择题1、设10 张奖券只有一张中奖,现有10 个人排队依次抽奖,则下列结论正确的是( A )(A)每个人中奖的概率相同;( B)第一个人比第十个人中奖的概率大;(C)第一个人没有中奖,而第二个人中奖的概率是1/9 ;(D)每个人是否中奖是相互独立的2、设随机变量 X 与 Y 相互独立,且X : N (1, 2 ) ,Y : N ( 2 ,2),则X Y 服从的分布是( B )(A)N ( 1 2 , 2 ) ;(B)N ( 1 2 ,2 2 ) ;(C)N ( 1 2 , 2 ) ;(D)N ( 1 2 , 2 2 ) 3、设事件A、 B 互斥,且P ( A) 0 , P( B ) 0 ,则下列式子成立的是( D )( A)P( A | B )P( A) ;(B)P( B | A)0 ;( C)P( A | B ) P( B) ;( D)P( B | A) 0 ;4、设随机变量 X 与 Y 独立同分布, P(X= -1) = P(Y= -1) =1/2 ,P(X= 1) = P(Y= 1) =1/2 ,则下列成立的是( A )( A)P( X Y ) 1 / 2 ;( B)P( X Y ) 1 ;( C)P( X Y 0) 1/ 4 ;( D)P( XY 1) 1/ 4 ;5、有 10 张奖券,其中8 张 2 元, 2 张 5 元。
概率论与数理统计期末考试试题(答案)

概率论与数理统计期末考试试题(答案)概率论与数理统计开/闭卷闭卷A/B 卷 A2219002801-课程编号 2219002811课程名称概率论与数理统计 ________________ 学分 J ________第⼀部分基本题⼀、选择题(共6⼩题,每⼩题5分,满分30分。
在每⼩题给出的四个选项中,只有⼀个是符合题⽬要求的,把所选项前的字母填在题后的括号内) (每道选择题选对满分,选错0分)2?假设事件A 与事件B 互为对⽴,则事件A B( )(A)是不可能事件 (B)是可能事件(C) 发⽣的概率为1 (D)是必然事件答:选A ,这是因为对⽴事件的积事件是不可能事件。
3. 已知随机变量X,Y 相互独⽴,且都服从标准正态分布,则 X 2 3 + Y 2服从( ) (A)⾃由度为1的2分布 (B)⾃由度为2的2分布2(C) X ;是2的⽆偏估计(D) 刍⼀⽣⼀⽣是2的⽆偏估计3答:选B ,因为样本均值是总体期望的⽆偏估计,其它三项都不成⽴。
6.随机变量X服从在区间(2,5)上的均匀分布,贝U X 的数学期望E(X)的值为( )(A) 2 (B) 3 (C) 3.5 (D) 4 答:选C ,因为在(a,b)区间上的均匀分布的数学期望为(a+b)/2。
⼆、填空题(共6⼩题,每⼩题5分,满分30分。
把答案填在题中横线上)线1. 事件表达式A B 的意思是( ) (A) 事件A 与事件B 同时发⽣ (C)事件B 发⽣但事件A 不发⽣答:选D ,根据A B 的定义可知。
(B) 事件A 发⽣但事件B 不发⽣ (D)事件A 与事件B ⾄少有⼀件发⽣ )封题… 答… 不…内…线…封…密…) (D) X+Y~N(0,3) ⽽ E(X+Y)=E(X)+E(Y)=2-2=0,(C)⾃由度为1的F分布(D)⾃由度为2的F分布答:选B,因为n个相互独⽴的服从标准正态分布的随机变量的平⽅和服从⾃由度为2分布。
4. 已知随机变量X,Y相互独⽴,X~N(2,4),Y~N( 2,1),则((A) X+Y~P ⑷(B) X+Y~U(2,4) (C) X+Y~N(0,5)答:选C,因为相互独⽴的正态变量相加仍然服从正态分布, D(X+Y)=D(X)+D(Y)=4+1=5,所以有X+Y~N(0,5)。
14-15I 概率论与数理统计试卷(A)48学时参考答案与评分标准

| | | | | | | |装|| | | |订| | | | | |线|| | | | | | |防灾科技学院2014~2015年 第一学期期末考试概率论与数理统计试卷(A )考试形式 闭卷 使用班级本科48学时班 答题时间120分钟(请将答案写在答题纸上)一 、填空题(本大题共7小题,每题3分,共21分)1、若以事件i A 表示“一个工人生产的第i 个零件是合格品”(n i ≤≤1),则事件“没有一个零件是不合格品”用i A 表示为 12n A A A ;2、已知事件A ,B 有概率4.0)(=A P ,5.0)(=B P ,条件概率3.0)|(=A B P ,则=⋃)(B A P 0.62 .3、假设某潜在震源区年地震发生数X 服从参数为2=λ的泊松分布,则未来一年该震源区发生至少一次地震的概率为21--e ;4、10张彩票中有5张是有奖彩票。
每人依次抽取一张彩票,第2个人抽中奖的概率为 1/2 ;5、假设英语四级考试有60个选择题,每题有四个选项,其中只有一个为正确选项。
小明没有复习而选择 “裸考”,答案全是随便“蒙”的,则Ta “蒙”对题数的期望是 15 ;6、随机变量X 的分布函数是⎪⎪⎩⎪⎪⎨⎧≤<≤<≤--<=x x x x x F 3,131,6.011,4.01,0)(,则X 的分布律是1130.40.20.4X-⎛⎫ ⎪⎝⎭,=≤<-)31(X P 0.6 ;二、单项选择题(本大题共7小题,每题3分,共21分)7、设离散型随机变量X 的分布律为k k X P αβ==}{, ,2,1=k 且0>α,则参数=β(A )11-=αβ (B )1+=αβ (C )11+=αβ (D )不能确定 ( C ) 8、设随机变量)1,0(~N X ,X 的分布函数为)(x Φ,则)2(>X P 的值为(A ))]2(1[2Φ-. (B )1)2(2-Φ.(C ))2(2Φ-. (D ))2(21Φ-. ( A )9、某人射击直到中靶为止,已知每次射击中靶的概率为0.75. 则射击次数的数 学期望与方差分别为 ( D ))(A 4934与; )(B 16934与; )(C 4941与; (D) 9434与. 10、设随机变量X 和Y 不相关,则下列结论中正确的是( B ) (A )X 与Y 独立. (B ))()()(Y D X D Y X D +=-. (C ))()()(Y D X D Y X D -=-. (D ))()()(Y D X D XY D =.11、设离散型随机变量X 和Y 的联合概率分布为若Y X ,独立,则βα,的值为(A )91,92==βα. (B )92,91==βα.(C ) 61,61==βα (D )181,185==βα. ( A ) 12、设样本4321,,,X X X X 为来自总体)1,0(N 的样本,243221)(X X X C X Y +++=,若Y 服从自由度为2的2χ分布,则=C ( B )(A) 3; (B) 1/3; (C) 0; (D) -3 . 13、设随机变量与相互独立,其概率分布分别为则有(A ) (B )(,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)111169183X Y P αβX Y 010.40.6X P 010.40.6Y P ()0.P X Y ==()0.5.P X Y ==(C ) (D ) ( C ) 14、设总体)4,2(~2N X ,n X X X ,,,21 为来自X 的样本,则下列结论中正确的是 (A ))1,0(~42N X -. (B ))1,0(~162N X -. (C ))1,0(~22N X -. (D ))1,0(~/42N nX -. ( D ) 三、解答题(本大题共5小题,每题10分,共50分)15、计算机中心有三台打字机A,B,C ,程序交与各打字机打字的概率依次为0.6, 0.3, 0.1,打字机发生故障的概率依次为0.01, 0.05, 0.04。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南京师范大学2014-2015年第二学期
《概率论与数理统计》课程期末试卷(A )(3学时)
学院: 专业: 班 级:
一.填空题:(每题3分,共18分)
1. 设随机事件B A ,互不相容,且3.0)(=A P ,6.0)(=B P ,则=)(A B P 。
2.若100张奖券中有5张中奖,100个人分别抽取1张,则第100个人能中奖 的概率为 。
3.设随机变量X 服从参数为1的指数分布,则=>}{2EX X P 。
4.设随机变量Y X ,相互独立且同分布,2
1
}1{}1{===-=X P X P ,则==}{Y X P 。
5.设)1,3(~N X ,23+=X Y 。
则X 和Y 之间的相关系数为 。
6. 设随机变量)0,3,2,1,3(~),(22N Y X ,则=EXY 。
3分,共15分) 1. 某人射击时,中靶的概率为
4
3
,若射击直到中靶为止,则射击次数为3的概率为 ( )
)(A
643; )(B 6427; )(C 649; )(D 64
1。
2.设随机变量X 的密度函数为⎩⎨⎧≤>=-000
)(x x e x p x ,则条件概率}1|2{≥≤X X P 的
值为 ( ) )(A 2-e ; )(B 21--e ; )(C 1-e ; )(D 11--e 。
3.设)(),(x p x F 分别为某随机变量的分布函数和密度函数,则必有 ( )
)(A )(x p 单调不减; )(B 0)(=-∞F ;
)(C
1)(=⎰
+∞
∞
-dx x F ; )(D ⎰
+∞
∞
=-)()(dx x p x F 。
4. 设随机变量X 服从)2,2(-上的均匀分布,则随机变量X Y e =的密度函数)(y p Y
在1=y 处的值为 ( )
)(A 0; )(B
21; )(C 41; )(D 8
1。
5.n 个随机变量),,3,2,1(n i X i =相互独立且具有相同的分布a EX i =,b DX i =,
则这些随机变量的算术平均值∑==n
i i X n X 1
1的数学期望和方差分别为 ( )
)(A a ,2n
b ; )(B a ,n b
; )(C a ,n b 2 ; )(D n a ,b 。
品分别占总数的0.2、0.3、0.4和0.1。
出现次品的概率分别为201、301、40
1
和
50
1。
试求(1)从这批产品中任取一件产品为次品的概率?(2)已知从这批产品中随机地抽取一件发现是次品,问这件产品是丁车间生产的概率是多少?(11分)
四、将一温度调节器放置在贮存着某种液体的容器内,调节器整定在d C 0度,液面的温度X (以C 0计)是一个随机变量,且)5.0,(~2d N X 。
(1)若90=d C 0,求X 小于89C 0的概率。
(2)若要求保持液面的温度至少为80C 0的概率不低于
99.0,问d 至少为多少?(需要的数据在试卷最后一页下面)(10分)
五、设随机变量),(Y X 的联合分布列为
若8.0=EXY ,求(1),a b ;(2)),(Y X Cov 及相关系数XY ρ.(10分)
六、设随机变量),(Y X 的密度函数⎩⎨⎧<<<<+=其它01
0,10)(),(y x y x c y x p
(1)求常数c ;(2)试求Y X ,的边缘密度函数;(3)问X 与Y 是否相互独立? (4)求Y X Z +=的密度函数。
(14分)
20小时,具体使用时是当一个元件损坏后立即更换另一新元件,如此继续。
试利用中心极限定理求90个元件的总寿命超过2000小时的概率。
(需要的数据在试卷最后一页下面)(8分)
八、设621,,,X X X 是来自正态总体)1,0(N 的样本,试问统计量
2
6423
13131⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=∑∑==i i i i X X Y
服从什么分布,请说明理由。
(6分)
九、设随机变量X 的密度函数⎪⎩⎪⎨⎧≤>β=β+β1
1),(1
x x x
x p ,其中1>β为未知参数, n X X X ,,,21 是来自总体的一个样本,求β的矩估计量和极大似然估计量。
(8分)
南京师范大学2014-2015学年第二学期(3学时) 《概率统计》课程期末试卷(A )答案 一、1.74; 2.05.0;3.2-e ;4.2
1
;5.1;6.3.
二、1.A ;2.D ;3.B ;4.C ;5.B 。
三、1254; 161。
四、(1)0228.0 (2)165.81 五、(1)1.0=a ,3.0=b , (2)1.0),(=Y X Cov 6
6
=
ρXY 六、(1)1=c
(2)⎪⎩⎪⎨⎧<<+=其它01021)(x x x p X ,⎪⎩⎪⎨⎧<<+=其它
01021)(y y y p Y
(3)Y X ,不独立。
(4)⎪⎩
⎪
⎨⎧≤≤-<<=其它021)2(10)(2z z z z z z p Z
七、 1469.0
八、)2(~2χY 。
九、矩估计量1
ˆ-=β
X X ;极大似然估计量为∑==β
n
i i
x
n
1
ln ˆ。
专业 班级 学号 姓名
-------------------------装----------------------订------------------------线------------------------。