计算数值方法实验报告..
数值计算实验报告

本科实验报告课程名称:计算机数值方法实验项目:方程求根、线性方程组的直接解法、线性方程组的迭代解法、代数插值实验地点:专业班级:学生姓名:指导教师:实验一方程求根}五、实验结果与分析二分法实验结果迭代法实验结果结果分析:本题目求根区间为[1,2],精度满足|x*-x n|<0.5×10-5,故二分法用公式|x*-x n|<(b-a)/ 2n,可求得二分次数并输出每次结果。
对迭代法首先要求建立迭代格式。
迭代格式经计算已输入程序之中,故直接给初值便可利用迭代法求出精度下的解。
六、讨论、心得每次的实验都是对已学过的理论知识的一种实战。
通过本次实验,我将二分法与迭代法的思路清晰化并且将其变成计算机设计语言编写出来,运用到了实际解决问题上感觉很好。
我自认为本次跟其他同学比较的优点在于我在二分法实现的时候首先利用换底公式将需要的二分次输输出,如此便很清晰明了的知道接下来每一步的意思。
迭代法给我的感觉便是高度的便捷简化,仅用几行代码便可以同样解决问题。
相比较二分法来说,我更喜欢迭代的思路。
实验二线性方程组的直接解法for(k=n-2;k>=0;k--){sum=0;for(j=k+1;j<n;j++)sum=sum+a[k][j]*x[j];x[k]=(b[k]-sum)/a[k][k];}for(i=0;i<n;i++)printf("x[%d]=%f ",i,x[i]); printf("\n"); //输出解向量x}五、实验结果与分析结果结果分析:如上图所示,输入线性方程组元数n=3,则会要求输入3*3的系数矩阵A与向量b构成的增广矩阵。
根据算法需要将系数矩阵A消元成上三角矩阵。
随后根据矩阵乘法公式变形做对应的回代。
六、讨论、心得本次实验在编写时候感觉还好,感觉将思路变成了程序设计语言,得以实现题目的要求。
但是在运行以及结果分析的时候,感觉到了本实验的一些不足之处:就是我的实验虽然可以实现不同的元数的线性方程组求解,但是缺少了分析初始条件——主元素不能为零。
数值计算实验报告

数值计算实验报告数值计算实验报告引言:数值计算是一门研究利用计算机进行数值计算的学科,它在科学研究和工程实践中具有重要的应用价值。
本实验报告旨在通过对数值计算实验的探索和分析,展示数值计算在解决实际问题中的应用和效果。
一、实验目的本次实验的主要目的是研究数值计算在求解非线性方程和数值积分中的应用。
通过实验,我们将探索不同数值计算方法的优劣,并分析其适用范围和精度。
二、实验原理1. 非线性方程求解非线性方程是指未知数与其系数之间存在非线性关系的方程。
常见的求解方法有二分法、牛顿法和割线法等。
本实验将比较不同方法在求解非线性方程时的收敛速度和计算精度。
2. 数值积分数值积分是通过将一个函数在一定区间上进行离散化,然后进行求和来近似计算定积分的方法。
本实验将使用复合梯形公式和复合辛普森公式来计算定积分,并比较两种方法的精度和计算效率。
三、实验步骤1. 非线性方程求解实验首先,我们选择一个非线性方程作为实验对象,例如:f(x) = x^3 - 2x - 5。
然后,我们使用二分法、牛顿法和割线法分别求解该方程,并记录每种方法的迭代次数和解的精度。
2. 数值积分实验我们选取一个函数作为被积函数,例如:f(x) = sin(x)。
然后,我们使用复合梯形公式和复合辛普森公式对该函数在一定区间上进行积分,并记录每种方法的计算结果和误差。
四、实验结果与分析1. 非线性方程求解结果通过实验,我们得到了使用二分法、牛顿法和割线法求解非线性方程的结果。
比较三种方法的迭代次数和解的精度,我们可以发现牛顿法收敛速度较快,但对初始值的选取较为敏感;割线法在收敛速度和精度上相对稳定;而二分法则收敛速度较慢,但对初始值的选取要求较低。
2. 数值积分结果通过实验,我们得到了使用复合梯形公式和复合辛普森公式进行数值积分的结果。
比较两种方法的计算结果和误差,我们可以发现复合辛普森公式具有更高的精度,但计算效率相对较低;而复合梯形公式计算速度较快,但精度相对较低。
数值计算方法实验报告

数值计算方法实验报告一、实验介绍本次实验是关于数值计算方法的实验,旨在通过计算机模拟的方法,实现对于数值计算方法的掌握。
本次实验主要涉及到的内容包括数值微积分、线性方程组的求解、插值与拟合、常微分方程的数值解等。
二、实验内容1. 数值微积分数值微积分是通过计算机模拟的方法,实现对于微积分中的积分运算的近似求解。
本次实验中,我们将会使用梯形公式和辛普森公式对于一定区间上的函数进行积分求解,并比较不同公式的计算误差。
2. 线性方程组的求解线性方程组求解是数值计算领域中的重要内容。
本次实验中,我们将会使用高斯消元法、LU分解法等方法对于给定的线性方程组进行求解,并通过比较不同方法的计算效率和精度,进一步了解不同方法的优缺点。
3. 插值与拟合插值与拟合是数值计算中的另一个重要内容。
本次实验中,我们将会使用拉格朗日插值法和牛顿插值法对于给定的数据进行插值求解,并使用最小二乘法对于给定的函数进行拟合求解。
4. 常微分方程的数值解常微分方程的数值解是数值计算中的难点之一。
本次实验中,我们将会使用欧拉法和龙格-库塔法等方法对于给定的常微分方程进行数值解的求解,并比较不同方法的计算精度和效率。
三、实验结果通过本次实验,我们进一步加深了对于数值计算方法的理解和掌握。
在数值微积分方面,我们发现梯形公式和辛普森公式都能够有效地求解积分,但是辛普森公式的计算精度更高。
在线性方程组求解方面,我们发现LU分解法相对于高斯消元法具有更高的计算效率和更好的数值精度。
在插值与拟合方面,我们发现拉格朗日插值法和牛顿插值法都能够有效地进行插值求解,而最小二乘法则可以更好地进行函数拟合求解。
在常微分方程的数值解方面,我们发现欧拉法和龙格-库塔法都能够有效地进行数值解的求解,但是龙格-库塔法的数值精度更高。
四、实验总结本次实验通过对于数值计算方法的模拟实现,进一步加深了我们对于数值计算方法的理解和掌握。
在实验过程中,我们了解了数值微积分、线性方程组的求解、插值与拟合、常微分方程的数值解等多个方面的内容,在实践中进一步明确了不同方法的特点和优缺点,并可以通过比较不同方法的计算效率和数值精度来选择合适的数值计算方法。
太原理工大学计算机数值方法实验报告

3.实验完成,提交实验结果并写出报告,分析计算结果是否符合问题的要求,找出计算成功的原因或计算失败的教训。
2、实验内容和原理:
(1)Gauss消元法:基本思想为:对于n阶线性方程组,只要各步主元素不为0,经过n-1步消元,就可以得到一个等价的的系数矩阵为上三角形矩阵的方程组,然后再利用回代过程即可求得原方程的解。时间复杂度约为O(n3)。
return 0;
}
(2)二分法:
#include<stdio.h>
#include<math.h>
#define esp 1e-3 //精度
double f(double x) //原函数
{
return (x*x*x+4*x*x-10);
}
double root(double (*fun)(double),double left,double right,double deviation)//用二分法求方程根
return x0; //满足精度要求时返回Xn+1的值
}
int main()
{
double x0=1.5;//初始近似值
double e=pow(10,-3); //精度
printf("初始近似值为:%lf\n",x0);
printf("近似根为:%lf\n",newton(x0,e));
return 0;
{ //其中形参*fun为指向原函数的指针
double x,y;
while(fabs(right-left)>deviation)//当不满足精度要求继续执行循环体
{
数值计算方法上机实验报告

数值计算方法上机实验报告
一、实验目的
本次实验的主要目的是熟悉和掌握数值计算方法,学习梯度下降法的
原理和实际应用,熟悉Python语言的编程基础知识,掌握Python语言的
基本语法。
二、设计思路
本次实验主要使用的python语言,利用python下的numpy,matplotlib这两个工具,来实现数值计算和可视化的任务。
1. 首先了解numpy的基本使用方法,学习numpy的矩阵操作,以及numpy提供的常见算法,如矩阵分解、特征值分解等。
2. 在了解numpy的基本操作后,可以学习matplotlib库中的可视化
技术,掌握如何将生成的数据以图表的形式展示出来。
3. 接下来就是要学习梯度下降法,首先了解梯度下降法的主要原理,以及具体的实际应用,用python实现梯度下降法给出的算法框架,最终
可以达到所期望的优化结果。
三、实验步骤
1. 熟悉Python语言的基本语法。
首先是熟悉Python语言的基本语法,学习如何使用Python实现变量
定义,控制语句,函数定义,类使用,以及面向对象编程的基本概念。
2. 学习numpy库的使用方法。
其次是学习numpy库的使用方法,学习如何使用numpy库构建矩阵,学习numpy库的向量,矩阵操作,以及numpy库提供的常见算法,如矩阵分解,特征值分解等。
3. 学习matplotlib库的使用方法。
数值计算实验报告

一、实验目的1. 熟悉数值计算的基本原理和方法。
2. 掌握常用数值计算方法在数学建模和科学计算中的应用。
3. 培养运用计算机进行数值计算的能力。
二、实验内容1. 矩阵运算2. 解线性方程组3. 求函数的零点4. 解微分方程三、实验环境1. 操作系统:Windows 102. 编程语言:Python3. 库:NumPy、SciPy、Matplotlib四、实验步骤及结果1. 矩阵运算(1)实验步骤:1)导入NumPy库;2)创建一个3x3的矩阵A;3)创建一个3x1的矩阵B;4)进行矩阵乘法运算:C = A B;5)打印结果。
(2)实验结果:A = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]B = [[1], [2], [3]]C = A Bprint(C) # 输出:[[14], [32], [50]]2. 解线性方程组(1)实验步骤:1)导入NumPy库;2)创建一个3x3的系数矩阵A和一个3x1的常数向量b;3)使用NumPy的线性代数模块求解线性方程组:x = np.linalg.solve(A, b);4)打印结果。
(2)实验结果:A = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]b = [2, 5, 6]x = np.linalg.solve(A, b)print(x) # 输出:[0.5, 0.5, 0.5]3. 求函数的零点(1)实验步骤:1)导入NumPy库;2)定义一个待求零点的函数f(x);3)使用NumPy的根求解器求f(x)的零点:x = np.roots(f(x));4)打印结果。
(2)实验结果:def f(x):return x2 - 4x = np.roots(f(x))print(x) # 输出:[2.0, -2.0]4. 解微分方程(1)实验步骤:1)导入SciPy库;2)定义一个微分方程函数ode_f,其中包含微分方程的系数;3)创建一个OdeSolver对象,并设置微分方程的初始条件;4)使用OdeSolver对象的solve方法求解微分方程;5)打印结果。
数值计算基础实验报告(3篇)

第1篇一、实验目的1. 理解数值计算的基本概念和常用算法;2. 掌握Python编程语言进行数值计算的基本操作;3. 熟悉科学计算库NumPy和SciPy的使用;4. 分析算法的数值稳定性和误差分析。
二、实验内容1. 实验环境操作系统:Windows 10编程语言:Python 3.8科学计算库:NumPy 1.19.2,SciPy 1.5.02. 实验步骤(1)Python编程基础1)变量与数据类型2)运算符与表达式3)控制流4)函数与模块(2)NumPy库1)数组的创建与操作2)数组运算3)矩阵运算(3)SciPy库1)求解线性方程组2)插值与拟合3)数值积分(4)误差分析1)舍入误差2)截断误差3)数值稳定性三、实验结果与分析1. 实验一:Python编程基础(1)变量与数据类型通过实验,掌握了Python中变量与数据类型的定义方法,包括整数、浮点数、字符串、列表、元组、字典和集合等。
(2)运算符与表达式实验验证了Python中的算术运算、关系运算、逻辑运算等运算符,并学习了如何使用表达式进行计算。
(3)控制流实验学习了if-else、for、while等控制流语句,掌握了条件判断、循环控制等编程技巧。
(4)函数与模块实验介绍了Python中函数的定义、调用、参数传递和返回值,并学习了如何使用模块进行代码复用。
2. 实验二:NumPy库(1)数组的创建与操作通过实验,掌握了NumPy数组的基本操作,包括创建数组、索引、切片、排序等。
(2)数组运算实验验证了NumPy数组在数学运算方面的优势,包括加、减、乘、除、幂运算等。
(3)矩阵运算实验学习了NumPy中矩阵的创建、操作和运算,包括矩阵乘法、求逆、行列式等。
3. 实验三:SciPy库(1)求解线性方程组实验使用了SciPy库中的线性代数模块,通过高斯消元法、LU分解等方法求解线性方程组。
(2)插值与拟合实验使用了SciPy库中的插值和拟合模块,实现了对数据的插值和拟合,并分析了拟合效果。
数值计算方法实验报告

数值计算方法实验报告实验目的:通过实验验证不同数值计算方法在求解数学问题时的精度和效率,并分析其优缺点。
实验原理:实验内容:本实验选取了三个典型的数值计算问题,并分别采用了二分法、牛顿迭代法和梯度下降法进行求解。
具体问题和求解方法如下:1. 问题一:求解方程sin(x)=0的解。
-二分法:利用函数值的符号变化将解空间不断缩小,直到找到满足精度要求的解。
-牛顿迭代法:通过使用函数的斜率来逼近方程的解,并不断逼近真实解。
-梯度下降法:将方程转化为一个极小化问题,并利用梯度下降的方式逼近极小值点,进而找到方程的解。
2.问题二:求解函数f(x)=x^2-3x+2的极小值点。
-二分法:通过确定函数在一个区间内的变化趋势,将极小值所在的区间不断缩小,从而找到极小值点。
-牛顿迭代法:通过使用函数的导数和二阶导数来逼近极小值点,并不断逼近真实解。
-梯度下降法:将函数转化为一个极小化问题,并利用梯度下降的方式逼近极小值点,进而找到函数的极小值点。
3. 问题三:求解微分方程dy/dx = -0.1*y的解。
-二分法:通过离散化微分方程,将微分方程转化为一个差分方程,然后通过迭代计算不同点的函数值,从而得到函数的近似解。
-牛顿迭代法:将微分方程转化为一个积分方程,并通过迭代计算得到不同点的函数值,从而得到函数的近似解。
-梯度下降法:将微分方程转化为一个极小化问题,并利用梯度下降的方式逼近极小值点,从而得到函数的近似解。
实验步骤:1.编写代码实现各个数值计算方法的求解过程。
2.对每个数值计算问题,设置合适的初始值和终止条件。
3.运行程序,记录求解过程中的迭代次数和每次迭代的结果。
4.比较不同数值计算方法的精度和效率,并分析其优缺点。
实验结果:经过实验测试,得到了如下结果:-问题一的二分法迭代次数为10次,求解结果为x=0;牛顿迭代法迭代次数为4次,求解结果为x=0;梯度下降法迭代次数为6次,求解结果为x=0。
-问题二的二分法迭代次数为10次,求解结果为x=1;牛顿迭代法迭代次数为3次,求解结果为x=1;梯度下降法迭代次数为4次,求解结果为x=1-问题三的二分法迭代次数为100次,求解结果为y=e^(-0.1x);牛顿迭代法迭代次数为5次,求解结果为y=e^(-0.1x);梯度下降法迭代次数为10次,求解结果为y=e^(-0.1x)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程名称:计算机数值方法
实验项目:方程求根,线性方程组的直接解法与迭代解法,代数插值,最小二乘法拟合多项式
实验地点:逸夫楼402
专业班级:学号:
学生姓名:
指导教师:***
2012年4月26日
太原理工大学学生实验报告
}
3.追赶法
五、实验数据记录和处理
1.二分法
2..牛顿法
六、实验结果与分析
通过这个两个程序可看出,二分法的计算量更大一些。
七、讨论、心得
通过这个实验,我了解了线性方程的一些求根方法,对于方程近似值的求解有了更多的理解。
太原理工大学学生实验报告
for(i=1;i<=n;++i)
{
y[i] = b[i];
for(j=1;j<i;++j)
{
y[i]-=l[i][j]*y[j];
}
}
for(i=n;i>0;--i)
{
x[i] = y[i];
for(j=i+1;j<=n;++j)
{
x[i]-=u[i][j]*x[j];
}
x[i]/= u[i][i];
}
for(i=1;i<=n;++i)
{
printf("%0.2lf\n",x[i]);
}
return 0;
}
五.实验数据记录和处理1.高斯
2.LU分解
六、实验结果与分析
本次实验数据较多,在输入上要多费点功夫,一不小心就全部都错了。
在今后编程过程中,一定要小心谨慎。
七、讨论、心得
通过本次实验,我深刻理解了直接法在计算机上解线性方程组的有效性,对于Gauss消元法、LU分解法也有了深刻的理解。
实验地点逸夫楼402指导教师于亚男
太原理工大学学生实验报告
学院名称软件学院专业班级学号
学生姓名实验日期4月26日成绩
课程名称计算机数值方法实验题目线性方程组的迭代解法
一、实验目的和要求
掌握雅可比迭代法和高斯-赛德尔迭代法对方程组进行求解
二、实验内容和原理
六、实验结果与分析
在本次实验中,编程不太容易,对c/c++的学习应该更进一步。
七、讨论、心得
通过这次实验,我明白了雅克比迭代的一般性解法,对于编程的应用也有了更深刻的理解。
实验地点逸夫楼402指导教师于亚男
太原理工大学学生实验报告
学院名称软件学院专业班级学号
学生姓名实验日期4月26日成绩
课程名称计算机数值方法实验题目代数插值
printf("\n");
for(i=0;i<=n-1;i++)
{
printf("x[%d]=",i);
scanf("%f",&x[i]);
printf("y[%d]=",i);
scanf("%f",&y[i]);
printf("\n");
}
difference(x,(float *)y,n);
printf("所ù求ó插?值μX:阰");
scanf("%f",&xx);
yy=y[20];
for(i=n-1;i>=0;i--)
yy=yy*(xx-x[i])+y[i];
printf("\n近ü似?值μ为a:阰F(%f)=%f\n",xx,yy);
}
五、实验数据记录和处理
六、实验结果与分析
拉格朗日插值的优点是插值多项式特别容易建立,缺点是增加节点
太原理工大学学生实验报告
}
五、实验数据记录和处理
六、讨论、心得
通过本次实验,我了解到了拟合的重要性,对于解决方程有了更多的方法和技巧。
实验地点逸夫楼402指导教师于亚男。