运筹学毕业论文-单纯形法

合集下载

细说单纯形法

细说单纯形法

细说单纯形法线性规划是运筹学里至关重要的内容,单纯形法又是解决线性规划问题最重要的方法,如果不能深刻地理解单纯形法,对线性规划的学习,甚至是运筹学的学习都将带来严重的负面影响。

但大部分运筹学教材在介绍单纯形法的时候都利用矩阵语言,显得艰涩难懂,这对初学运筹学的人来讲是一个不小的打击,会大大削弱他们学习运筹学的兴趣。

为此,我们需要寻找一种更有效的方法来介绍单纯形法。

(我们默认读者对线性规划模型以及关于线性规划解的基本概念有一定的了解,如果读者不了解,可以参考任意一本运筹学教材学习这些概念)单纯形法大体分三步:(1)找出第一个(初始的)基可行解。

(2)判断这个基可行解是否最优。

(3)如果不是最优,我们将它调整为一个“更好的”基可行解,直至最终求出最优解。

以上三个步骤,我们通过“单纯形表”来完成。

下面我们通过具体的例子来了解单纯形表的构造。

上表包括了线性规划问题中所有关键数据,而且我们可以很方便地找到初始基为:β=(X ,X ,X ),因为系数列向量P 、P 、P 都是不同的单位向量,前面我们介绍过P 、P 、P 线性无关。

β确定的初始基可行解是:X =X =0,X =15,X =5,X =11,相应此解的目标函数值:Z =0。

我们将上表称为初始基β的单纯形表。

通过初始基β的单纯形表,我们找出了初始基可行解,下面的问题是如何判断初始基可行解是否最优解。

我们观察一下Z 行中X 、X 的系数为-5、-4,而X 、X 又是非基变量,取值都为0,这样对于求最小的Z 是很不利的,试想如果将X、X 都变成基变量,即允许X 、X 取值为正,那么Z 势必会减少(增加一个X ,Z 减少5;增加一个X ,Z 减少4),由此我们判断初始基并非最优基,初始基可行解也并非最优解。

我们看到判断当前解是否最优解主要依据非基变量在目标函数中的系数。

但要注意的是基变量的取值是有约束方程决定的,而非基变量取值是我们约定的为0,这种约定是否合理只有在目标函数中不含基变量或者说目标函数中基变量系数为0时才能很明显地表现出来,因此,我们在判断当前基可行解是否最优时一定要保证基变量在目标函数中系数为0。

运筹学单纯形法

运筹学单纯形法

运筹学单纯形法
运筹学单纯形法,又称单纯性法,是一种用于求解线性规划问题的数学方法,它在运筹学中发挥着重要作用。

它主要应用于决策及资源分配问题,可以帮助决策者更好地把握资源的优化配置,并寻求最优解。

单纯性法是以线性规划问题作为理论基础,它是将该问题转化为一系列形如Ax=b的线性方程组的运筹学方法。

在这个方程组通过调整方程中的系数和右面常数而变换为形如Cx≤d的不等式形式,而这种不等式系统称为单纯性约束条件。

单纯性法从不等式中寻找一系列基向量,并通过改变基向量来实现改变不等式的求解方程之间的关系,从而求出最优解的问题。

传统的单纯性法分为有界单纯性和无界单纯性两种情形。

无界单纯性以简单费用曲线方法、扩展的简单费用曲线方法和增广次数法三大类。

有界单纯性主要是对对角单纯性和非对角单纯性这两类单纯性系统分别使用不同的方法进行求解。

单纯性求解方法在线性规划问题求解中具有重要应用,它能通过求解线性规划问题中的一系列互不相关的子问题来求出最优解。

使用该方法,可以以最少的成本达到最优的收益,它包括费用最低优化、网络流优化、全格研究和数学优化模型等。

运筹学基础论文

运筹学基础论文

运筹学基础论文——单纯形乘子定理摘要:对偶理论是线性规划在早期发展中的重要成果之一,是线性规划的重要组成部分。

对偶理论深刻揭示了原问题与对偶问题之间深刻的内在联系。

对偶理论充分显示了线性规划理论逻辑的严谨和结构的对称美;对偶问题的对偶解是进行经济分析的重要工具。

正确理解单纯形乘子定理;最优基B是什么,在单纯形表中如何找到;Y*=CB﹣¹在单纯形表中的位置;原问题、对偶问题的最优值,在单纯形表中的确定;理解“对于原问题LP,其对偶问题DP的最优解就是LP最优单纯形表中松弛变量检验数的相反数。

”;CB﹣¹和CB﹣¹b的计算及体现。

关键字:运筹学线性规划单纯形法对偶问题单纯性乘子定理最优值单纯形表1954年美国数学家C.莱姆基提出对偶单纯形法。

单纯形法是从原始问题的一个可行解通过迭代转到另一个可行解,直到检验数满足最优性条件为止。

对偶单纯形法则是从满足对偶可行性条件出发通过迭代逐步搜索原始问题的最优解。

在迭代过程中始终保持基解的对偶可行性,而使不可行性逐步消失。

设原始问题为min{cx|Ax=b,x≥0},则其对偶问题为max{yb|yA≤c}。

当原始问题的一个基解满足最优性条件时,其检验数cBB-1A-c≤0。

即知y=cBB-1(称为单纯形算子)为对偶问题的可行解。

所谓满足对偶可行性,即指其检验数满足最优性条件。

因此在保持对偶可行性的前提下,一当基解成为可行解时,便也就是最优解。

线性规划的对偶问题一、对偶问题的提出生产计划问题:某家具厂生产桌子和椅子,桌子售价50元/个,椅子售价30元/个。

需要木工和油漆工,生产一个桌子需要木工4小时,油漆工2小时,生产一个椅子需要木工3小时,油漆工1小时。

该厂每月可用木工工时120小时,油漆工工时50小时。

问:如何组织生产,使得每月销售收入最大?线性规划模型为(桌、椅数量为变量):12121212max 503043120..250,0z x x x x s t x x x x =++≤⎧⎪+≤⎨⎪≥⎩现考虑一个成本最小化的问题:另一厂商,接到上述生产订单后组织生产,其中的劳动力欲向家具厂雇佣,如何才能使得生产成本(工资)最小?分析: 确定决策变量1y =木工的工资,2y =油漆工的工资得对偶问题规划模型: 12121212min 12050 4250..330 ,0 z y y y y s t y y y y =++≥⎧⎪+≥⎨⎪≥⎩目标函数—使工资支出最小约束方程—向外转让的收入至少要大于自己生产的收入工资的非负约束二、对称形式的对偶问题的矩阵表述:原问题:既定的资源(成本)b 约束下产量X 最大化 m a x ..z CXAX b s t X O=≤⎧⎨≥⎩ 对偶问题:既定的产量C 约束下资源(成本)b 最小化: m i n ..w b YA Y C s t Y O'=''≥⎧⎨≥⎩ 三、对偶原理在经济学厂商理论中的应用:从实物形态研究生产——生产理论;从货币形态研究成本结构——成本理论 在完全竞争市场上,一定成本下产量最大化的投入组合问题互为对偶问题一定产量下成本最小化的投入组合问题1、 一定成本下产量最大化的投入组合问题:max (,)..Q f L K s t C wL rK==+令(,)()Z f L K C wL rK λ=+--,0Z Q w L Lλ∂∂=-=∂∂,0Z Q r K Kλ∂∂=-=∂∂ 得:Q Q w r L K ∂∂=∂∂, 即:L K w r P MP MP == 2、 一定产量下成本最小化的投入组合问题:min ..(,)C wL rK s t Q f L K =+=用拉格朗日乘数法求解:令((,))Z wL rK Q f L K λ''=+--,0Z Q w L L λ'∂∂'=-=∂∂, Z Q r K K λ'∂∂'=-∂∂,(,)0Z Q f L K λ∂=-='∂ 得:QQw r LK∂∂=∂∂,即:L K w r P MP MP == 四、如何将原问题转化为对偶问题 (一)约束条件为标准形式(见前例)目标函数的最大值max ←→ 目标函数的最小值min 目标函数的价值系数C ←→ 约束方程右端的资源量C ’ 约束系数矩阵A ←→ 约束系数矩阵A ’原问题的n 个变量(≥0)←→ 对偶问题的n 个约束方程 约束条件“AX ≤B ”←→ 对偶问题的约束条件“A !Y ≥C ” (二)约束条件为非标准形式将下列线性规划问题转化为对偶问题12312312323123min 7434262436415..53300,0z x x xx x x x x x s t x x x x x =+--+-≤⎧⎪---≥⎪⎨+=⎪⎪≤≥⎩取值无约束, 1、先化为标准形式,再根据标准形式进行转化:令11x x '=-,222x x x '''=-; 并将等式约束235330x x +=化为两个不等式约束235330x x +≤和235330x x +≥;对于min 问题,统一约束不等式为“≥”,得:1223122312232232231223m i n 7443422624366415..5533055330,,0z x x x x x x x x x x x x s t x x x x x x x x x x ''''=-+--''''--++≥-⎧⎪''''-+-≥⎪⎪'''-+≥⎨⎪'''-+-≥-⎪''''≥⎪⎩, → 1234121234123412341234max 2415303043726554..2655464333,,0w y y y y y y y y y y s t y y y y y y y y y y y =-++--+≤-⎧⎪--+-≤⎪⎪+-+≤-⎨⎪-+-≤-⎪≥⎪⎩,y2、将多余的量还原:第一个约束方程的右边还项原为正数,令11y y '=-,334y y y '=-,并将第三、第四约束方程合并为等式约束,得: 12312123123123max 2415304372654..64330,0w y y y y y y y y s t y y y y y ''=++'--≥⎧⎪''-+=⎪⎨''--+≤-⎪⎪''≤≥⎩取值无约束,y 结论:对于非标准约束的原问题和对偶问题,可得出约束条件和变量如下的对应逻辑关系:五、原问题化为对偶问题的2种求解思路:(一)根据表格中约束条件和变量对应的逻辑关系,直接转换为对偶问题; ——注意,对于min 原问题,应该从表格右列向左列转化(变量转为约束时,不等号相反);对于max 原问题,应该从表格左列向右列转化(变量转为约束时,不等号不变)(二)将约束条件和变量转化为标准形式后,转换过去,具体步骤稍微繁琐,但可靠性高——对于原问题为min ,其约束条件统一化为“C YA ≥'”,含义:资源的转让收入AY 要大于产品的市场价格C 。

运筹学单纯形法

运筹学单纯形法
总结:①在迭代过程中要保持常数列向量非负,这能确保基 可行解旳非负性。最小比值能做到这一点。 ②主元素不能为0。因为行旳初等变换不能把0变成1。 ③主元素不能为负数。因为用行旳初等变换把负数变成1会 把常数列中相应旳常数变成负数。
16
三、其他解旳情况 1、无穷多种解 例2 解LP问题:
min Z x1 2 x2 x3 0 x4 0 x5
xx51
1 2c 5 3c
其中c是满足非负性旳任意常数。
21
再由
x1,
x5
旳非负性,知:
x1 x2
1 2c c
0 0
x5 5 3c 0
解出 0 c 5 3
最优解为:
(2c 1, c,0,0,5 3c)T (其中0 c 5 )
3
最优值为:max S 1.
22
2、无最优解旳两种情况:
相应地,将 X 0代入目的函数得 Z ( X 0 ) 0
从数学角度看,若让非基变量 x1, x2 取值从零增长,
6
min Z 2x1 x2 0x3 0x4 0x5
相应旳目旳函数值Z也将随之降低。所以有可能找到一种 新旳基本可行解,使其目旳函数值有所改善。即进行基变
换,换一种与它相邻旳基。再注意到 x1 前旳系数-2比 x2
x3
6 x1 x1
2x2 x2
x4 x5
xi 0
i 1,,5
15 24 5
目前可行基{ x3, x4 , x5 }所相应旳基本可行解
X 0 (0,0,15,24,5)T
(相应可行域旳 o(0,0) )
显然不是最优。 因为从经济意义上讲, x1 0, x2 0
意味着该厂不安排生产,所以没有利润。
2

运筹学单纯形法各个步骤详解

运筹学单纯形法各个步骤详解

运筹学单纯形法各个步骤详解1. 引言大家好,今天咱们来聊聊一个听起来有点高深莫测,但其实特别有意思的东西——运筹学的单纯形法。

别看它名字复杂,其实它就是解决线性规划问题的绝招,像一把钥匙,打开了优化的宝藏。

想象一下,如果你有一大堆资源,要把它们分配到不同的地方,听起来就像玩拼图一样。

好了,废话不多说,咱们直接进入正题!2. 单纯形法的基本概念2.1 线性规划的起源首先,线性规划是啥?简单来说,它就是在一系列限制条件下,想要最大化或最小化某个目标函数。

这听起来像是在做一场抉择,你得在各种选择中找到最优解。

有点像在超市里,看到一堆零食,犹豫不决,最后只能选那包最爱吃的,既美味又划算。

2.2 单纯形法的基本思路而单纯形法就是解决这个问题的武器。

它的核心思想很简单,跟追求完美一样,咱们要一步步地朝着最优解迈进。

想象你在爬山,每一步都在找那个最容易走的路,直到你站在山顶,俯瞰整个美景,啊,真是太棒了!3. 单纯形法的步骤3.1 初始化那么,怎么开始呢?首先,咱们得把问题转化为标准形式。

这就像把一个繁杂的图案简化成几何图形,让它看起来更清晰。

要把不等式转换为等式,添加松弛变量,这样就可以把问题整理得干干净净。

3.2 构建初始单纯形表接下来,咱们构建初始单纯形表。

这个表就像一本菜单,上面列出了所有可能的选择和它们的成本。

每个变量都有自己的“价格”,而咱们的目标就是尽量少花钱,最大化收益。

想想你逛街时,总是想着要花最少的钱买到最好的东西,嘿,这就是单纯形法的精神!3.3 寻找基变量和入基变量然后,咱们得找出“基变量”和“入基变量”。

基变量就像在舞台上表演的演员,而入基变量就是准备加入的“新人”。

在这个过程中,咱们得判断哪个新人能让整个表演更精彩。

如果找对了,舞台瞬间就能变得熠熠生辉,若是找错了,哎呀,那可就尴尬了。

3.4 更新单纯形表一旦找到了合适的入基变量,咱们就得更新单纯形表。

这一步就像在调味,添加新的元素,让整体味道更加丰富。

(完整word版)运筹学单纯形法

(完整word版)运筹学单纯形法
0*10+0*20
=0
σj=Cj- Zj
2
-1
1
0
0
0
1
S1
0
0
4
-5
1
-3
0
30
30/4
X1
2
1
-1
2
0
1
0
10
10/-1
S3
0
0
2
-3
0
-1
1
10
10/2
Zj
2
-2
4
0
2
0
Z=Z0=0*30+
2*10+0*10
=20
σj=Cj- Zj
0
1
-3
0
-2
0
2
S1
0
0
0
1
1
-1
-2
10
X1
2
1
0
1/2
0
s.t.
5x1+6x2-4x3-4x4+S1=20
3x1-3x2+2x3+8x4+S2=25
4x1-2x2+x3+3x4+S3=10
x1,x2,x3,x4,S1,S2,S3>=0
迭代次数
基变量
CB
(Ci)
X1
X2
X3
X4
S1
S2
S3
b
比值
bi/aij
6
2
10
8
0
0
0
0
S1
0
5
6
-4
-4
1
0
0
20

运筹学---单纯形法

运筹学---单纯形法

运筹学---单纯形法单纯形法是一种解线性规划问题的有效算法。

在这个问题中,我们寻找一组决策变量,以便最大化或最小化一个线性目标函数,同时满足一系列线性限制条件。

单纯形法通过暴力搜索可行解并逐步优化目标函数来求解该问题。

单纯形法的主要思想是从一个初始可行解开始,并通过迭代来逐步移动到更优的解。

在每一步迭代中,算法将当前解移动到一个相邻的顶点,直到找到一个优于当前解的顶点。

具体操作包括选择一个非基变量,并将其作为入基变量,同时选择一个基变量并将其作为出基变量。

新的基变量将替换原来的非基变量,并且目标函数的值将被更新。

关键是如何选择入基变量和出基变量。

为此,单纯形法使用一个称为单纯形表的矩阵来跟踪线性规划问题的状态。

单纯形表包含目标函数系数,限制条件系数,决策变量的当前值以及对角线上的单位矩阵。

通过适当地操作这个表,可以确定要移动到哪个相邻顶点,并相应地更新解和目标函数的值。

一般来说,单纯形法需要在指数时间内解决线性规划问题,因为需要遍历所有可能的可行解。

但是,在实际应用中,单纯形法往往比其他算法更快和更有效。

此外,在使用单纯形法时,需要注意陷入无限循环或者找不到一个可行解的可能性。

单纯形法的主要优点是:它是一种简单而直观的求解线性规划问题的方法;它易于实现,并且在许多情况下可以很快地求解问题。

它还可以用于解决大规模问题,包括具有成千上万个变量和限制条件的问题。

在实际应用中,单纯形法经常与其他算法结合使用,例如内点法或分支定界法。

这些方法可以提供更好的性能和结果。

但是,在许多情况下,单纯形法仍然是解决线性规划问题的首选算法。

在总体上,单纯形法是一种强大而灵活的工具,可以帮助研究人员和决策者在面对复杂的决策问题时做出明智的选择,并实现最大的效益。

运筹学 单纯形法的迭代原理讲解

运筹学 单纯形法的迭代原理讲解

运筹学单纯形法的迭代原理讲解
单纯形法是一种用于解决线性规划问题的常用方法,其基本思想是通过迭代的方式逐步接近最优解。

下面是单纯形法的迭代原理的讲解:
1. 初始解的选择:首先需要选择一个初始解,通常选择的方法是构造一个基可行解,即使所有的约束条件都满足的解。

2. 判断最优性:在每一次迭代中,需要判断当前解是否为最优解。

首先,计算当前解对应的目标函数值。

然后,检查是否存在非基变量的系数大于等于0(对于最小化问题)或者小于等于0(对于最大化问题),如果存在这样的非基变量,则当前解不是最优解;如果不存在这样的非基变量,则当前解是最优解。

3. 生成新解:如果当前解不是最优解,则需要生成新的解。

首先,选择一个非基变量,使得目标函数的值可以通过增加(对于最小化问题)或减少(对于最大化问题)该变量的值来改善。

然后,需要计算这个非基变量能够增加或减少的最大量,称为变量的进步长度。

最后,通过调整基变量的值来生成新的解。

4. 更新目标函数和约束条件:在生成新解之后,需要更新目标函数和约束条件,以便于下一次迭代。

具体操作包括计算新解对应的目标函数值,计算新解对应的约束条件的值,调整目标函数和约束条件的系数。

5. 重复迭代:根据判断最优性的结果,进行下一次迭代。

如果当前解是最优解,
则算法结束;否则,继续进行下一次迭代。

通过不断重复这一迭代过程,直到找到最优解或者确定问题无解为止。

单纯形法的迭代过程一般会在有限次数内结束,并且能够得到最优解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 算法分析
1.1单纯形算法
1.1.1单纯形法的基本思路
利用求线性规划问题基本可行解(极点)的方法求解较大规模的问题是不可行的。

有选择地取基本可行解,即从可行域的一个极点出发,沿着可行域的边界移动到另一个相邻的极点,要求新极点的目标函数值不比原目标函数值差。

在线性规划的可行域中先找出一个可行解,检验它是否为最优解,如果是最优解,计算停止;如果不是最优解,那么可以判断线性规划无有限最优解,或者根据一定步骤得出使目标函数值接近最优值的另一个基本可行解。

由于基本可行解的个数有限,所以总可以通过有限次迭代,得到线性规划的最优基本可行解或判定线性规划无有限最优解。

1.1.2单纯形法的基本步骤描述
第1步:求初始基可行解,列出初始单纯形表。

对非标准型的线性规划问题首先要化成标准形式。

由于总可以设法使约束方程的系数矩阵中包含一个单位矩阵()12,,,m P P P ,
以此作为基求出问题的一个初始基可行解。

为检验一个基可行解是否最优,需要将其目标函数值与相邻基可行解的目标函数值进行比较。

为了书写规和便于计算,对单纯形法的计算设计了一种专门表格,称为单纯形表(见表1-1)。

迭代计算中每找出一个新的基可行解时,就重画一单纯形表。

含初始基可行解的单纯形表称初始单纯形表,含最优解的单纯形表称最终单纯形表。

第2步:最优性检验。

表1-1单纯形表
如表中所有检验数c j -z j ≦0,且基变量中不含有人工变量时,表中的基可行解即为最优解,计算结束。

当表中存在c j -z j >0时,如有P j ≦0,则问题为无界解,计算结束;否则转下一步。

第3步:从一个基可行解转换到相邻的目标函数值更大的基可行解,列出新的单纯形表。

1.确定换入基的变量。

只要有检验数δj >0,对应的变量x j 就可作为进基的变量,当有一个以上检验数大于零时,一般从中找出最大一个δk ,其对应的变量x k 作为进基变量。

2.确定出基的变量。

min |0i r ik
ik
rk
b b a a a θ⎧⎫⎪=>=⎨⎬⎪⎭⎩确定x r 是出基变量,a rk 为主元。

3.用进基变量x k 替换出基变量x r ,得到一个新的基()111,
,,,,
,r k r m P P P P P -+。

对应这个基可以找出一个新的基可行解,并相应地可以画出一个新的单纯形表(表1-2)。

(1) 把第r 行乘以rk
a 1
之后的结果填入新表的第r 行;对于r i ≠行,把第r 行乘以⎪⎭
⎫ ⎝
⎛-rk ik
a a 之后与原表中第
i 行;在B x 列中的r 行位置填入k x ,其余行不变;在B
c
列中用k c 代替r 行原来的值,其余的行与原表中相同。

(2) 然后用j x 的价值系数j c 减去B c 列的各元素与j x 列各对应元素的乘积,把计算结果填入j x 列的最后一行,得到检验数j δ,计算并填入Z '-的值(以零减去B c 列各元素与b 列各元素的乘积)[1]。

第4步:重复上述过程,就可以得到最优解或判断出无有限最优解。

表1-2初始单纯形表
1.1.3单纯形算法求解线性规划的例
在实践中,根据实际问题的要求,常常可以建立线性规划问题的数学模型。

下面这个例,就是一个用单纯形算法求解的线性规划的例。

美佳公司计划制造甲,乙两种家电产品。

但因财力、物力等原因,资源有限,已知制造一个家电产品分别占用的设备A ,B 的台时、调试时间、调试工序及每天可用于这两种家电的能力、各售出一件的获利情况,如表1-3所示。

问该公司应制造两种家电各多少件,使获取的利润为最大。

,,,,5
24261552Max 5432152
14
213
22
1≥=++=++=++=x x x x x x x x x x x x x s.t
x x Z 表1-3 产品有关数据表
解:根据题意构建下列线性规划模型:
目标函数 约束条件
用单纯形法求解线性规划问题,标准化后得:
取初始基本可行解()I p p p x x x x x ======54354321,,,5,24,15,0(单位矩阵)。

初始化单纯形表并计算的过程如表1-4所示。

在最优单纯形表中,非基变量54,x x 的检验数均为负数,于是得到最优解
T
x ⎪
⎭⎫ ⎝⎛=0,0,215,23,27*
,最优目标值
218*=Z 元(表中-17/2为-Z 的值)。

为了能够更清晰地看清单纯形算法的解题思路以及单纯形算法表格计算过程中表格各量的关系,把例中的3次迭代计算过程重述如下:
第一次迭代:
取初始可行基()543,,p p p ,那么543,,x x x 为基变量,21,x x 为非基变量。

将基变量
,524261552Max
21212122
1>≤+≤+≤+=x x x x x x x s.t.
x x Z
和目标函数用非基变量表示:
第二次迭代:
当前的可行基()531,,p p p ,那么531,,x x x 为基变量,42,x x 为非基变量。

将基变量和目标函数用非基变量表示:
4252
3421426
16415156
162431
318x x x x x x x x x x Z +-
=-=--=-+= 第三次迭代:
当前的可行基()321,,p p p ,那么321,,x x x 为基变量,54,x x 为非基变量。

将基变量和目标函数用非基变量表示:
5
4
35
4
25
4
154215452
1523
4123
2
1412
72141217x x x x x x x x x x x Z +-=
-+=
+-=
-
-
=
在目标函数542
1
41217x x Z --=
中,非基变量54,x x 的检验数不是正数,于是得到最
优解T
x ⎪
⎭⎫
⎝⎛=0,0,215,23,27*,最优目标值
218*=Z 。

2
152142
32
152********x x x x x x x x x
x Z --=--=-=+=
表1-4 单纯形表表格计算过程
在最优单纯形表中,非基变量
5
4,x x 的检验数均为负数,于是得到最优解
T
x ⎪⎭⎫
⎝⎛=0,0,215,23,27*
,最优目标值218
*=Z 元(表中-17/2为-Z 的值)。

1.2大M 单纯形算法
1.2.1大M单纯形算法的基本思想
一般线性规划问题的系数矩阵中不含单位矩阵,这时没有明显的基本可行解,常常采用引入非负人工变量的方法来求得初始基本可行解,一般采用大M单纯形算法。

大M法也称为惩罚法,主要做法是取M>0为一个任意大的正数,在原问题的目标函数中加入-M乘以每一个人工变量。

首先根据不等式符号添加正的或负的松弛变量,查找加入的松弛变量是否构成单位矩阵,构成单位矩阵则计算方法和单纯形算法一样;若是尚未构成单位矩阵,则添加的人工变量与松弛变量构成一个单位矩阵后进行计算。

松弛变量在目标函数中的系数为0,而人工变量的系数则为-M,此处-M 是强加于人工变量的一种惩罚,其目的是为了强制人工变量由变量转换为非基变量,使之恢复原问题或者说与原问题等价。

M在计算时,可看作一个任意大的正数,非严格的说法,仅为便于在检验数含M时判断值的正负,但M并不是无穷大,理论上可以证明,M只要取到某个数值以上就可以。

1.2.2大M单纯计算法的基本步骤描述
1.添加松弛变量,看松弛变量的系数是否构成单位矩阵,若尚未构成单位矩阵则加入人工变量,迫使人工变量的系数和松弛变量的系数构成单位矩阵。

这也是添加人工变量的目的。

2.加入松弛变量和人工变量后就完成了标准化线性规划模型。

3.计算标准化后的线性规划模型的方法是应用单纯形算法,所以大M单纯形算法的迭代计算方法和单纯形算法的计算方法相同。

4.大M单纯形算法中含有人工变量系数“-M”,加入人工变量的目的是构成单位矩阵,应用单纯形算法迭代计算,但是不能改变原问题,因此让每个人工变量乘以“-M”,就能够保证标准化后的线性规划模型与原问题等价。

5.“-M”作为字符不能参与计算,然而M作为一个任意大的正数,一般在教学中所要解决的线性规划模型规模并不太大,因此取值M=10000参与计算。

计算过程中的所有“M”都有10000代替。

参考文献
[1] 吴祈宗.运筹学(第2版)[M].机械工业
[2] 胡运权.运筹学教程(第二版).清华大学
[3] 胡运权.运筹学导论(第8版).清华大学
[4] 单东林,晓菲,然.锋利的Jquery.人民邮电
[5] 大藤幹,半场方人.HTML&CSS&JavaScript语法辞典.中国青年
[6] 石磊.关于运筹学课程教学改革的几点思考.教育学院学报,2010年2期
[7] 唐开元,王华.浅析运筹学与计算机技术的结合.才智,2009年06期。

相关文档
最新文档