土木工程专业英语论文
关于土木工程英语作文

关于土木工程英语作文英文回答:Civil engineering is a broad and challenging field that encompasses the design, construction, and maintenance of the built environment. As a civil engineer, I have the privilege of working on a wide range of projects, from bridges and roads to buildings and water treatment plants.One of the most rewarding aspects of civil engineering is the opportunity to make a tangible difference in the world. The structures that we design and build have adirect impact on the lives of people and communities. For example, a new bridge can connect isolated areas, a new road can improve access to essential services, and a new building can provide shelter and comfort for those who need it.Another aspect of civil engineering that I find particularly interesting is the challenge of constantlyinnovating. The field is constantly evolving, and new technologies and materials are emerging all the time. This means that civil engineers must be adaptable and willing to learn new things.Of course, civil engineering is not without its challenges. One of the biggest challenges is the need to balance the competing demands of safety, cost, and sustainability. Civil engineers must be able to design structures that are safe and reliable, but they must also be mindful of the cost of construction and the environmental impact of the materials used.Another challenge is the need to work with a variety of stakeholders, including clients, architects, contractors, and government agencies. Civil engineers must be able to communicate effectively with all of these stakeholders to ensure that the project is completed successfully.Despite the challenges, civil engineering is a rewarding and fulfilling career. I am proud to be a part of a profession that makes a real difference in the world.中文回答:土木工程是一个既广泛又富有挑战性的领域,涵盖了建造环境的设计、建造和维护。
土木工程专业英语论文.doc

Building construction concrete crack ofprevention and processingAbstractThe crack problem of concrete is a widespread existence but again difficult in solve of engineering actual problem, this text carried on a study analysis to a little bit familiarcrack problem in the concrete engineering, and aim at concrete the circumstance put forward some prevention, processing measure.Keyword: Concrete crack prevention processingForewordConcrete's ising 1 kind is anticipate by the freestone bone, cement, water and other mixture but formation of the in addition material of quality brittleness not and all material.Because the concrete construction transform withoneself, control etc. a series problem, harden model of inthe concrete existence numerous tiny hole, spirit cave andtiny crack, is exactly because these beginning start blemish of existence just make the concrete present one some not and all the characteristic of quality.The tiny crack is a kindof harmless crack and accept concrete heavy, defend Shen anda little bit other use function not a creation to endanger.But after the concrete be subjected to lotus carry, differencein temperature etc. function, tiny crack would continuouslyof expand with connect, end formation we can see without the aid of instruments of macro view the crack be also the crack that the concrete often say in the engineering. Concretebuilding and Gou piece usually all take sewer to make of,because of crack of existence and development usually makeinner part of reinforcing bar etc. material creation decay,lower reinforced concrete material of loading ability, durable and anti- Shen ability, influence building of external appearance, service life, severity will threat arrive people's life and property safety.A lot of all of crash of engineerings is because of the unsteady development of the crack with the result that.Modern age science research witha great deal of of the concrete engineering practice certificate, in the concrete engineering crack problem isineluctable, also acceptable in certainly of the scope justneed to adopt valid of measure will it endanger degree control at certain of scope inside.The reinforced concrete norm isalso explicit provision:Some structure at place of dissimilarity under the condition allow existence certainthe crack of width.But at under construction should as faras possible adopt a valid measure control crack creation,make the structure don't appear crack possibly or as far aspossible decrease crack of amount and width, particularlywant to as far as possible avoid harmful crack of emergence, insure engineering quality thus.Concrete crack creation of the reason be a lot of and have already transformed to cause of crack:Such as temperaturevariety, constringency, inflation, the asymmetry sink to sink etc. reason cause of crack;Have outside carry the crack that the function cause;Protected environment not appropriate the crack etc. caused with chemical effect.Want differentiation to treat in the actual engineering, work°out a problem acco rding to the actual circumstance.In the concrete engineering the familiar crack and the prevention1.Stem Suo crack and preventionStem the Suo crack much appear after the concrete protectbe over of a period of time or concrete sprinkle to build tocomplete behind of around a week.In the cement syrup humidity of evaporate would creation stem Suo, and this kind ofconstringency is can't negative.Stem Suo crack of thecreation be main is because of concrete inside outside humidity evaporate degree dissimilarity but cause to transform dissimilarity of result:The concrete is subjected to exterior condition of influence, surface humidity losslead quick, transform bigger, inner part degree of humidityvariety smaller transform smaller, bigger surface stem theSuo transform to be subjected to concrete inner part control, creation more big pull should dint but creation crack.Therelative humidity is more low, cement syrup body stem Suo more big, stem the Suo crack be more easy creation.Stem the Suocrack is much surface parallel lines form or the net shallow thin crack, width many between 0.05-0.2 mm, the flat surface part much see in the big physical volume concrete and followit more in thinner beam plank short todistribute.Stem Suocrack usually the anti- Shen of influence concrete, cause the durable of the rust eclipse influence concrete of reinforcing bar, under the function of the water pressure dint wouldcreation the water power split crack influence concrete ofloading dint etc..Concrete stem the Suo be main with waterash of the concrete ratio, the dosage of the composition,cement of cement, gather to anticipate of the dosage of theproperty and dosage, in addition etc. relevant.Main prevention measure:While being to choose to use the constringency quantity smaller cement, general low hot water mire and powder ash from stove cement in the adoption, lower the dosage of cement.Two is a concrete of stem the Suo besubjected to water ash ratio of influence more big, water ash ratio more big, stem Suo more big, so in the concrete matchthe ratio the design should as far as possible control goodwater ash ratio of choose to use, the Chan add in the meantime accommodation of reduce water.Three is strict control concrete mix blend with under construction of match ratio,use of concrete water quantity absolute can't big in matchratio design give settle of use water quantity.Four is theearlier period which strengthen concrete to protect, andappropriate extension protect of concrete time.Winter construction want to be appropriate extension concrete heat preservation to overlay time, and Tu2 Shua protect to protect.Five is a constitution the accommodation is in theconcrete structure of the constringency sew.2.The Su constringency crack and preventionSu constringency is the concrete is before condense, surface because of lose water quicker but creation of constringency.The Su constringency crack is general at dryheat or strong wind the weather appear, crack's much presenting in the center breadth, both ends be in the centerthin and the length be different, with each other notcoherent appearance.Shorter crack general long 20-30 cm, the longer crack can reach to a 2-3 m, breadth 1-5 mm.It creationof main reason is:The concrete is eventually almost havingno strength or strength before the Ning very small, perhapsconcrete just eventually Ning but strength very hour, besubjected to heat or compare strong wind dint of influence,the concrete surface lose water to lead quick, result in inthe capillary creation bigger negative press but make a concrete physical volume sharply constringency, but at thistime the strength of concrete again can't resist its constringency, therefore creation cracked.The influence concrete Su constringency open the main factor of crack tohave water ash ratio, concrete of condense time, environment temperature, wind velocity, relative humidity...etc..Main prevention measure:One is choose to use stem the Suovalue smaller higher Huo sour salt of the earlier periodstrength or commonthe Huo sour brine mire.Two is strict the control water ash ratio, the Chan add to efficiently reducewater to increment the collapse of concrete fall a degree andwith easy, decrease cement and water of dosage.Three is tosprinkle before building concrete,water basic level and template even to soak through.Four is in time to overlay the perhaps damp grass mat of the plastics thin film,hemp slice etc., keep concrete eventually before the Ning surface ismoist, perhaps spray to protect etc. to carry on protect inthe concrete surface.Five is in the heat and strong wind the weather to want to establish to hide sun and block breezefacilities, protect in time.3.Crack and prevention that the chemical reaction causeAlkali bone's anticipating the crack that reaction crack andreinforcing bar rust eclipse cause is the most familiar inthe reinforced concrete structure of because of chemicalreaction but cause of crack.The concrete blend a future reunion creation some alkalescence ion, these ion with some activity the bone anticipate creation chemical reaction and absorb surroundings environment in of water but the physical volume enlarge, make concrete crisp loose, inflation open crack.Inthis kind of crack general emergence concrete structure usage period, once appear very difficult remediable, so should atunder construction adopt valid the measure carry onprevention.Main of prevention measure:While being to choose to anticipate with the alkali activity small freestone bone.Two is the in addition which choose to use low lye mire with low alkali or have no alkali.Three is the Chan whichchoose to use accommodation with anticipate to repress analkali bone to anticipate reaction.Because the concrete sprinkle to build, flap Dao bad perhaps is a reinforcing bar protection layer thinner, theharmful material get into concrete to make reinforcing barcreation rust eclipse, the reinforcing bar physical volumeof the rust eclipse inflation, cause concrete bulge crack,the crack of this kind type much is a crack lengthways, follow the position of reinforcing bar ually of preventmeasure from have:One is assurance reinforcing bar protection the thickness of the layer.Two is a concrete class to go together with to want good.Three is a concrete to sprinkle to note and flap Dao airtight solid.Four is a reinforcing bar surface layer Tu2 Shua antisepsis coating.Crack processingThe emergence of the crack not only would influence structure of whole with just degree, return will cause the rust eclipse of reinforcing bar, acceleration concrete ofcarbonization, lower durable and anti- of concrete tired,anti- Shen ability.Therefore according to the property ofcrack and concrete circumstance we want differentiation totreat, in time processing, with assurance building of safety usage.The repair measure of the concrete crack is main to havethe following some method:Surface repair method, infuse syrup, the Qian sew method, the structure reinforce a method, concrete displacement method, electricity chemistry protection method and imitate to living from heal method.Surface repair the method be a kind of simple, familiar of repair method, it main be applicable to stability and tostructure loading the ability don't have the surface crackof influence and deep enter crack of processing.The processing measure that is usually is a surface in crackdaubery cement syrup, the wreath oxygen gum mire or at concrete surface Tu2 Shua paint, asphalt etc. antisepsismaterial, at protection of in the meantime for keeping concrete from continue under the influence of various function to open crack, usually can adoption the surface incrack glue to stick glass fiber cloth etc. measure.1, infuse syrup, the Qian sew methodInfuse a syrup method main the concrete crack been applicable to have influence or have already defend Shenrequest to the structure whole of repair, it is make use ofpressure equipments gum knot the material press into thecrack of concrete, gum knot the material harden behind andconcrete formation one be whole,thus reinforce of purpose.The in common use gum knot material has the cementthe syrup, epoxy, A JiC Xi sour ester and gather ammonia ester to equalize to learn material.The Qian sew a method is that the crack be a kind of mostin common use method in, it usually is follow the crack digslot, the Qian fill Su in the slot or rigid water materialwith attain closing crack of purpose.The in common use Sumaterial has PVCgum mire, plastics ointment, the D Ji rubber etc.;In commonuse rigid water material is the polymer cement sand syrup.2, the structure reinforce a methodWhen the crack influence arrive concrete structure of function, will consideration adopt to reinforce a method to carry on processing to the concrete structure.The structurereinforce medium in commonuse main have the following a few method:The piece of enlargement concrete structure in everyaspect accumulate, outside the Cape department of the Goupiece pack type steel, adoption prepare should the dint method reinforce, glue to stick steel plate to reinforce,increase to establish fulcrum to reinforce and jet the concrete compensation reinforce.3, concrete displacement methodConcrete displacement method is processing severity damage concrete of a kind of valid method, this method be first will damage of the concrete pick and get rid of, then again displacement go into new of concrete or other material.Thein common use displacement material have:Common concrete orthe cement sand syrup, polymer or change sex polymer concreteor sand syrup.ConclusionThe crack is widespread in the concrete structure existence of a kind of phenomenon, it of emergence not only will lowerthe anti- Shen of building ability, influence building ofusage function, and will cause the rust eclipse of reinforcing bar, the carbonization of concrete, lower thedurable of material, influence building of loading ability,so want to carry on to the concrete crack earnest research, differentiation treat, adoption reasonable of the method carry on processing, and at under construction adopt various valid of prevention measure to prevention crack of emergence and development, assurance building and Gou piece safety,stability work.From《 CANADIAN JOURNAL OF CIVIL ENGINEERING》。
土木工程专业英语的认识英语作文

土木工程专业英语的认识英语作文全文共3篇示例,供读者参考篇1Civil engineering is a branch of engineering that deals with the design, construction, and maintenance of the physical structures and infrastructure of a society. It is one of the oldest engineering disciplines and plays a crucial role in shaping the built environment in which we live.As a student majoring in civil engineering, it is important to have a strong understanding of the field. This involves not only mastering the technical skills and knowledge required for the profession but also developing a deep appreciation for the role that civil engineers play in society.One of the key aspects of civil engineering is the design and construction of infrastructure such as roads, bridges, tunnels, and buildings. These structures are essential for the functioning of a modern society, providing the means for transportation, communication, and commerce. By studying civil engineering, students learn how to design and build these structures in a safe, cost-effective, and sustainable manner.Another important aspect of civil engineering is the focus on environmental sustainability. As the world population continues to grow, the demand for infrastructure also increases. However, it is important to balance this growth with the need to protect the environment and natural resources. Civil engineers play a critical role in identifying and implementing solutions that minimize the impact of infrastructure projects on the environment and promote sustainable development.In addition to technical skills, civil engineering also requires strong communication, leadership, and problem-solving abilities. Civil engineers often work in teams with professionals from other disciplines, such as architects, urban planners, and environmental scientists. Effective communication and collaboration are essential for ensuring that projects are completed on time and within budget.Overall, civil engineering is a diverse and challenging field that offers a wide range of opportunities for career growth and development. Whether working in the public sector, private industry, or academia, civil engineers have the opportunity to make a positive impact on society by designing and building the infrastructure that shapes our world.In conclusion, studying civil engineering is not just about acquiring technical skills and knowledge, but also about developing a broader understanding of the role that civil engineers play in society. By embracing the challenges and opportunities of the profession, students can prepare themselves for a rewarding and fulfilling career in civil engineering.篇2Civil engineering is a professional engineering discipline that deals with the design, construction, and maintenance of the physical and naturally built environment, including works such as bridges, roads, canals, dams, buildings, and railways. It is considered one of the oldest engineering disciplines and plays a crucial role in shaping the world around us.As a civil engineering student, one must learn a wide range of technical skills and knowledge to be successful in this field. This includes understanding principles of physics, mathematics, and materials science, as well as gaining expertise in computer-aided design (CAD) software and other tools used in engineering analysis and design. In addition to technical skills, civil engineers must also possess good communication,problem-solving, and decision-making skills to effectively collaborate with clients, contractors, and other professionals.One of the key aspects of civil engineering is its focus on sustainability and environmental protection. Civil engineers play a vital role in designing infrastructure that is resilient to natural disasters and climate change, as well as minimizing the environmental impact of construction projects. By implementing sustainable practices, such as using recycled materials, reducing energy consumption, and preserving natural habitats, civil engineers can help create a more sustainable built environment for future generations.Another important aspect of civil engineering is its emphasis on safety. Whether designing a skyscraper or a highway bridge, civil engineers must prioritize the safety of the public and ensure that structures are built to withstand various loads and forces. By conducting thorough risk assessments and following industry standards and codes, civil engineers can minimize the likelihood of failure and enhance the safety of infrastructure projects.In today's rapidly changing world, civil engineering is facing new challenges and opportunities. Technological advancements, such as building information modeling (BIM) and drone surveying, are transforming the way engineers design andconstruct infrastructure. In addition, the increasing demand for sustainable and resilient infrastructure is driving the need for innovative solutions and interdisciplinary collaboration among engineers, architects, planners, and policymakers.Overall, civil engineering is a dynamic and rewarding profession that offers a diverse range of career opportunities in various sectors, including transportation, water resources, geotechnical engineering, structural engineering, and construction management. Whether working for a consulting firm, government agency, or construction company, civil engineers have the opportunity to make a positive impact on society by improving the quality of life and protecting the environment.In conclusion, civil engineering is a vital profession that shapes the world we live in and addresses some of the most pressing challenges of our time. By combining technical expertise with creativity and innovation, civil engineers can design sustainable and resilient infrastructure that benefits society and the environment. As a civil engineering student, it is important to embrace the multidisciplinary nature of the field and continuously improve your skills and knowledge to excel in this dynamic and rewarding profession.篇3Civil Engineering is a professional engineering discipline that deals with the design, construction, and maintenance of physical and naturally built environment, including works such as bridges, roads, dams, buildings, and other infrastructure. As one of the oldest engineering disciplines, civil engineering plays a critical role in shaping the world we live in today.As a civil engineering student, it is essential to have a good understanding of professional English terms and concepts in the field. In this essay, I would like to share my insights on the importance of mastering civil engineering professional English.First and foremost, mastering civil engineering professional English is crucial for effective communication in the field. Engineers often need to work with a diverse group of stakeholders, including clients, contractors, government officials, and fellow engineers. Being able to communicate clearly and concisely in English helps to ensure that everyone is on the same page and that projects are completed successfully.Secondly, understanding civil engineering professional English is essential for studying and researching in the field. Many textbooks, research papers, and technical documents incivil engineering are written in English. Therefore, having a strong command of professional English terms and concepts is necessary for students to succeed in their studies and research.Moreover, mastering civil engineering professional English can also enhance one's career prospects. In today's globalized world, many civil engineering projects are international in nature, and engineers often need to work with colleagues and clients from different countries. Having a good understanding of professional English can help engineers to collaborate effectively with their international counterparts and secure opportunities for career advancement.In addition, civil engineering professional English can also help engineers to stay updated on the latest developments in the field. Many engineering journals and conferences are conducted in English, and having a good grasp of professional English terms and concepts allows engineers to access valuable information and insights that can benefit their work.To improve one's command of civil engineering professional English, there are several steps that students can take. Reading civil engineering textbooks, journals, and research papers in English can help students to familiarize themselves with professional English terms and concepts. Participating inEnglish-speaking workshops, seminars, and conferences can also provide valuable opportunities for students to practice and improve their English communication skills.In conclusion, mastering civil engineering professional English is essential for students pursuing a career in the field. It can enhance communication skills, facilitate studying and researching, improve career prospects, and help engineers to stay updated on the latest developments in the field. By investing time and effort into improving their command of professional English terms and concepts, civil engineering students can set themselves up for success in the future.。
土木工程英文文献及翻译-英语论文.doc

土木工程英文文献及翻译-英语论文土木工程英文文献及翻译in Nanjing, ChinaZhou Jin, Wu Yezheng *, Yan GangDepartment of Refrigeration and Cryogenic Engineering, School of Energy and Power Engineering, Xi’an Jiao Tong University,Xi’an , PR ChinaReceived 4 April 2005; accepted 2 October 2005Available online 1 December 2005AbstractThe bin method, as one of the well known and simple steady state methods used to predict heating and cooling energyconsumption of buildings, requires reliable and detailed bin data. Since the long term hourly temperature records are notavailable in China, there is a lack of bin weather data for study and use. In order to keep the bin method practical in China,a stochastic model using only the daily maximum and minimum temperatures to generate bin weather data was establishedand tested by applying one year of measured hourly ambient temperature data in Nanjing, China. By comparison with themeasured values, the bin weather data generated by the model shows adequate accuracy. This stochastic model can be usedto estimate the bin weather data in areas, especially in China, where the long term hourly temperature records are missingor not available.Ó 2005 Elsevier Ltd. All rights reserved.Keywords: Energy analysis; Stochastic method; Bin data; China1. IntroductionIn the sense of minimizing the life cycle cost of a building, energy analysis plays an important role in devel-oping an optimum and cost effective design of a heating or an air conditioning system for a building. Severalmodels are available for estimating energy use in buildings. These models range from simple steady state mod-els to comprehensive dynamic simulation procedures.Today, several computer programs, in which the influence of many parameters that are mainly functionsof time are taken into consideration, are available for simulating both buildings and systems and performinghour by hour energy calculations using hourly weather data. DOE-2, BLAST and TRNSYS are such* Corresponding author. Tel.: +86 29 8266 8738; fax: +86 29 8266 8725.E-mail address: yzwu@ (W. Yezheng).0196-8904/$ - see front matter Ó 2005 Elsevier Ltd. All rights reserved.doi:10.1016/NomenclatureZ. Jin et al. / Energy Conversion and Management 47 (2006) 1843–1850number of daysfrequency of normalized hourly ambient temperatureMAPE mean absolute percentage error (%)number of subintervals into which the interval [0, 1] was equally dividednumber of normalized temperatures that fall in subintervalprobability densityhourly ambient temperature (°C)normalized hourly ambient temperature (dimensionless)weighting factorSubscriptscalculated valuemeasured valuemax daily maximummin daily minimumprograms that have gained widespread acceptance as reliable estimation tools. Unfortunately, along withthe increased sophistication of these models, they have also become very complex and tedious touse [1].The steady state methods, which are also called single measure methods, require less data and provideadequate results for simple systems and applications. These methods are appropriate if the utilization ofthe building can be considered constant. Among these methods are the degree day and bin data methods.The degree-day methods are the best known and the simplest methods among the steady state models.Traditionally, the degree-day method is based on the assumption that on a long term average, the solarand internal gains will offset the heat loss when the mean daily outdoor temperature is 18.3 °C and thatthe energy consumption will be proportional to the difference between 18.3 °C and the mean daily tempera-ture. The degree-day method can estimate energy consumption very accurately if the building use and theefficiency of the HVAC equipment are sufficiently constant. However, for many applications, at least oneof the above parameters varies with time. For instance, the efficiency of a heat pump system and HVAC equip-ment may be affected directly or indirectly by outdoor temperature. In such cases, the bin method can yieldgood results for the annual energy consumption if different temperature intervals and time periods areevaluated separately. In the bin method, the energy consumption is calculated for several values of the outdoortemperature and multiplied by the number of hours in the temperature interval (bin) centered around thattemperature. Bin data is defined as the number of hours that the ambient temperature was in each of a setof equally sized intervals of ambient temperature.In the United States, the necessary bin weather data are available in the literature [2,3]. Some researchers[4–8] have developed bin weather data for other regions of the world. However, there is a lack of informationin the ASHRAE handbooks concerning the bin weather data required to perform energy calculations in build-ings in China. The practice of analysis of weather data for the design of HVAC systems and energy consump-tion predictions in China is quite new. For a long time, only the daily value of meteorological elements, such asdaily maximum, minimum and average temperature, was recorded and available in most meteorologicalobservations in China, but what was needed to obtain the bin weather data, such as temperature bin data,were the long term hourly values of air temperature. The study of bin weather data is very limited in China.Only a few attempts [9,10] in which bin weather data for several cities was given have been found in China.Obviously, this cannot meet the need for actual use and research. So, there is an urgent need for developing binweather data in China. The objective of this paper, therefore, is to study the hourly measured air temperaturedistribution and then to establish a model to generate bin weather data for the long term daily temperaturedata.2. Data usedZ. Jin et al. / Energy Conversion and Management 47 (2006) 1843–1850In this paper, to study the hourly ambient temperature variation and to establish and evaluate the model, aone year long hourly ambient temperature record for Nanjing in 2002 was used in the study. These data aretaken from the Climatological Center of Lukou Airport in Nanjing, which is located in the southeast of China(latitude 32.0°N, longitude 118.8°E, altitude 9 m).In addition, in order to create the bin weather data for Nanjing, typical weather year data was needed.Based on the long term meteorological data from 1961 to 1989 obtained from the China MeteorologicalAdministration, the typical weather year data for most cities in China has been studied in our former research[11] by means of the TMY (Typical Meteorological Year) method. The typical weather year for Nanjing isshown in Table 1. As only daily values of the meteorological elements were recorded and available in China,the data contained in the typical weather year data was also only daily values. In this study, the daily maxi-mum and minimum ambient temperature in the typical weather year data for Nanjing was used.3. Stochastic model to generate bin dataTraditionally, the generation of bin weather data needs long term hourly ambient temperature records.However, in the generation, the time information, namely the exact time that such a temperature occurredin a day, was omitted, and only the numerical value of the temperature was used. So, the value of each hourlyambient temperature can be treated as the independent random variable, and its distribution within the dailytemperature range can be analyzed by means of probability theory.3.1. Probability distribution of normalized hourly ambient temperatureSince the daily maximum and minimum temperatures and temperature range varied day by day, the con-cept of normalized hourly ambient temperature should be introduced to transform the hourly temperatures ineach day into a uniform scale. The new variable, normalized hourly ambient temperature is defined by^ ¼ttmintmaxtminwhere ^ may be termed the normalized hourly ambient temperature, tmaxand tminare the daily maximum andminimum temperatures, respectively, t is the hourly ambient temperature. Obviously, the normalized hourly ambient temperature ^ is a random variable that lies in the interval [0, 1].To analyze its distribution, the interval [0, 1] can be divided equally into several subintervals, and by means ofthe histogram method [12]iin each subinterval can be calculated by1137土木工程英文文献及翻译Based on the one year long hourly ambient temperature data in Nanjing, China, the probability density piwas calculated for the whole day and the 08:00–20:00 period, where the interval [0, 1] was equally divided into50 subintervals, namely n equals 50. The results are shown in Fig. 1.According to the discrete probability density data in Fig. 1, the probability density function of ^ can beobtained by a fitting method. In this study, the quadratic polynomialswere used to fit the probability density data, where a, b and c are coefficients. According to the property of theprobability density function, the following equation should be satisfiedAs shown in Fig. 1, the probability density curve obtained according to the probability density data pointsis also shown. The probability densit y functions that are fitted are described byp ¼ 2:7893^23:1228^ þ 1:6316 for the whole day periodp ¼ 2:2173^20:1827^ þ 0:3522 for the 08 : 00–20 : 00 period3.2. The generation of hourly ambient temperatureAs stated in the beginning of this paper, the objective of this study is to generate the hourly ambient tem-perature needed for bin weather data generation in the case that only the daily maximum and minimum tem-peratures are known. To do this, we can use the obtained probability density function to generate thenormalized hourly ambient temperature and then transform it to hourly temperature. This belongs to theproblem of how to simulate a random variable with a prescribed probability density function and can be doneon a computer by the method described in the literature [13]. For a given probability density function f ð^Þ, ifits distribution function F ð^Þ can be obtained and if u is a random variable with uniform distribution on [0, 1],thenF, we need only setAs stated above, the probability density function of the normalized ambient temperature was fitted using aone year long hourly temperature data. Based on the probability density function obtained, the random nor-malized hourly temperature can be generated. When the daily maximum and minimum temperature areknown, the normalized hourly temperature can be transformed to an actual temperature by the followingequationWhen the hourly temperature for a particular period of the day has been generated using the above method,the bin data can also be obtained. Because the normalized temperature generated using the model in this studyis a random variable, the bin data obtained from each generation shows somedifference, but it has much sim-ilarity. To obtain a stable result of bin data, the generation of the bin data can be performed enough times,and the bin data can be obtained by averaging the result of each generation. In this paper, 50 generations wereaveraged to generate the bin weather data.Z. Jin et al. / Energy Conversion and Management 47 (2006) 1843–18503.4. Methods of model evaluationThe performance of the model was evaluated in terms of the following statistical error test:土木工程英文文献及翻译一种产生bin气象数据的随机方法——中国南京周晋摘要:bin方法是一种众所周知且简捷的稳态的计算方法,可以用来预计建筑的冷热能耗。
土木工程毕业设计英文翻译论文

Structural FormsStructural forms, such as the beam or the arch ,have developed through the ages in relation to the availability of materials and the technology of the time. The arch, for instance, undoubtedly developed as a result of the availability of brick. In the technology of buildings .every structure must work against gravity ,which tends to pull everything down to the ground .A balance must therefore be attained between the force of gravity ,the shape of the structure ,and the strength of the material used. To provide a cover over a sheltered space and permit openings in the walls that surround it ,builders have developed four techniques are post and lintel, arch and vault, truss, and cantilever construction.Post and lintel. In post and lintel construction ,a horizontal beam is placed across the space between two supporting posts. If the support is continuous, it is called a wall; if a series of beams are joined together into a continuous surface, it is called a slab.Simple rectilinear buildings result from post and lintel construction, which is characteristic of much primitive construction as well as of the classical Greek temples. In this type of construction, the post (or column) carries only a vertical weight, or load, and is therefore under compression, and the lintel (or beam) is bent by the loads acting transversely to its axis. Therefore , the post must have compressive strength, and the beam must have bending strength. Both wood and stone were used in early example of this type of construction , although the limited bending strength of stone dictated the close column spacing which is apparent in Greek temples. For example, in the Parthenon in Athens, the space between the columns is approximately equal to the column diameter.Modern building materials such as steel and reinforced concrete are used to advantage in post and lintel construction. The skeleton frame of a modern steel skyscraper, for instance, consists of beams and columns in a three-dimensional post and lintel network, or grid. The typical wood fame house, with closely spaced wooden post, or studs, and floors with a series of closely spaced wood beams, or joists, also illustrates post and lintel construction.Just as a house of cards can support vertical loads but collapses under a slightbreath of air, the post and lintel system can topple under winds or earthquakes, but of which impose a horizontal force. This collapse is due to the fact that the joint between the column and beam acts as if it were a hinge .In earlier times this lateral instability was not apparent because the weight and the mass of the materials (particularly stone) and the limited height of the structures negated the importance of horizontal forces. In tall modern building that have slender elements made of strong and light materials such as steel, lateral instability becomes a significant factor . To provide the necessary lateral resistance, a rigid connection must be made between the vertical column and horizontal beam. This creates a rigid frame; it is used to achieve lateral stability in skyscraper construction.Arch. The arch which is characteristically a masonry type of construction, undoubtedly had its origin in Mesopotamia,a land of brick buildings. Arches consist of masonry blocks in the form of a curved line. In principle, each wedge-shaped masonry block cannot fall inward without pushing the others out ;thus, the whole arch form remains stable as long as a force is applied at the base to keep it from spreading. This force is called a horizontal thrust. A continuous series of arches is known as a vault.The Etruscans, by their examples of arch constructions in bridges and gates, probably inspired the Roman to experiment with this type of construction about 600 B.C. However, it was not until the last years of the Roman republic that tunnel vaults and intersecting, or groined, vaults were used to cover large rooms. The form of the Roman arch or vault is generally semicircular for reasons of geometric simplicity. As a result, all wedge-shaped stones are identical; their curved edges are equidistant from the center of the circle ,and their straight edges lie on equally spaced lines radiating from the center. This type of semicircular arch was widely used by the Romans in buildings such as the Basilica of Constantine and the Baths of Caracalla and in gates such as the Porta Maggiore in Rome.The Gothic arch, which is characterized by its pointed shape ,evolved in France in the 12th century. This form characterizes some of the most magnificent churches of the early Renaissance period such as the Chartres. Amiens, and Rheims cathedral. theform of the Gothic arch is superior to the Roman arch because of its greater structural clarity, which closely approaches the shapes the shape of an idea arch. The concept of the idea arch can best be explained by a comparison with a suspension cable.A chain or a cable supported at each end assumes a curved shape called a catenary (from catena, chain).If the cable were required to support one weight hung from it ,it would change shape to adjust to this condition ;this is due to the fact that a cable carries loads only by the actin of simple tension along the length of the cable. If, instead of a single load, many parabola. The catenary and the parabola are geomertrically similar since the weight of the cable is approximately a uniformly distributed load .An ideal arch may be thought of as a cable frozen in its shape and turned upside down.(Instead of carrying loads by tension, as in the cable, the ideal arch carries loads by simple compression)This ideal shape of load the arch is called the “funicular curve” A different funicular curve exists for every type of load the arch is required to carry. Since the arch ,unlike the flexible cable ,cannot adjust its shape to the load ,then the arch, under a load other than that which gave it its funicular shape, must also carry the load by bending, as in a beam .The structural efficiency of an arch can thus be measured in terms of the proximity of the geometric shape to the funicular curve ,In the semicircular Romans arch ,there is a large difference between the funicular curve of the loads and the circular shape. The pointed Gothic arches are much closer to the funicular curve of the loads and therefore possess a clear advantage over the earlier semicircular form.To resist the horizontal thrust which exists at the base of an arch ,the Roman used massive piers or buttresses. In some of the Gothic cathedrals, which raised the arch high above the nave, flying buttresses over the side aisles were used to counteract the thrust.In modern times ,arch construction has been used extensively for bridge, utilizing steel, wood, or reinforced concrete. The concrete arch bridges built by Robert Maillart in Switzerland are outstanding examples of elegance and structural clarity in modern arch design.Truss. The simplest form of truss is a triangle consisting of three bars. Thiselementary truss form undoubtedly grew out of the use of the gabled roof for small houses and churches. In this construction, two slanting rafters rest on top of a wall and are pinned at the peak. The load of the roof tends to push out the top of the walls. Tying the bottom of the rafters together with a bar or rod counters this outward push. The resulting triangular shape is a rigid form geometrically, because none of its angles can change without changing the length of its sides. Each element in a truss is subject to either tension or compression; in the simple triangular truss, the rafters are in compression and the tie rod is in tension.The elementary triangular truss is limited to spanning relatively short distance because each slanting member is long compared to the span. In a triangular truss with equal angles, for instance, each member is as long as the span. This drawback was recognized by Andrea Palladio in the 16th century. His design for a trussed bridge utilized the principle that if a single triangles is rigid ,combinations of triangles are also rigid . By arranging short lengths of timbers in a series of triangles to form complex trusses, almost any distance can be spanned.It was not until the 19th century , when mathematical methods of analysis became known and iron and steel were introduced, that trusses with a great degree of perfection and elegance were developed. Modern trusses with a variety of configurations are used to span auditoriums, armories, and convention halls , creating large column-free spaces. The type of trusses most commonly used in buildings are the Pratt, Howe, and Warren trusses, all named after their inventors. The Pratt and Howe trusses have top and bottom chords (horizontal elements), and both verticals and diagonals between the chords. The Warren truss has only diagonals joining the top and bottom chord .Cantilever. In cantilever construction, building elements are projected outward from a fixed support. An early kind of cantilever construction was the corbel; it had its origin in the late Stone Age and can be found in the form of corbelled domes built in Sarrdinia about 2,500 B.C. In corbel construction, each successive layer of stone stands out farther from a wall in the form of upside-down steps. Only the weight of the stones above and behind the face of the wall prevent a corbel from collapsing. Anexcessive amount of material is required for corbel construction because of the necessity for heavy masonry walls.Cantilevering building elements from a wall or other fixed support permits projecting part of a building beyond the ground-level construction to gain more living area above, as in many of the Renaissance town houses.The cantilever is much used in modern buildings as a result of the availability of steel and reinforced concrete. It is a simple matter in a concrete apartment building to create a cantilevered balcony when the balcony slab is merely a continuation of the interior slab. The Kaumfman house, built by Frank Lloyd Wright in 1939, is an example of a dramatic use of cantilevers and demonstrates the potential of this type of construction. In a steel-framed building, beams can project beyond column to permit the face of the building to be a curtain wall with large glass areas. This cantilever construction was exemplified by the Bauhaus (1926) ,which was used as a model for many skyscrapers built after World WarⅡ结构形式结构形式,如梁或拱,通过发展有关的材料供应和当时的技术的年龄。
土木工程英语作文模板及范文

土木工程英语作文模板及范文英文回答:Civil Engineering Essay Template and Sample。
Introduction。
Hook: Begin with a captivating fact or question related to the topic of civil engineering.Thesis statement: State your main argument or purpose for writing the essay.Body Paragraph 1: Importance of Civil Engineering。
Discuss the critical role of civil engineers in society.Provide examples of essential infrastructure projects (e.g., bridges, roads, buildings).Explain how these projects enhance quality of life and economic growth.Body Paragraph 2: Challenges in Civil Engineering。
Identify common challenges faced by civil engineers, such as environmental concerns, design complexities, and cost constraints.Discuss how these challenges require innovative solutions and collaboration.Body Paragraph 3: Technological Advancements。
Describe emerging technologies that are transforming civil engineering practices.Examples could include BIM (Building Information Modeling), drone surveys, and advanced materials.Explain how these advancements enhance efficiency,accuracy, and sustainability.Body Paragraph 4: Case Study。
为什么选择土木工程专业英语作文

为什么选择土木工程专业英语作文English:I chose to major in civil engineering because I have always been fascinated by the process of designing and constructing infrastructure that serves society. Civil engineers have the opportunity to create buildings, bridges, roads, and other structures that have a direct impact on the way people live and work. I am drawn to the challenge of tackling complex problems and finding innovative solutions to improve the quality of life for communities. Additionally, civil engineering is a versatile field that allows for specialization in areas such as structural engineering, transportation engineering, or environmental engineering, providing me with the opportunity to explore different interests within the profession. Overall, I believe that studying civil engineering will not only allow me to pursue a fulfilling and rewarding career but also make a positive difference in the world through my work.Translated content:我选择主修土木工程,因为我一直对设计和建造为社会服务的基础设施的过程着迷。
对土木工程的认识英语作文

对土木工程的认识英语作文Civil engineering is one of the oldest and most crucial branches of engineering. It plays a vital role in shaping the infrastructure and environment of our world. As societies evolve and grow, the demand for sustainable and resilient structures increases, making civil engineering an indispensable field. This essay aims to explore the significance, challenges, and future of civil engineering.Firstly, civil engineering encompasses a wide array of disciplines including structural, environmental, geotechnical, transportation, and water resources engineering. Each ofthese sub-disciplines focuses on different aspects of construction and infrastructure. For instance, structural engineers design buildings and bridges that can withstand various loads and forces, ensuring safety and durability. Environmental engineers work to address issues such aspollution and waste management, developing systems that protect natural resources while accommodating urban development.One of the primary challenges civil engineers face today is balancing the needs of infrastructure development with environmental sustainability. As populations grow, there is an increasing need for new roads, bridges, and buildings. However, the impact of these developments on the environment and ecosystems cannot be overlooked. Civil engineers are tasked with designing projects that minimize harm to the environment. This includes incorporating green technologies and sustainable materials, as well as considering the long-term effects of their designs on the surrounding landscape.Additionally, the growing effects of climate change present significant challenges for the civil engineering field. Rising sea levels, increased flooding, and severe weather conditions require innovative solutions and adaptivedesigns. Civil engineers must develop infrastructure that is resilient to these changes, ensuring safety and functionality even in the face of extreme conditions. This requires notonly technical skills but also a deep understanding of environmental science and policy.Looking towards the future, the integration of technology in civil engineering is set to transform the field. Theadvent of Building Information Modeling (BIM), drones, and artificial intelligence is revolutionizing how projects are designed, managed, and executed. These technologies allow for improved accuracy, efficiency, and collaboration among engineers, architects, and contractors. As the industry continues to evolve, learning and adapting to these advancements will be essential for future civil engineers.In conclusion, civil engineering is a vital field that significantly impacts our daily lives and the world around us. By addressing current challenges and embracing technologicaladvancements, civil engineers can contribute to a sustainable future. The discipline not only requires technicalproficiency but also a commitment to improving the quality of life for communities and protecting our environment. As we face unprecedented challenges, the role of civil engineering will undoubtedly become more important in shaping a resilient and sustainable world.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012级土木工程(本)专业《土木工程英语》课程论文论文题目:混凝土结构温度应力分析Concrete structure temperature stress analysis专业班级:土木工程2班学生姓名:魏云飞学号:123008010227论文成绩:评阅教师:胡郢2015年11月8日超长混凝土结构的温度应力分析与控制技术研究陈军毅,浙江大学,结构工程,2006,硕士【摘要】随着我国经济建设的迅速发展和建筑技术水平的提高,超长混凝土结构不断在大型公共建筑和工业建筑中出现。
由于考虑到建筑上的美观性和结构上的整体性,这些建筑往往不设或少设温度伸缩缝,致使通长不设缝的结构长度远远超出了我国规范规定的伸缩缝限值。
对于超长混凝土结构,温度应力是必须考虑的重要因素,也是引起这类结构裂缝的主要原因。
所以对超长混凝土结构温度应力的分析并研究其有效的控制技术具有重要的意义。
本文首先总结了国内外关于超长混凝土结构温度应力的研究现状,并简要地介绍了温度应力的弹性力学理论,然后概述了应用大型通用有限元软件ANSYS分析超长混凝土结构温度应力的有限元理论。
由于混凝土工程结构长期经受自然环境气温变化和日照辐射等的作用,加上混凝土材料较差的热传导性能,使得结构的温度场成为一个很复杂的不稳定温度场。
本文着重探讨了结构各种温度荷载作用的效应。
本文的研究内容主要包括:分析了超长结构年温差作用效应,探讨了结构在年温差荷载作用下各构件的温度内力和温度变形特点,并对其影响因素作了参数化分析,重点分析了剪力墙构件的影响;结合某一典型超长框架——剪力墙结构,分析了超长结构的水平瞬时温差作用效应,对日照温度场及非线性温度分布的分解和等效作了一定探讨,通过比较均匀温度场及线性温度场下的结构效应,得到了温度梯度对结构内力和变形产生的影响;简要分析了结构的竖向瞬时温差作用效应针对目前超长结构分析中往往假定整个结构均匀温降的合理性进行了分析,研究了结构在考虑梁温差滞后的温度作用效应,并对其影响因素作了参数化分析;分析了无粘结预应力技术在超长结构温度应力控制中的作用,结合一典型超长结构,分析了该结构在直线无粘结预应力筋作用下的变形和内力,并分析比较了不同预应力筋布筋形式下的结构效应,得出了合理布筋形式,即在柱上板区域集中布筋,并应对超长结构留设后浇带分段张拉预应力筋;最后结合一具体工程——杭州市江干区全民健身中心,对三层楼板温度场监测数据进行分析处理并得到控制温差荷载,对该结构在控制温差荷载及预应力作用下的结构效应进行了三维有限元分析。
将数值分析与实测结果比较表明,用有限元方法来分析超长混凝土结构温度应力是可行的。
国家的经济在不断飞速的发展,人们对建筑的安全性和美观性也有了新的认识和要求,一些公共建筑正逐渐向舒适化、大型化发展,超长混凝土结构不断的涌现在大型公共建筑和工业建筑中。
出于对整体性和美观性的考虑,我们的设计师往往在这些建筑中不设或少设伸缩缝,然而对于超长混凝土结构,温度应力是必须考虑的重要因素,也是引起这些结构产生裂缝的主要原因,因此对超长混凝土结构温度应力的分析并用有限元软件模拟具有重要意义。
本文的主要工作内容如下:首先概述了超长混凝土结构的研究背景和发展概况,阐述了超长混凝土结构相关的收缩理论、徐变理论以及温度应力基本理论。
接着简要介绍了现场监测技术在超长混凝土结构中的应用,对某实际超长混凝土结构进行了一年多的现场跟踪监测,并对监测数据进行了处理分析。
最后对实际超长混凝土结构在整体温度作用下的效应进行了模拟分析,总结得出超长混凝土结构的温度应力分布特点,并对影响温度应力的因素做了参数分析。
本文通过对超长混凝土结构的温度应力进行监测分析以及Ansys有限元模拟分析得出了一些十分有益的结论,所做工作对今后类似超长混凝土结构的设计与施工是有很大帮助。
With the improvement of China's economic construction and rapid development and the level of construction technology, the overlong concrete structure is emerging in large public buildings and industrial buildings. Due to architectural appearance and structure as a whole, these buildings often no or less temperature is adjustable seam, resultingin full-length seam structure length far beyond our specification adjustable seam limits. For the super long concrete structure, temperature stress is an important factor that must be considered, but also caused the main reason for this kind of structure crack. So for super long concrete structure temperature should force analysis and study the effective control technology has important significance. In this paper, the total This paper briefly introduces the finite element theory of the temperature stress of the concrete structures, which is a very complicated and unstable temperature field. The temperature field of concrete structures is a very complicated and unstable temperature field. The temperature field of the structure is analyzed, and the effect of temperature field is analyzed. The effects of temperature gradient on the structural internal force and deformation of the structure are discussed, and the effects of temperature gradient on the internal force and deformation of the structure are analyzed. The effects of temperature gradient on the internal force and deformation of the structure are discussed, and the effects of temperature gradient on the structural internal force and deformation are discussed. This paper analyzes the rationality of the uniform temperature drop of the whole structure, studies the effect of temperature on the temperature difference between the structure and its influence factors, analyzes the deformation and internal force under the action of linear non bonded prestressed tendons,analyzes the deformation and internal force, and gives the reasonable layout, that is, the area of the plate is concentrated, and the length of the paper is designed. Jianggan District national fitness center, the three floor temperature field monitoring data analysis and control of temperature field, the structure of the structure under the control of temperature and stress, the finite element method to analyze the concrete structure temperature stress is feasible. The national economy in the continuous development, people on the construction safety and aesthetics also has a new understanding and requirements, some public buildings are gradually to the comfort, large-scale development, large public buildings and industrial buildings. Body resistance and aesthetics consideration, our designers often in these buildings with no or less expansion joint. However, for the super long concrete structure, temperature stress is an important factor that must be considered, but also caused the main reason for cracks in these structures, so on the long mixed background and overview of force analysis of the concrete structure temperature stress and finite element software simulation is of great significance. The main contents of this paper are as follows: first, an overview of the super long concrete structure, expounds the overlong concrete structure shrinkage theory, the theory of creep and temperature should be basic theory of power. Then briefly introduce the field monitoring technology in super long concrete structure In thispaper, the design and analysis of the temperature stress distribution characteristics of ultra long concrete structures are analyzed, and the influence of the temperature stress on the design and construction of the super long concrete structures is analyzed. The results are very useful for the design and construction of the Ansys. This paper analyzes the effect of the structure of the concrete.To figure out the distribution of temperature gradient along the girder height of steel-concrete composite box girder, combined with the mechanical characteristics of prestressed concrete composed box girder with corrugated steel webs, the calculation formulas of cross-sectional temperature stress along the span in a simply-supported beam bridge with composite section were derived under the conditions of static equilibrium and deformation compatibility of the beam element. The methods of calculating the maximum temperature stress value werediscussed when the connectors are assumed rigid or flexible. Theoretical and numerical results indicate that the method proposed shows better precision for the calculation of temperature self-stress in both the top and the bottom surfaces of the box girder. Moreover, the regularity of temperature stress distribution at different locations along the girder span is that the largest axial force of the top or the bottom plate of the box girder is located in the midspan and spreads decreasingly until zero at both supported ends, and that the greatest longitudinal shear density in steel-concrete interface appears at both supported ends and then reduces gradually to zero in the midspan.Reliable computational prognoses of the structural integrity and serviceability throughout the lifetime of structures require the realistic consideration of the damage behaviour of the construction materials for various loading scenrios including static and cyclic loading, environmental loading processes such as moisture and heat transport, corrosion processes, freeze-thaw actions and possible interactions between these long- and short-term processes. Both, load-induced damage mechanisms such as evolving microcracks and physically and chemically induced deterioration originate from mechanical, physical and chemical processes starting at lower scales of the microstructure of the materials. Investigating and understanding these processes acting at various scales is a prerequisite for the development of adequate and suitable material models suitable for life-time oriented simulations.为了找出温度梯度沿钢筋混凝土组合箱梁梁高度的分布,结合预应力砼组合箱梁波形钢腹板的机械特性,横截面温度应力的计算公式沿跨度在复合段简支梁桥进行静平衡和梁单元的变形协调的条件下得到的。