(word完整版)2018高考数学专题复习三角换元法

合集下载

基本不等式三角换元法

基本不等式三角换元法

基本不等式三角换元法
基本不等式是数学中重要的不等式之一,可以用于求解各种数学问题。

在解决一些特殊的不等式时,可以使用三角换元法来转化原不等式为基本不等式,从而得到更简单的解法。

三角换元法是指将不等式中的变量用三角函数进行替换。

一般地,我们可以将不等式中的正弦、余弦、正切等三角函数替换为一个新变量,然后运用三角函数的性质进行简化和变形,最终得到基本不等式形式的不等式。

常用的三角换元有以下几种:
1. 令 $x = sin t$ 或 $x = cos t$,其中 $t in
[0,frac{pi}{2}]$。

2. 令 $x = tan frac{t}{2}$,其中 $t in [0,pi)$。

3. 令 $x = cot frac{t}{2}$,其中 $t in (0,pi]$。

使用三角换元法可以将一些复杂的不等式转化为简单的形式,进而求解。

例如,对于不等式 $frac{sin x}{x} geq cos x$,我们可
以令 $x = sin t$,得到 $frac{t}{sin t} geq cos t$,再由基本
不等式得到 $frac{t}{sin t} geq 1$,进而得到 $t geq sin t$,
这是显然成立的,因此原不等式成立。

需要注意的是,在使用三角换元法时,需要注意选取合适的三角函数,并注意特殊情况的处理,比如分母为 $0$ 的情况等。

- 1 -。

高中三角换元法例题

高中三角换元法例题

高中三角换元法例题
三角换元法是微积分中的一个重要概念,通常用于解决一些复杂的三角函数积分问题。

下面我将用更多的字数从多个角度来解释高中三角换元法的例题。

假设我们有一个例题,求积分∫sin^3(x)cos(x)dx。

首先,我们可以利用三角换元法,令u = sin(x),那么du = cos(x)dx。

然后我们可以将原积分转化为∫u^3du,这个积分就变得更容易求解了。

通过对u^3进行积分,我们得到 (1/4)u^4 + C,其中C为积分常数。

最后再将u用sin(x)代回去,得到最终的结果为 (1/4)sin^4(x) + C。

另外,三角换元法也可以用于解决一些三角函数的恒等式证明问题。

例如,我们要证明恒等式sin^2(x) + cos^2(x) = 1。

我们可以利用三角换元法,令u = sin(x),那么√(1 u^2) = cos(x),然后将u和√(1 u^2)代入恒等式中进行变形,最终可以得到等式成立的证明。

除此之外,三角换元法还可以用于解决一些三角函数的微分方
程问题和一些三角函数的级数展开问题。

在高中数学中,三角换元
法的应用虽然不太常见,但是了解和掌握这个方法对于理解微积分
和三角函数的关系是非常有帮助的。

综上所述,高中三角换元法是微积分中的一个重要概念,通过
这个方法可以解决一些复杂的三角函数积分问题,恒等式证明问题,微分方程问题和级数展开问题。

掌握三角换元法可以帮助我们更深
入地理解三角函数和微积分的联系,从而更好地应用这些知识解决
实际问题。

三角换元法

三角换元法

三角换元法三角换元法,又称三角代换法,是一种在积分中常用的方法。

在数学中,三角换元法是一种通过三角函数代换,将积分式子中的根号表达式转化为更容易求解的三角函数的方法。

这种方法在解决一些较为复杂的积分问题时,特别是涉及根号式的积分问题时显得格外有效。

基本思路三角换元法的基本思路是将不易处理的根号表达式通过三角函数的代换转化为含有三角函数的形式。

具体来说,我们会根据被积函数的结构选择合适的三角函数代换,常用的代换有正弦、余弦和正切。

步骤下面以一个简单的例子来演示三角换元法的步骤:假设我们需要求解如下积分:$$\\int \\frac{1}{\\sqrt{4-x^2}} dx$$1.首先,我们观察到被积函数中含有根号表达式,于是我们尝试采用三角换元法。

对于这类问题,常用的代换是 $x = 2\\sin{\\theta}$,因为根号内的表达式可以转化为 $\\cos{\\theta}$ 形式。

2.接下来,我们需要将dx转换为关于 $\\theta$ 的微分形式。

由 $x =2\\sin{\\theta}$,对其两边求导可得 $dx = 2\\cos{\\theta}d\\theta$。

3.将代换 $x = 2\\sin{\\theta}$ 和 $dx = 2\\cos{\\theta}d\\theta$ 带入原积分式,将被积函数转换为含有 $\\theta$ 的形式:$$\\int \\frac{1}{\\sqrt{4-(2\\sin{\\theta})^2}} \\cdot2\\cos{\\theta}d\\theta $$4.进行简化和化简计算,然后求解出 $\\int \\frac{1}{\\sqrt{4-(2\\sin{\\theta})^2}}$。

5.最后,将得出的结果用 $\\theta$ 的函数形式表示,即将$\\theta$ 的结果重新转化回x的形式,得到最终的积分结果。

总结三角换元法是一种在积分中经常使用的方法,适用于处理含有根号表达式的积分问题。

(完整word)2018年高考数学总复习三角恒等变换

(完整word)2018年高考数学总复习三角恒等变换

tan 22 tan 1 tan降次(幕)公式12sin cos sin 2 ;sin2 半角公式 1 cos 2 2 ------------ ;cos1 cos 2---1 cos sin ;cos一 2. 221 cos------ ;第三节三角包等变换考纲解读会用向量的数量积推导出两角差的余弦公式.能利用两角差的余弦公式导出两角差的正弦,正切公式 .能利用两角差的余弦公式导出两角和的正弦, 余弦,正切公式,导出二倍角的正 弦,余弦,正切公式,了解它们的内在联系.能利用上述公式进行简单的包等变换(包括导出积化和差,和差化积,半角公式, 但对这三种公式不要求记忆). 命题趋势探究高考必考,在选择题,填空题和解答题中都有渗透,是三角函数的重要变形工具 分值与题型稳定,属中下档难度.考题以考查三角函数式化简,求值和变形为主.化简求值的核心是:探索已知角与未知角的联系,包等变换(化同角同函) . 知识点精讲常用三角包等变形公式 和角公式sin( ) sin cos cos sin差角公式cos( ) cos cos sin sin倍角公式 sin 2 2sin cos2. 222cos2 cos sin 2cos 1 1 2sincos(cos cos sin sin tan(tan tan 1 tan tansin()sin cos cos sintan(tan tan 1 tan tan1 cos . sin aJa 2 b 2 sin( ),tan b(ab 0),角 的终边过点(a,b),特殊a地,若 a sin bcos . a 2 b 2 或.a 2 b 2 , 则 tan —. a 常用的几个公式 sin cos 、. 2 sin( sin .32 cos 2sin( 3' \ 3 sin cos 2sin(—); 6题型65 两角和与差公式的证明 题型归纳及思路提示 思路提示推证两角和与差公式就是要用这两个单角的三角函数表示和差角的三角公式, 通过余弦定理或向量数量积建立它们之间的关系,这就是证明的思路 . 例4.33 证明⑴ C : cos( ) cos cos sin sin ;⑵用C 证明 S : sin( ) sin cos cos sin解析(1)证法一:如图4 — 32 (a)所示,设角 P(cos .sin ), P 2(cos(),sin(__ 2 __________2________ 2____ ________PP 2OP 1 OP 22OP 1 OP 2cos()r/、■12 r.■ ,、r2 八 八 ,、[cos cos( )] [sin sin( )] 2 2cos( )2 2(cos cos sin sin ) 2 2cos( ) C : cos( ) cos cos sin sin . 证法二:利用两点间的距离公式.如图 4 —32 (b)所示 A(1,0), P 1(cos ,sin ), P 2(cos(),sin( ),x sin tan- ------- 2 1 cos辅助角公式 a sin bcos⑶用(1)(2)证明T :tan(tan tan 1 tan tan的终边交单位圆于)),,由余弦定理得P 3(cos( ),sin()),由 OAP 2OP 3用得,AP 2.故sin cos cos sincos cos cos cos T:tan( )tan tan cos cos sin sin1 tan tancos cos coscos发式1证明:⑴C :cos( )cos cos sin sin ⑵S:sin()sin coscos sin(3)T : tan( tan tan题型66化简求值 思路提示三角函数的求值问题常见的题型有:给式求值、给值求值、给值求角等 .(1)给式求值:给出某些式子的值,求其他式子的值.解此类问题,一般应先 将所给式子变形,将其转化成所求函数式能使用的条件, 或将所求函数式变形为 可使用条件的形式.. ,(1 cos( ))2 (0 sin( ))2 [1 cos( )]2 sin 2() cos 2化简得 cos( ) cos cos sin.[cos()cos ]2[sin( ) 12 sin ],即2 cos2cos cos sin 2二一 2sin 2sin ) 2] cos 1( 2)]cos cos( —) sin sin( cos sin sin cos 7)S : sin((3) tan(\ sin( sin cos cos sin )cos()coscossin sinsinsin(2)sin( )cos[( )sin cos cos sin(2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值, 解题关键在于“变角”,使其角相同或具有某种关系,解题的基本方法是:①将 待求式用已知三角函数表示;②将已知条件转化而推出结论,其中“凑角法”是 解此类问题的常用技巧,解题时首先要分析已知条件和结论中各种角之间的相互 关系,并根据这些关系来选择公式.(3)给值求角:解此类问题的基本方法是:先求出“所求角”的某一三角函数D.竺25解析解法一:化简所求式所以2sin xcosx 2.故选A .25解法二:化简所求式2sin 2x 2sin x 八. .八---- 2sin xcosx sin 2x .— . _ 一 2. . 7 sin[2(一 x) —] cos2(一 x) 1 2cos (一 x)—.故选A.4 2 4 4 25评注 解法一运用了由未知到已知,单方向的转化化归思想求解;解法二运用了 化未知为已知,目标意识强烈的构造法求解,从复杂度来讲,一般情况下采用构 造法较为简单.1 、 3 … 变式 1 右 cos( ) 一 ,cos( )一,则 tan tan . 5 51 tan —是第三象限角,则 1 2(51 tan —1B. C.2 D. 22值,再确定“所求角” 一、化同角同函 的范围,最后借助三角函数图像、诱导公式求角 例4.34 已知cos(— 4x) 9则5 2sin 2x 2sin x 1 tan x A.— 25B.” 252sin 2x 2sin x2sin xcosx 22sin x1 tan x( sin x 1 --------cosx 2sin x(cosx、 cos xsin x) ---------------- 2sin xcosx.cosx sin x由 cos(— x)43得立cosx 匹sinx 5 2 23,即 cos x5sinx 32,两边平方得5 ___ 22cos x sin x 1852sin xcosx ——,即 1252sin xcosx 18 251 tan x变式2 若cos2、建立已知角与未知角的联系(通过凑配角建立)将已知条件转化而推出结论,其中“凑角法”是解此类问题的常用技巧,解分析 建立未知角与已知角的联系, ()故选C .评注 利用和、差角公式来建立已知角与未知角的联系,常利用以下技巧:( ); ( ); ( )( )等.解题时,要注意根据已 知角的范围来确定未知角的范围,从而确定所求三角式的符号3变式 2 右 (一,一),(0, —),cos( 4 44sin( ) . 、辅助角公式变换变式1 已知sinA.5-12J 5一,sin( 5B.. 3)叁0,,(0,-)则().10 2C.-D.一 46 变式31(2012江西理4)若tan — 1 B.— 4 tan1 C.- 3 4 ,贝tj sin2 (). 1 D.—2 题时首先要分析已知条件和结论中各种角的相互关系, 并根据这种关系来选择公 工】.常见的角的变换有:和、差角,辅助角,倍角, 1.和、差角变换降幕,诱导等如可变为( );2可变为()();2 可变为( 例4.35 若0A. 1B. 21或工25,cos C. 3一,sin(5 24253-,则cos 的值为( 5 D.马25解析解法一:cos cos[()]cos()cos sin( )sin .因为 cos(2,3所以,则cos(4) -,(0,-),sin八. 4 0, sin一 5,5) 3 (5) 524 25解法二:因为 (-,),所示 cos ( 1,0). 23 3 )一,sin (一45 4)也,则 132.5B. -----5分析将已知式化简,找到与未知式的联系. (4)一、,(9] sin( 丁 5 .故选 C .B.a b分析 利用同角三角函数的基本关系式及二倍角公式求解 .解析解法一:;因为 sin cos ■所以(sin cos )23… 2 2得2sin cos -,即sin 2'.又因为 为弟一象限角且解析由题意,cos cos — sin sin — sin 6 64.35..3 ——cos23 — sin 2、.3sin(-)4」3-- ,4寸sin( 5 变式1设sin14o cos14o ,bsin16o cos16o ,c 亚,则a,b,c 的大小关系为2A.a<b<cB. b<c<aC. a<c<bD. b<a<c变式2设sin15o cos15o ,b sin17o cos17o ,则下列各式中正确的是(Cb2,2a b 2Db a2,2a b 2降幕(次)变换例 4.37 (2012大纲全国理7) 已知为第二象限角, sin coscos2 ().A. 3B.9C .- 9D- 3例4.36 已知cos(4 3 sin5 ,则 sin()的值为(C. D.- 5所以sin (7、 - r—)sin[A. asin cos.3T °.E 3则(2k-,2k -)(k Z). (4k ,4k33")(k Z).故2为第三象限角,cos 2 (3)2 正.故选A.3解法二:由为第二象限角,得cos 0,sin 0 cos sin 0,且(cos sin )2 1 2sin cos cos ,3 32(sin cos ) 2sin cos 2sin cos ,得(cos sin )2所以cos sincos2 2cos sin2 (cos sin )(cos sin变式1(J 3,59.故选A.3若sin( 一6A. 79 B.变式2 (2012江苏变式3已知sin(2 变式4若sin1 (2)-则cos(—3 3C.3).D.7911)设为锐角,若cos(一)64 …一,则sin(2577)的值省、3 .)-,sin57 ),tan(A 24 A.—7 B.72412 上且13)2Ca7 贝(Jtan(变式5已知sin cos (0.9, 4.诱导变换例4.38 若 f (sin x) 3 f (cosx)A.3 cos2xB.3 sin 2x(—,0),求sin 值. 22)().D.— 24cos2则^sin(-)( ).C.3 cos2xD.3 sin2x分析 化同函f (cosX) f(sin(L ))以便利用已知条件. 解析解法一:f (cos x) f[sin(x —)] 3 cos2(x —) 3 cos(2x ) 3 cos2x. 故选C .解法二:f(sinx) 3 cos2x 3 (1 2sin 2 x) 2sin 2 x 2 贝^ f (x) 2x 2 2, x [ 1,1]故 f(cosx) 2cos 2x 2 2cos 2x 1 3 cos2x 3.故选C .4变式1 是第二象限角,tan( 2 ),,则tan .cos25 一 ---------变式 2 右 sin (一 ) 一, (0,1),则 / 、4 13 2 cos( )4最有效训练题19 (限时45分钟)A, B 是图像与x 轴的交点,则tan APB ().、一- -84 A.10 B .8 C.-D.-7 76 .函数y sin x 3的最大值是().cosx 4 八 1 「12 2.6 八4 「12 2.6 A. -B. ---------------C.- D. -------------- 2153 151 .已知函数 f (x) sin x 3cos x,设 a f (—),b f (—),cf (-),则a,b,c 的大小 3关系为(A. a<b<c 2 .若sin( 一 3A 」 4 B. c<a<b1一,则 cos (一 4 3 B. 14 C.C. b<a<cD. b<c<a3 .若 tan 则 cos(2 ). ). D.7 84 A.- 54 .已知tan(A.—44 B.一5 、1 )-,tan 2 B.24 1 C.- 2(0, ),D.).5.函数 y sin(x )(C.UD.0)的部分图像如图 4- 33所示,设P 是图像的最高点,7 .已知 tan(— ) 3 .贝[J sin 2 2cos 3 4 54… … 1 sin x sin y 一8 .已知x, y 满足 6,贝ij cos(x1cosx cosy 一51 tan tan9 J3tan10o 1 .(4cos 210o 2)sin10o4 13 .10.已知 cos 一,cos( ) 一,且 0 7 1411.已知函数 f(x) 2cos2 - V3sin x.5(1)求函数f(x)的最小正周期和值域; (2)若 是第二象限角,且f(-)],求—— ---------------- 的值. 631 cos2 sin 23 12.已知二点 A(3,0), B(0,3), C(cos ,sin ),(-,一).2 2 uuir uuir(1)若AC BC ,求角 ;c • 2. c2sin sin 21 ,求 --------------- 的值.y)贝(J tan 2.lur uuir(2)若 AC BC1 tan。

三角函数万能换元公式

三角函数万能换元公式

三角函数万能代换公式:(sinα)²+(cosα)²=11+(tanα)²=(secα)²1+(cotα)²=(cscα)²万能公式包括三角函数、反三角函数等。

万能公式可以把所有三角函数都化成只有tan(a/2)的多项式。

将sinα、cosα、tanα代换成含有tan(α/2)的式子,这种代换称为万能置换的代换公式。

万能公式架起了三角与代数间的桥梁。

(1)(sinα)^2+(cosα)^2=1(2)1+(tanα)^2=(secα)^2(3)1+(cotα)^2=(cscα)^2证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanA tanB tanC三角形面积公式三角形面积公式是指使用算式计算出三角形的面积,同一平面内,且不在同一直线的三条线段首尾顺次相接所组成的封闭图形叫做三角形,符号为△。

常见的三角形按边分有等腰三角形(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形)、不等腰三角形;按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。

正弦公式正弦公式是描述正弦定理的相关公式,而正弦定理是三角学中的一个基本定理,它指出:在任意一个平面三角形中,各边和它所对角的正弦值的比相等且等于外接圆的直径。

几何意义上,正弦公式即为正弦定理。

海伦公式海伦公式又译作希伦公式、海龙公式、希罗公式、海伦-秦九韶公式。

它是利用三角形的三条边的边长直接求三角形面积的公式。

表达式为:S=√p(p-a)(p-b)(p-c),它的特点是形式漂亮,便于记忆。

相传这个公式最早是由古希腊数学家阿基米德得出的,而因为这个公式最早出现在海伦的著作《测地术》中,所以被称为海伦公式。

中国秦九韶也得出了类似的公式,称三斜求积术。

二倍角公式二倍角公式是数学三角函数中常用的一组公式,通过角α的三角函数值的一些变换关系来表示其二倍角2α的三角函数值,二倍角公式包括正弦二倍角公式、余弦二倍角公式以及正切二倍角公式。

2018年高考数学二轮复习第二部分高考22题各个击破专题三三角3.3.2三角变换与解三角形课件文

2018年高考数学二轮复习第二部分高考22题各个击破专题三三角3.3.2三角变换与解三角形课件文

解 (1)由 asin A=4bsin B,及 得 a=2b. 由 ac= 5(a2-b2-c2), 及余弦定理,得 cos A=
������
2
������ sin������
=
������ , sin������
+������2 -������2 2������������
=
5 -5 ������������
sin ������ sin ������ 2 2
1
2
1
=
������������
������������
= .
2
1
-7-Βιβλιοθήκη (2)因为S△ABD∶S△ADC=BD∶DC,所以BD= 在△ABD和△ADC中,由余弦定理知 AB2=AD2+BD2-2AD· BDcos∠ADB, ① AC2=AD2+DC2-2AD· DCcos∠ADC. ② 因为cos∠ADB=-cos∠ADC, 所以①+2×②得 AB2+2AC2=3AD2+BD2+2DC2=6. 由(1)知AB=2AC,所以AC=1.
=3,化为 a2+c2-b2=6c,①
������ 2 +������ 2 -������ 2
=1,化为 b2+c2-a2=2c.②
������
解由①,②组成的方程组得2c2=8c,即c=4.
(2)由(1)可得 a -b =8.由正弦定理可得
π 6 π 6
2
2
sin ������
=
π 6
������ sin ������
=
4 sin ������
,
又 A-B= ,∴A=B+ ,C=π-(A+B)=π- 2������ + 可得 sin C=sin 2������ +

(完整word版)三角函数专题讲义

(完整word版)三角函数专题讲义

三角函数专题一、核心知识点归纳:1、正弦函数、余弦函数和正切函数的图象与性质:sin y x =cos y x =tan y x =图象定义域 R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =; 当22x k ππ=-()k ∈Z 时,min 1y =-. 当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性 2π2ππ奇偶性奇函数 偶函数奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上是增函数;在32,222k k ππππ⎡⎤++⎢⎥⎣⎦ ()k ∈Z 上是减函数.在[]()2,2k k k πππ-∈Z 上是增函数;在[]2,2k k πππ+ ()k ∈Z 上是减函数. 在,22k k ππππ⎛⎫-+ ⎪⎝⎭()k ∈Z 上是增函数.对称性对称中心()(),0k k π∈Z对称中心对称中心函 数 性 质2。

正、余弦定理:在ABC ∆中有: ①正弦定理:2sin sin sin a b cR A B C===(R 为ABC ∆外接圆半径) 2sin 2sin 2sin a R A b R B c R C =⎧⎪=⎨⎪=⎩⇒ sin 2sin 2sin 2a A Rb B Rc C R⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩注意变形应用 ②面积公式:111sin sin sin 222ABC S abs C ac B bc A ∆=== ③余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C ⎧=+-⎪=+-⎨⎪=+-⎩ ⇒ 222222222cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩二、方法总结:1.三角函数恒等变形的基本策略。

三角换元解解析几何

三角换元解解析几何

三角换元解解析几何全文共四篇示例,供读者参考第一篇示例:三角换元解解析几何,是指利用换元法对三角形相关问题进行求解的方法。

在解析几何中,三角形是一个非常重要且常见的几何形状,其性质和定理牵涉广泛,因此掌握三角换元解解析几何方法对于解析几何的学习具有重要意义。

首先,我们需要了解什么是三角换元。

三角换元是指将一个三角形中的一些变量用其他变量表示出来,通过代入新的变量并整理方程,解决三角形相关问题的方法。

在解析几何中,常见的换元方法有正弦定理换元、余弦定理换元、海伦公式换元等。

举个例子来说明三角换元解解析几何的应用。

假设我们需要求解一个三角形的面积,但是已知的条件只有三边的长度a、b、c,这时可以利用海伦公式进行换元。

海伦公式可以表示为:\[S = \sqrt{s(s-a)(s-b)(s-c)}\]其中,\(s = \frac{a+b+c}{2}\)为半周长。

我们可以将海伦公式中的\(s\)用\(s = \frac{a+b+c}{2}\)进行替换,代入a、b、c的值,最终求得三角形的面积。

另一个例子是通过正弦定理换元求解三角形的高。

正弦定理可以表示为:\[\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}\]如果我们需要求解三角形的高h,可以先假设三角形的高为h,那么h与三角形的底边a、对边A之间存在如下关系:\[h = a \sin A = b \sin B = c \sin C\]通过正弦定理换元,我们可以将三角形的底边a、对边A用高h表示出来,从而求解出三角形的高。

三角换元解解析几何的方法还可以应用在诸如三角形内切圆、外接圆、高角线等相关问题的求解中。

例如,在研究三角形的内切圆时,我们可以利用三角换元方法将内切圆的半径r与三角形的周长P、半周长s之间建立联系,然后通过代入、整理方程求解出内切圆的半径r。

总的来说,三角换元解解析几何是解析几何中一种重要的解题方法,通过将三角形中的各种变量进行换元,可以将问题简化并得到解答。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角换元法摘要:本文归纳总结了三角换元法的基本用法,以常见例题的形式讲述了三角换元法在解题过程中的具体应用。

大家知道,换元法的实质是通过换元将原来比较复杂的、非标准的形式转化为简单的、标准的形式,以利于揭示问题的本质、题目的分析和解决。

三角换元法是众多换元法中的一种,它以三角函数为“元”,将代数问题转化为易于应用三角函数性质求解的问题,三角换元法在求解方程、不等式、解析几何和函数最值等方面都有着广泛的应用。

一般情况下,在运用三角换元的题目中,往往在表达式的形式或字母的取值范围等方面明显反映出三角函数式的特征,这一点给三角换元法的应用提供了线索。

具体表现在该方法对于含有被开方式为二次式的二次根式问题能起到除去二次根式的作用,因为二次根式c bx ax ++2总是可以转化为22t k -、t k +2或22k t -的形式,其中t 为变量,k 为非负常量。

现对于此类问题归纳如下:1.形如),(22x a x f y -=的形式,其中f 是x 和22x a -的代数函数。

令)22,0(,sin ππ≤≤->=t a t a x 此时,[]a a x ,-∈或令),0,0(,cos π≤≤>=t a t a x同理[]a a x ,-∈,2.形如),(22a x x f y +=的形式,其中f 是x 和22x a +的代数函数。

令),22,0(,tan ππ<<->=t a t a x 此时,),(+∞-∞∈x 或令),0,0(cot π<<>=t a t a x),(+∞-∞∈x 。

3.形如),(22a x x f y -=的形式,其中f 是x 和22a x -的代数函数。

令),23,20,0(,sec πππ<≤<≤>=t t a t a x 此时,),,[],(+∞⋃--∞∈a a x 或令t a x csc = ),20,02,0(ππ≤<<≤->t t a 其中),[],(+∞⋃--∞∈a a x 。

注:上面替换中应注意,t 的范围应满足:1°根式中变量的取值要求。

2°二次根式的化简唯一。

以上是常见的用法,其具体应用现分类介绍如下:一、三角换元法在解方程及解不等式中的应用。

例1. 解方程:123512=-+x x x 解:该方程的根必然为正(否则左负右正),所以设)20(,sec π≤≤=t t x ,则方程变为1235tan sec sec =+t t t 变形整理得:05762sin 5762sin 12252=--t t ∴ 25242sin =t 或49242sin -=t ∵ 20π<≤t∴ π<≤t 20故 49242sin -=t 应舍去,由25242sin =t 得2572cos ±=t 当2572cos +=t 时,得54cos =t ,∴ 45=x当2572cos -=t 时,得53cos =t ,∴ 35=x故原方程的根为 45=x 或 35=x说明:此题关键是去掉根式,易联想到αα22tan 1sec =-的形式,换元也就水到渠成了。

例2. 解方程组⎪⎩⎪⎨⎧=+=+23922y x y x 。

解:由题意知,0,0>>y x 则设,sin 3α=x 其中,2,0⎥⎦⎤⎢⎣⎡∈πα那么αsin 3=y 此时 ααcos 3sin 3+=+y x )4sin(23πα+=23= 即 1)4sin(=+πα∴4πα= 从而 ⎪⎪⎩⎪⎪⎨⎧==223223y x所以方程组的解为⎪⎪⎩⎪⎪⎨⎧==223223y x说明:题目的实质是在圆上找一点,使其纵坐标之和为定值,注意到半径与定值的大小关系,设参数时角的范围可适当缩小。

例3. 实数y x ,满足1,1x y ≥≥,且2222(log )(log )log ()log ()a a a a x y ax ay +=+当1a >时,求log ()a xy 的取值范围。

解:此题直接求解较难,若令log ,log ,a a u x v y ==由1,1x y ≥≥可得0,0u v ≥≥,于是问题转化为:“已知0,0u v ≥≥,且22(1)(1)4,u v -+-=求u v +的取值范围”,再做三角变换,令[]12cos ,12sin ,0,2u v θθθπ=+=+∈,则 22cos 2sin u v θθ+=++2)4πθ=++由0,0u v ≥≥得11cos ,sin 22θθ≥-≥-∴ 211,6312412ππππθθπ-≤≤≤+≤∴当sin()14πθ+=时,max ()2u v +=+当sin()sin412ππθ+=或11sin12π时,min ()1u v +=∴ 12u v +≤+≤+故 log ()a xy 的取值范围是1⎡++⎣。

说明:本题条件较为复杂,解题方向不明确,所以通过有理代换,三角代换揭示了问题的几何意义。

二、三角换元法在证明中的应用例4. 若*222,,,,3,,a b c R a b c n n N ∈+=≥∈则n n na b c +<。

证明:设sin ,cos ,(0,)2a b c c πααα==∈ ∵0sin 1,0cos 1αα<<<< ∴22sin sin ,cos cos nnαααα<< ∴ sin cos n n n n n na b c c αα+=+ (cos sin )nnnc αα=+22(cos sin )n nc c αα<+=故 nnna b c +<说明:题目综合难度较大,但通过换元后利用单调性巧证,题目的关键在于放缩之后利用 22sin cos 1αα+=,为解题带来了便利。

例5. 已知0,0,21x y x y >>+=,求证:113x y+≥+ 证明:由于0,0,21x y x y >>+=,可设221sin ,cos ,(0,)22x y πααα==∈ 则221121sin cos x y αα+=+ 222(1cot )1tan αα=+++ 223(2cot tan )αα=++3≥+其中等号在 1,12x y =-= 时成立。

故113x y+≥+。

说明:含有条件不等式的证明因题而异,此题换元思想的来源在于22sin cos 1αα+=和21x y +=的类比联想。

当然此题也可以采用整体换元。

例6. 设x y z xyz ++=,求证:222222(1)(1)(1)(1)(1)(1)4x y z y z x z x y xyz --+--+--≥。

证明: ∵x y z xyz ++=,故可设 tan ,tan ,tan ,()x y z αβγαβγπ===++=∵ cot 2cot 2cot 2cot 2cot 2cot 21αββγγα++=gg g ∴2222221tan 1tan 1tan 1tan 1tan 1tan 12tan 2tan 2tan 2tan 2tan 2tan αββγγααββγγα------++=g g g即2222221111111222222x y y z z x x y y z z x------++=g g g 两边同乘以4,xyz 就得所证之式。

说明:此题换元思想在于:在非直角三角形中,其中三个内角,,αβγ的正切之间有关系式tan tan tan tan tan tan αβγαβγ++=g g ,它虽然没有正式提出来,但相当重要。

三.三角换元法在解析几何中的应用。

例7.一条直线过点P (3,2)与 ,x y 轴的正半轴交于A 、B 两点,若ABC V 的面积最小(O 为原点),求此时直线的方程。

解:设BAO θ∠=(0)2πθ<<,则32cot OA=+32tan OB θ=+,那么12ABC S OA OB =V g 1(32cot )(23cot )2θθ=++16(9tan 4cot )2θθ=++6612≥+=当且仅当9tan 4cot θθ=时,即2tan ,3ABC S θ=V 取最小值12。

∴ 2tan()tan 3AB k πθθ=-=-=-故 直线方程为23120x y +-=。

说明:此题已知直线上的点坐标,求其方程,在于求出其斜率,即tan θ。

因此三角思想由此而生,换元也顺理成章。

例7. 在椭圆2244x y x +=上求点(,)P x y 使22d x y =-取最小。

解:设(22cos ,sin ),P θθ+则 22d x y =-22(22cos )sin θθ=+- 25cos 8cos 3θθ=++2415cos 55θ⎛⎫=+- ⎪⎝⎭当4cos 5θ=-时,,点P 坐标为23(,)55或23(,)55-时,min 15d =-。

当cos 1θ=时,点P 坐标为(4,0)时,max 16d =。

说明:此题若直接求解显得生硬,而且很繁,联想椭圆的参数方程,运用三角函数性质来解就简单了许多。

例8。

已知点P 在圆A :221(2)4x y +-=上运动,Q 点在椭圆2244x y +=上运动,求 PQ 的最大值及此时P 、Q 点的坐标。

解:在椭圆上任取一点记为Q ,连接QA (A 为圆心)并延长交圆于P ,在圆A 上取异于点P 的任一点P ,易知11PQ PA AQ PA AQ PQ =+=+> 于是问题转化为求定点(0,2)A 到椭圆上动点Q 的最大值问题,设(2cos ,sin )Q θθ则[)0,2θπ∈,2224cos (sin 2)AQ θθ=+-23sin 4sin 8θθ=--+ 22283(sin )33θ=-++当2sin 3θ=-时,1326PQ ==最大。

此时,cos θ=,∴Q 点的坐标为(2)3-。

下面求此时P 点的坐标∵ 5AQ k =±∴直线AQ 方程为2,y x -=与已知圆A 方程联立易求出P 点的坐标为(2+。

说明:此题同例8一样,运用参数方程回避了大量复杂运算。

四.三角换元法在求函数最值中的应用例10.求函数y =的值域。

解:所给函数可化为y 令 2210sin(0)2x παα+=≤≤,则y αα=)αϕ=+其中1cos 2ϕϕ==, 所以6πϕ=, 因此1sin sin()12ϕαϕ=≤+≤,y ≤≤。

说明:此题目有两个根式,平方去根号需两次,很繁,而采用换元法去根号使得题目变得简单易做。

例11.已知0,0,1a b a b >>+=,求(,)f a b =的最大值。

解:设22112sin ,2cos ,(0,)222a b πααα+=+=∈,则(,)f a b ==)4πα=+∵ 02πα<<∴sin()124πα<+≤ 故 max (,)2f a b =说明:题目中1a b +=与去根号暗示了三角换元法和利用22sin cos 1αα+=来解题。

相关文档
最新文档