初等数论 .ppt
合集下载
石大《初等数论》课件

考虑方程组
因为
是两两互素的,故由中国剩余
定理知,上述同余方程组有正整数解,于是,连
续的
二进制转为十进制
• 任意一个二进制表示的数
其中
或1(0≤j≤n),等于转换为
十进制为:
十进制转为二进制
• 以11为例,按照下面的方法转换:
2 11
余数
2 5 ………1=a0
低位
2
2 ………1=a1
高位
2
1 ………0=a2
0 ………1=a3
11=
同一数值的不同进制表示
对于任何一个数,可以用不同 的进位制来表示。比如:十进制数 57,可以用二进制表示为111001, 也可以用八进制表示为71、用十六 进制表示为39,它们所代表的数值 都是一样的。
并写出思考过程。
2 一张数学试卷只有25道选择题,做对1道 题得4分,做错1道题扣1分,如果不做,不 得分也不扣分。若某位同学得了78分,那 么他做对 道题,做错 道题,不做 道题。
参考解答:
1 46 92346 92346 92346 92346 92346 8517
这一31位数的所有数码之和为
任一大于1的整数a能表成素数的乘积:
(1)
其中
是素数。且在不计次序的
意义下,表示式(1)是惟一的。
算术基本定理的证明
第三篇 不定方程
所谓不定方程,是指未知数的个数多于方程 个数,且未知数受到某些限制(如要求是有理数、
整数或正整数等等)的方程或方程组。不定方程 也称为丢番图方程,是数论的重要分支学科,也 是历史上最活跃的数学领域之一。不定方程的内 容十分丰富,与代数数论、几何数论、集合数论 等等都有较为密切的联系。不定方程的重要性在 数学竞赛中也得到了充分的体现,每年世界各地 的数学竞赛中,不定方程都占有一席之地;另外 它也是培养学生思维能力的好材料,数学竞赛中 的不定方程问题,不仅要求学生对初等数论的一 般理论、方法有一定的了解,而且更需要讲究思 想、方法与技巧,创造性的解决问题。
初等数论一-夏子厚精品PPT课件

• A = { y|y =a1x1 a2x2 anxn,xiZ,1 i n } • 中的最小正数,则对于任何yA,y0y;特别地,
y0ai,1 i n。(证明留给学生自己) • (2)此类题目的证明方法具有一般性,通常是针
对所给的“最小正数”的概念进行反证法。
第一节 整除与带余数除法
《初等数论》课程内容
• 第二章 不定方程
• 第一节 二元一次不定方程 • 第二节 多元一次不定方程 • 第三节 勾股数x2 y2 = z2
《初等数论》课程内容
• 第三章 同余性质
• 第一节 同余的概念及其基本性质 • 第二节 完全剩余系 • 第三节 欧拉函数与简化剩余系 • 第四节 欧拉定理与费马定理
•
a = bq
• 成立,则称b整除a或a被b整除,此时a 是b的倍数,b是a的因数(约数或除数 ),并且记作:ba;如果不存在整数q 使得a = bq成立,则称b不能整除a或a不 被b整除,记作:b a。|
第一节 整除与带余数除法
• 定理1 下面的结论成立: • (1) ab,bc ac;(传递性) • (2) ma,mb m(a±b) • (3) mai,i = 1, 2, , n • ma1q1 a2q2 anqn, • 此处qi∈Z(i = 1, 2, , n)。
初等数论(一)
Number Theory (Chap1)
修改:贾祥雪
为什么学数论
• 有用 • 在研究函数,尤其是周期函数的时候经
常性要用到。 • 大学学习抽象代数及其后续课程的基础 • 计算机专业的必修课!尤其应用到算法
和密码两大领域 • 好玩,简单,美 • 自主招生、竞赛中考数论
为什么要这样学?
第一节 整除与带余数除法
y0ai,1 i n。(证明留给学生自己) • (2)此类题目的证明方法具有一般性,通常是针
对所给的“最小正数”的概念进行反证法。
第一节 整除与带余数除法
《初等数论》课程内容
• 第二章 不定方程
• 第一节 二元一次不定方程 • 第二节 多元一次不定方程 • 第三节 勾股数x2 y2 = z2
《初等数论》课程内容
• 第三章 同余性质
• 第一节 同余的概念及其基本性质 • 第二节 完全剩余系 • 第三节 欧拉函数与简化剩余系 • 第四节 欧拉定理与费马定理
•
a = bq
• 成立,则称b整除a或a被b整除,此时a 是b的倍数,b是a的因数(约数或除数 ),并且记作:ba;如果不存在整数q 使得a = bq成立,则称b不能整除a或a不 被b整除,记作:b a。|
第一节 整除与带余数除法
• 定理1 下面的结论成立: • (1) ab,bc ac;(传递性) • (2) ma,mb m(a±b) • (3) mai,i = 1, 2, , n • ma1q1 a2q2 anqn, • 此处qi∈Z(i = 1, 2, , n)。
初等数论(一)
Number Theory (Chap1)
修改:贾祥雪
为什么学数论
• 有用 • 在研究函数,尤其是周期函数的时候经
常性要用到。 • 大学学习抽象代数及其后续课程的基础 • 计算机专业的必修课!尤其应用到算法
和密码两大领域 • 好玩,简单,美 • 自主招生、竞赛中考数论
为什么要这样学?
第一节 整除与带余数除法
初等数论(闵嗣鹤版课件

因而a个余数r0, r1, , ra1仅可能取a 1个值, 因此其中必有两个相等。
设为ri,rk,不妨设0 i k a,因而有 a(qk qi ) 2k 2i 2i (2ki 1)
因而a个余数r0, r1, , ra1仅可能取a 1个值, 因此其中必有两个相等。
• 我国近代:在解析数论、丢番图方程,一致分布 等方面有过重要贡献,出现了华罗庚、闵嗣鹤等 一流的数论专家,其中华罗庚在三角和估值、堆 砌素数论方面的研究享有盛名。
• 特别是在“篩法”、歌德巴赫猜想方面的研究, 已取得世界领先的优异成绩。陈景潤在1966年证 明歌德巴赫猜想方面证明了”1+2”(一个大偶数可 以表示为一个素数和一个不超过两个素数的乘积 之和)
m|aq
3、带余数除法
带余数除法的第二种表示 定理4 若a,b是两个整数,其中b 0,则存在着两个整数 q及r,使得 a bq r, 0 r b 成立,而且q及r是唯一的。
证明分析:作整数序列 ,-3 b ,-2 b ,- b ,0,b ,2 b ,3 b ,
则a必满足q b a<(q+1) b , 其中q Z , 令a q b r可得到a b q r,分b 0和 b 0来讨论q, 进一步证明q, r的唯一性。
(i)若在r1, , r5中数0,1,2都出现,不妨设
r1 0, r2 1, r3 2,
此时
a1 a2 a3 3(q1 q2 q3 ) 3
可以被3整除。
(ii)若在r1, , r5中数0,1,2至少有一个不出现,
这样至少有3个ri要取相同的值,不妨设
r1 r2 r3 r(r 0,1或2),
近代初等数论的发展得益於费马、欧拉、拉格朗日、 勒让德和高斯等人的工作。1801年,德国数学家高斯集 中前人的大成,写了一本书叫做《算术探究》,开始了 现代数论的新纪元。高斯还提出:“数学是科学之王, 数论是数学之王”。
设为ri,rk,不妨设0 i k a,因而有 a(qk qi ) 2k 2i 2i (2ki 1)
因而a个余数r0, r1, , ra1仅可能取a 1个值, 因此其中必有两个相等。
• 我国近代:在解析数论、丢番图方程,一致分布 等方面有过重要贡献,出现了华罗庚、闵嗣鹤等 一流的数论专家,其中华罗庚在三角和估值、堆 砌素数论方面的研究享有盛名。
• 特别是在“篩法”、歌德巴赫猜想方面的研究, 已取得世界领先的优异成绩。陈景潤在1966年证 明歌德巴赫猜想方面证明了”1+2”(一个大偶数可 以表示为一个素数和一个不超过两个素数的乘积 之和)
m|aq
3、带余数除法
带余数除法的第二种表示 定理4 若a,b是两个整数,其中b 0,则存在着两个整数 q及r,使得 a bq r, 0 r b 成立,而且q及r是唯一的。
证明分析:作整数序列 ,-3 b ,-2 b ,- b ,0,b ,2 b ,3 b ,
则a必满足q b a<(q+1) b , 其中q Z , 令a q b r可得到a b q r,分b 0和 b 0来讨论q, 进一步证明q, r的唯一性。
(i)若在r1, , r5中数0,1,2都出现,不妨设
r1 0, r2 1, r3 2,
此时
a1 a2 a3 3(q1 q2 q3 ) 3
可以被3整除。
(ii)若在r1, , r5中数0,1,2至少有一个不出现,
这样至少有3个ri要取相同的值,不妨设
r1 r2 r3 r(r 0,1或2),
近代初等数论的发展得益於费马、欧拉、拉格朗日、 勒让德和高斯等人的工作。1801年,德国数学家高斯集 中前人的大成,写了一本书叫做《算术探究》,开始了 现代数论的新纪元。高斯还提出:“数学是科学之王, 数论是数学之王”。
初等数论绪论课件

数的表示与转换
总结词
数的表示与转换是数论中一个重要的概念, 它涉及到数的不同表示方法和不同进制之间 的转换。
详细描述
数的表示方法有多种,包括十进制、二进制 、八进制和十六进制等。不同进制之间可以 进行转换,例如将十进制数转换为二进制数 或八进制数。此外,数的表示方法也涉及到 数的符号表示,如正数、负数和零的表示方 法。
整数的运算性质包括加法、减法、乘法和除法的性质。
详细描述
整数的运算性质是数论中的重要概念。加法和减法是可交换的,即a+b=b+a和a-b=b-a。加法和乘法满足结合 律,即(a+b)+c=a+(b+c)和(a*b)*c=a*(b*c)。乘法满足分配律,即a*(b+c)=a*b+a*c。除法在整数的范围内不 满足交换律和结合律,但满足分配律。
THANKS
感谢观看
有着重要的应用。
06
数的分解与表示
数的质因数分解
总结词
质因数分解是数论中一个基础概念, 它是指将一个合数表示为其质因数的 乘积。
详细描述
质因数分解是将一个合数表示为若干 个质数的乘积。例如,将数28进行质 因数分解得到2^2 * 7^1。质因数分 解是数论中一个重要的工具,它在解 决许多数学问题中都有应用。
近代数论
费马、欧拉、高斯等数学 家对数论的深入研究和突 破。
数论的应用领域
01
02
03
04
密码学
数论在加密算法和数字签名中 有着广泛的应用,如RSA算法
。
计算机科学
数论在计算机科学中用于实现 数据加密、网络安全和算法优
化。
物理科学
数论在物理科学中用于描述量 子力学和统计力学的数学结构
初等数论课程教案总结.ppt

最 大 公 约 数 : 设 a1, a2是 两 个 不 全 为 零 的 整 数 . 我 们 把 a1和 a2 的 公 约 数 中 最 大 的 称 为 a1 和 a2 的 最 大 公 约 数 , 记 作 ( a1, a2 ) , 一 般 地 , 设 a1,. . . ,ak 是 k 个 不 全 为 零 的 整 数 . 我 们 把 a1,. . . , ak 的 公 约 数 中 最 大 的 称 为 a1,. . . , ak 的 最 大 公 约 数 , 记 作 ( a1,. . . , ak ) .
P 1 8 定 理 1 2 : 设 m 0,我 们 有
[ ma1,. . . , mak ] = m[a1,. . . , ak ] .
P 2 0 定 理 2 : 设 a,b是 两 个 给 定 的 整 数 , a 0. 再设 d是一个给定的整数. 那么,一定存在 惟 一 的 一 对 整 数 q1 与 r1, 满 足 b a q1 r1,d r1 a d. 此 外 , a b的 充 要 条 件 是 a r1.
P 4 4 定 理 8 : 设 a1,,ak是 不 完 全 为 零 的 整 数 . 我 们 有 ( i ) ( a1,, ak ) = m i n { s a1x1 ak xk : x j Z( 1 j k ) , s 0} , 即 a1,, ak 的 最 大 公 约 数 等 于 a1,,ak的 所 有 整 系 数 线 性 组 合 组 成 的 集 合 S中 的 最 小 正 整 数 . ( i i ) 一 定 存 在 一 组 整 数 x1,0,, xk,0使 得 ( a1,, ak ) = a1x1,0 ak xk,0.
P 4 8 定 理 1 : 设 p 是 素 数 , p a1a2 . 那 么 p a1或 p a2 至 少 有 一 个 成 立 . 一 般 地 , 若 p a1. . .ak , 则 p a1 ,. . . , p ak 至少一个成立.
P 1 8 定 理 1 2 : 设 m 0,我 们 有
[ ma1,. . . , mak ] = m[a1,. . . , ak ] .
P 2 0 定 理 2 : 设 a,b是 两 个 给 定 的 整 数 , a 0. 再设 d是一个给定的整数. 那么,一定存在 惟 一 的 一 对 整 数 q1 与 r1, 满 足 b a q1 r1,d r1 a d. 此 外 , a b的 充 要 条 件 是 a r1.
P 4 4 定 理 8 : 设 a1,,ak是 不 完 全 为 零 的 整 数 . 我 们 有 ( i ) ( a1,, ak ) = m i n { s a1x1 ak xk : x j Z( 1 j k ) , s 0} , 即 a1,, ak 的 最 大 公 约 数 等 于 a1,,ak的 所 有 整 系 数 线 性 组 合 组 成 的 集 合 S中 的 最 小 正 整 数 . ( i i ) 一 定 存 在 一 组 整 数 x1,0,, xk,0使 得 ( a1,, ak ) = a1x1,0 ak xk,0.
P 4 8 定 理 1 : 设 p 是 素 数 , p a1a2 . 那 么 p a1或 p a2 至 少 有 一 个 成 立 . 一 般 地 , 若 p a1. . .ak , 则 p a1 ,. . . , p ak 至少一个成立.
初等数论第一章课件

(i)m是任一正整数,则
(am, bm) (a, b)m
(ii)若
是a,
b的任一公因数,则
a
,
b
a, b
,
特别
a (a, b)
,
b (a, b)
1
对于两个以上整数的最大公因数问题,不妨设
a1, a2 , , an是任意n个正整数,令 (a1, a2 ) d2 , (d2 , a3 ) d3, , (dn1, an ) dn.
q及r,使得
a bq r,
b r
2
成立,而且当b是奇数时,q及r是唯一的;当b是偶数时,q及r
有可能是不唯一的。
例
当a 5, b 2时,可有
5 ( 2)( 3)(1),即q 3, r 1;
或5 ( 2)( 2)1,即q 2, r 1
证明分析:作序列
,- 3 b ,- 2 b ,- b ,0, b ,2 b ,3 b , 2 2 2 22 2
2、整除的基本定理
定理1(传递性):ab,bc ac
定理2:若a,b都是m的倍数,则ab都是m的倍数
定理3 若a1 , a2, , an都是m的倍数,q1, q2, , qn 是任意n个整数,则a1q1 a2q2 anqn是m的倍数
3、带余数除法
定理4 若a,b是两个整数,其中b 0,则存在着两个整数 q及r,使得 a bq r, 0 r b () 成立,而且q及r是唯一的。 ()式中的q及r分别叫a被b除所得的不完全商和余数。
[a1, a2 ] m2 ,[m2 , a3 ] m3, ,[mn1, an ] mn. 于是我们有
定理5 a1, a2, , an是n个正整数,则 [a1, a2 , , an ] mn.
初等数论ppt

二
几个著名数论难题 初等数论是研究整数性质的一门学科,历史上遗
留下来没有解决的大多数数论难题其问题本身容易搞
懂,容易引起人的兴趣,但是解决它们却非常困难。
其中,非常著名的问题有:哥德巴赫猜想 ;
费尔马大定理 ;孪生素数问题 ;完全数问题等。
1、哥德巴赫猜想:
1742年,由德国中学教师哥德巴赫在教学中首先
8、测圆海镜
《测圆海镜》由中国金、元时期数学家 李冶所著,成书于 1248年。全书共有12卷,170问。这是中国古代论述容圆的一 部专箸,也是天元术的代表作。《测圆海镜》所讨论的问题 大都是已知 勾股形而求其内切圆、旁切圆等的直径一类的问 题。在《测圆海镜》问世之前,我国虽有文字代表未知数用 以列方程和多项式的工作,但是没有留下很有系统的记载。 李冶在《测圆海镜》中系统而概栝地总结了天元术,使文 词代数开始演变成符号代数。 所谓天元术,就是设“天元 一”为未知数,根据问题的已知条件,列出两个相等的多项 式,经相减后得出一个高次方式程,称为天元开方式,这与 现代设x为未知数列方程一样。欧洲的数学家,到了16世纪以 后才完全作到这一点。
第一章 整数的整除性
第一节 整除的概念
• 一、基本概念
1、自然数、整数 2、正整数、负整数 3、奇数、偶数
• 一个性质:
整数+整数=整数 整数-整数=整数 整数*整数=整数
关于奇数和偶数性质: 1.奇数+奇数=偶数; 奇数+偶数=奇数; 偶数+偶数=偶数; 2.两个数之和是奇(偶)数,则这两个数的 奇偶性相反(同)。 3.若干个整数之和为奇数,则这些数中必有 奇数,且奇数的个数为奇数个;若干个整 数之和为偶数,则这些数中若有奇数,奇 数的个数必为偶数个。
离散数学初等数论PPT课件

10!=28×34×52×7, 故10!的二进制表示中从最低位数起有8个连续的0.
8
素数的分布
定理11.2 有无穷多个素数. 证 用反证法. 假设只有有穷多个素数, 设为p1,p2,…,pn, 令m=p1p2…pn+1. 显然, pi m, 1≤i≤n. 因此, 要么m本身 是素数,要么存在大于pn的素数整除m, 矛盾.
成立.
12
实例
例3 判断157和161是否是素数. 解 157 , 161都小于13, 小于13的素数有: 2, 3, 5, 7, 11. 检查结果如下:
2 157, 3 157, 5 157, 7 157, 11 157 结论: 157是素数.
2 161, 3 161, 5 161, 7|161(161=7×23) 结论:161是合数.
14
11.2 最大公约数与最小公倍数
• 公约数、最大公约数 • 公倍数、最小公倍数 • 辗转相除法 • 互素
15
最大公约数与最小公倍数
d是a与b的公因子(公约数): d |a且d |b m是a与b的公倍数: a | m且b| m 定义11.3 设a和b是两个不全为0的整数, 称a与b的公因子中 最大的为a与b的最大公因子, 或最大公约数, 记作gcd(a,b). 设a和b是两个非零整数, 称a与b最小的正公倍数为a与b的 最小公倍数, 记作lcm(a,b). 例如 gcd(12,18)=6, lcm(12,18)=36. 对任意的正整数a, gcd(0,a)=a, gcd(1,a)=1, lcm(1,a)=a.
1
2
k
p p p lcm(a,b)=
mr 1 a ,s1)xm ( r 2 a ,s2)x( mr k a ,sk)x(
8
素数的分布
定理11.2 有无穷多个素数. 证 用反证法. 假设只有有穷多个素数, 设为p1,p2,…,pn, 令m=p1p2…pn+1. 显然, pi m, 1≤i≤n. 因此, 要么m本身 是素数,要么存在大于pn的素数整除m, 矛盾.
成立.
12
实例
例3 判断157和161是否是素数. 解 157 , 161都小于13, 小于13的素数有: 2, 3, 5, 7, 11. 检查结果如下:
2 157, 3 157, 5 157, 7 157, 11 157 结论: 157是素数.
2 161, 3 161, 5 161, 7|161(161=7×23) 结论:161是合数.
14
11.2 最大公约数与最小公倍数
• 公约数、最大公约数 • 公倍数、最小公倍数 • 辗转相除法 • 互素
15
最大公约数与最小公倍数
d是a与b的公因子(公约数): d |a且d |b m是a与b的公倍数: a | m且b| m 定义11.3 设a和b是两个不全为0的整数, 称a与b的公因子中 最大的为a与b的最大公因子, 或最大公约数, 记作gcd(a,b). 设a和b是两个非零整数, 称a与b最小的正公倍数为a与b的 最小公倍数, 记作lcm(a,b). 例如 gcd(12,18)=6, lcm(12,18)=36. 对任意的正整数a, gcd(0,a)=a, gcd(1,a)=1, lcm(1,a)=a.
1
2
k
p p p lcm(a,b)=
mr 1 a ,s1)xm ( r 2 a ,s2)x( mr k a ,sk)x(
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
]. 一定可以把 , 作这样的分解:
=, =,
使得
(,) =1, = .
由性质5-7知
m(a)=, m(b)=.
陕西师范大学 初等数论
这样, 由性质5-8推出
m(a b)=m(a)m(b)== . 因此, 取c =a b就满足了要求,证毕.
根,简称m的原根。 例:当m = 1时,所有整数的指数均为1,且 均为原根。 当m = 7时,因为 21 2,22 4,23 1 (mod 7),
所以7(2) = 3。
陕西师范大学 初等数论
又因为31 3,32 2,33 6,34 4, 35 5,36 1 (mod 7),
g0, g1, …, g(m) 1构成模m的简化剩余系。
性质5-6 设a -1是a 对模m的逆,即a -1 a 1 (mod m). 我们有
m(a -1) =m(a).
陕西师范大学 初等数论
证明:这由a d 1 (mod m)成立的充要条件是 (a -1)d 1 (mod m)立即推出.
(5-5)
解答 记 = mn(a), = [m(a), n(a)],
由例5-3有
m(a),n(a) 。
(5-6)
陕西师范大学 初等数论
又由
a 1 (mod m),a 1 (mod n)
得到
a 1 (mod mn)。 因此,由性质5-1及性质5-4,有 。由此及
因而由性质5-2推出
m1m2(a) | *. 所以式(5-4)成立. 证毕.
性质5-10 设(m1, m2) =1. 那末, 对任意的a1, a2 , 必有a使得
m1m2(a)=[ m1(a1), m2(a2) ].
证明:考虑同余方程组 x a1 (mod m1), x a2 (mod m2). 由孙子定理知,这同余方程组有唯一解:
因而由性质5-2得
陕西师范大学 初等数论
| k * , *| .
由第一式得
= / (, k) | k * / (, k), 因而 | *, 所以, *| , 即式(5-3)成立. 当(k, m(a) )=1时, m(a k)= m(a), 由此及性质
式(5-6)推出式(5-5)。 例题5-5 若(m, n) = 1,a1,a2是任意整数, (a1, m) = (a2, n) = 1,则存在整数a,(a, mn) = 1,使得
mn(a) = [m(a1), n(a2)]。
陕西师范大学 初等数论
解答:设方程组 的解是x a (mod mn),则(a, mn) = 1, 并且由例5-4可知
例题5-1 求1,2,3,4,5,6对模7的指数。
解答: 根据定义5-1直接计算,得到
7(1) = 1,7(2) = 3,7(3) = 6, 7(4) = 3,7(5) = 6,7(6) = 2。
例5-1中的结果可列表如下: a 123456
7(a) 1 3 6 3 6 2
陕西师范大学 初等数论
陕西师范大学 初等数论
即可得出。
例题5-3 若nm,则n(a)m(a)。
解答 由nm及性质5-1及性质5-4有
1 (mod m) 1 (mod n) n(a)m(a)。
例题5-4 若(m, n) = 1,(a, mn) = 1,则
mn(a) = [m(a), n(a)]。
陕西师范大学 初等数论
x a (mod m1m2).
显然有m1 (a)= m1 (a1), m2 (a)= m2
(a2). 由此从性质5-9就推出所要结论. 对于模m来说,不一定有
m (ab)=[ m(a), m(b) ] 成立.
例如:
10 (33) = 2 [ 10(3), 10(3) ] = 4, 10 (37) = 1 [ 10(3), 10(7) ] = 4.
这样的表称为指数表。这个表就是模7的指数 表。 下面是模10的指数表:
a
1379
10(a) 1 4 4 2
例题5-2 若(a, m) = 1,aa 1 (mod m), 则
m(a) = m(a )。
解答:显然(a , m) = 1。要证明的结论由 a d 1 (mod m) (a ) d 1 (mod m)
必要性 我们有
(ab) 1 (mod m),
陕西师范大学 初等数论
所以 | . 另一方面显然有 | . 由此及 =就推出=, 即 ( , )=1. 证毕.
性质5-9 (1) 若n | m,则n(a) |m(a);
(2) 若(m1, m2) =1,则有
5-5就证明了后一部分结论.
性质5-8 m(ab)= m(a) m(b)的充要条件是 (m (a), m(b) )=1.
证明:设 = m(a), =m(b), =m(a b), = [ , ].
充分性 我们有
陕西师范大学 初等数论
1(ab) (ab) a (mod m), 所以, |,由此及( , )=1,推出|.
陕西师范大学 初等数论
§5.1指数及其基本性质
知识回顾:
1、 设m > 1,(a, m) = 1,那末,必存在正整 数d使得
ad 1 (mod m).
(5-1)
若d0是使式(5-1)成立的最小正整数d,则对任
意的使(5-1)成立的正整数d,必有
d0 |d 即 d 0 (mod m).
2、对任意的 (a, m) = 1,当d = (m)时式(5-1)
m1m2(a)=[ m1(a), m2(a) ].
证明:(1) 可由性质5-2直接推出.
由(1)即得 *|m1m2(a), 这里 *=[ m1(a), m2(a) ]. 另一方面,显然有a * 1 (mod mj),j=1,2.
陕西师范大学 初等数论
由此及(m1, m2) =1推出a * 1 (mod m1 m2).
所以7(3) = 6 = (7),3是模7的原根。
注:以后,在谈到a对模m的指数时,总 假定m > 1,(a, m) = 1。
原根是否存在,以及模的原根有多少个这 两个问题,留待以下几节讨论。这里我们 先讨论指数的基本性质。
性质5-1 若b a(mod m),(a, m) = 1,
则 m(b) = m(a).
(或阶),记为m(a),在不致误会的情况下,
简记为(a)。
由Euler定理,当r = (m)时式(2)成立,因
此,恒有m(a) (m)。
陕西师范大学 初等数论
若a b (mod m),(a, m) = 1,则显然有m(a) = m(b)。
定义5-2 若m(a) = (m),则称a是模m的原
但有
陕西师范大学 初等数论
10 (39) = 4 = [ 10(3), 10(9) ] = 4, 10 (79) = 4 = [ 10(7), 10(9) ] = 4.
性质5-11 对任意的a, b, 一定存在c, 使得
m (c)=[ m(a), m(b) ].
证明:设 = m(a), =m(b), = [ ,
mn(a) = [m(a), n(a)] = [m(a1), n(a2)]。
证明 : 我们用反证法证明。假定有两个整 数 k, l满足下列条件:
陕西师范大学 初等数论
a l a k (mod m),0 k < l < ,
因为 (a, m) = 1,故得
al-k 1 (mod m),0 < l - k <. 这与 是a对模m的指数矛盾,所以定理成立。
证毕。 性质5-5说明:若g是模m的原根,则
陕西师范大学 初等数论
性质5-2 若式(1)成立,则有m(a) | d 即 d 0 (mod m(a)).
性质5-3 m(a) | (m), 2l(a) | 2l-2, l≥3.
性质5-4 若(a, m) = 1, ak ah (mod m), 则
k h(mod m(a)). 性质5-5 若a对模m的指数是,则1=a0, a1, … , a 1对模m两两不同余。
性质5-7 设k是非负整数,则有
a), k )
(5-3)
此外,在模m的一个既约剩余系中,至少有 (m(a))个数对模m的指数等于 m(a). 证明:记 = m(a), = / (, k), *=m(a
k) 。 由定义知
a k * 1 (mod m), a k 1 (mod m).
必成立。
陕西师范大学 初等数论
对给定的模m,d0 =m(a)是由a唯一确定
的,是a的函数,d0 =m(a)是刻画(与m既约的)
a关于模m的性质的一个十分重要的量。
定义5-1 设m > 1,(a, m) = 1,则使
a r 1 (mod m)
(5-2)
成立的最小的正整数r,称为a对模m的指数
同样,有
1(ab) (ab) b (mod m), 所以,| ,由此及( , )=1,推出|. 进而,由|,|,及 ( , )=1推出 |. 此外,显然有 (ab) 1(mod m), 所以, | . 因此 =.