高考数学一轮 圆锥曲线的综合问题(学案)

合集下载

高考数学 考点突破——圆锥曲线:圆锥曲线的综合问题学案-人教版高三全册数学学案

高考数学 考点突破——圆锥曲线:圆锥曲线的综合问题学案-人教版高三全册数学学案

圆锥曲线的综合问题【知识梳理】1.直线与圆锥曲线的位置关系判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A ,B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (也可以消去x )得到一个关于变量x (或变量y )的一元方程,即⎩⎪⎨⎪⎧Ax +By +C =0,F (x ,y )=0消去y ,得ax 2+bx +c =0.(1)当a ≠0时,设一元二次方程ax 2+bx +c =0的判别式为Δ,则:Δ>0⇔直线与圆锥曲线C 相交; Δ=0⇔直线与圆锥曲线C 相切; Δ<0⇔直线与圆锥曲线C 相离.(2)当a =0,b ≠0时,即得到一个一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行;若C 为抛物线,则直线l 与抛物线的对称轴的位置关系是平行或重合.2.圆锥曲线的弦长设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),则|AB |=1+k 2|x 1-x 2|=1+1k2·|y 1-y 2|【考点突破】考点一、直线与圆锥曲线的位置关系【例1】在平面直角坐标系xOy 中,已知椭圆C 1:x 2a 2+y 2b2=1(a >b >0)的左焦点为F 1(-1,0),且点P (0,1)在C 1上.(1)求椭圆C 1的方程;(2)设直线l 同时与椭圆C 1和抛物线C 2:y 2=4x 相切,求直线l 的方程. [解析] (1)椭圆C 1的左焦点为F 1(-1,0),∴c =1, 又点P (0,1)在曲线C 1上,∴0a 2+1b2=1,得b =1,则a 2=b 2+c 2=2,所以椭圆C 1的方程为x 22+y 2=1.(2)由题意可知,直线l 的斜率显然存在且不等于0,设直线l 的方程为y =kx +m ,由⎩⎪⎨⎪⎧x 22+y 2=1,y =kx +m消去y ,得(1+2k 2)x 2+4kmx +2m 2-2=0. 因为直线l 与椭圆C 1相切,所以Δ1=16k 2m 2-4(1+2k 2)(2m 2-2)=0. 整理得2k 2-m 2+1=0.①由⎩⎪⎨⎪⎧y 2=4x ,y =kx +m 消去y ,得k 2x 2+(2km -4)x +m 2=0. 因为直线l 与抛物线C 2相切,所以Δ2=(2km -4)2-4k 2m 2=0,整理得km =1.② 综合①②,解得⎩⎪⎨⎪⎧k =22,m =2或⎩⎪⎨⎪⎧k =-22,m =- 2. 所以直线l 的方程为y =22x +2或y =-22x - 2. 【类题通法】研究直线与圆锥曲线的位置关系时,一般转化为研究其直线方程与圆锥曲线方程组成的方程组解的个数,消元后,应注意讨论含x 2项的系数是否为零的情况,以及判别式的应用.但对于选择题、填空题要充分利用几何条件,用数形结合的方法求解. 【对点训练】已知直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l 与椭圆C :(1)有两个不重合的公共点; (2)有且只有一个公共点; (3)没有公共点.[解析] 将直线l 的方程与椭圆C 的方程联立,得方程组222142y x m x y =+⎧⎪⎨+=⎪⎩ ② ① 将①代入②,整理得9x 2+8mx +2m 2-4=0.③方程③根的判别式Δ=(8m )2-4×9×(2m 2-4)=-8m 2+144.(1)当Δ>0,即-32<m <32时,方程③有两个不同的实数根,可知原方程组有两组不同的实数解.这时直线l 与椭圆C 有两个不重合的公共点.(2)当Δ=0,即m =±32时,方程③有两个相同的实数根,可知原方程组有两组相同的实数解.这时直线l 与椭圆C 有两个互相重合的公共点,即直线l 与椭圆C 有且只有一个公共点. (3)当Δ<0,即m <-32或m >32时,方程③没有实数根,可知原方程组没有实数解.这时直线l 与椭圆C 没有公共点.考点二、弦长问题【例2】如图,在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为12,过椭圆右焦点F 作两条互相垂直的弦AB 与CD .当直线AB 斜率为0时,AB =4.(1)求椭圆的方程;(2)若|AB |+|CD |=487,求直线AB 的方程.[解析] (1)由题意知e =c a =12,2a =4.又a 2=b 2+c 2,解得a =2,b =3, 所以椭圆方程为x 24+y 23=1.(2)①当两条弦中一条弦所在直线的斜率为0时,另一条弦所在直线的斜率不存在,由题意知|AB |+|CD |=7,不满足条件.②当两弦所在直线的斜率均存在且不为0时,设直线AB 的方程为y =k (x -1),A (x 1,y 1),B (x 2,y 2),则直线CD 的方程为y =-1k(x -1).将直线AB 方程代入椭圆方程中并整理得(3+4k 2)x 2-8k 2x +4k 2-12=0,则x 1+x 2=8k 23+4k 2,x 1·x 2=4k 2-123+4k2, 所以|AB |=k 2+1|x 1-x 2| =k 2+1·x 1+x 22-4x 1x 2=12k 2+13+4k2. 同理,|CD |=12⎝ ⎛⎭⎪⎫1k 2+13+4k2=12k 2+13k 2+4. 所以|AB |+|CD |=12k 2+13+4k 2+12k 2+13k 2+4=84k 2+123+4k 23k 2+4=487,解得k =±1, 所以直线AB 的方程为x -y -1=0或x +y -1=0. 【类题通法】 求解弦长的四种方法(1)当弦的两端点坐标易求时,可直接利用两点间的距离公式求解.(2)联立直线与圆锥曲线方程,解方程组求出两个交点坐标,代入两点间的距离公式求解.(3)联立直线与圆锥曲线方程,消元得到关于x 或y 的一元二次方程,利用根与系数的关系得到(x 1-x 2)2或(y 1-y 2)2,代入两点间的距离公式.(4)当弦过焦点时,可结合焦半径公式求解弦长. 【对点训练】设F 1,F 2分别是椭圆D :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过F 2作倾斜角为π3的直线交椭圆D 于A ,B 两点,F 1到直线AB 的距离为23,连接椭圆D 的四个顶点得到的菱形的面积为2 5.(1)求椭圆D 的方程;(2)设过点F 2的直线l 被椭圆D 和圆C :(x -2)2+(y -2)2=4所截得的弦长分别为m ,n ,当m ·n 最大时,求直线l 的方程.[解析] (1)设F 1的坐标为(-c ,0),F 2的坐标为(c ,0)(c >0), 则直线AB 的方程为y =3(x -c ),即3x -y -3c =0, ∴|-3c -3c |(3)2+(-1)2=23,解得c =2.∵12·2a ·2b =25,∴ab =5, 又a 2=b 2+c 2,∴a 2=5,b 2=1, ∴椭圆D 的方程为x 25+y 2=1.(2)由题意知,可设直线l 的方程为x =ty +2,则圆心C 到直线l 的距离d =|2t |t 2+1,∴n =222-d 2=4t 2+1, 由⎩⎪⎨⎪⎧x =ty +2,x 25+y 2=1得(t 2+5)y 2+4ty -1=0, 设直线l 与椭圆D 的交点坐标为(x 1,y 1),(x 2,y 2), ∴y 1+y 2=-4t t 2+5,y 1y 2=-1t 2+5, ∴m =1+t 2|y 1-y 2|=25(t 2+1)t 2+5,∴m ·n =85·t 2+1t 2+5=85t 2+1+4t 2+1≤25⎝ ⎛⎭⎪⎫当且仅当t 2+1=4t 2+1,即t =±3时,等号成立,∴直线l 的方程为x -3y -2=0或x +3y -2=0.考点三、中点弦问题【例3】已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A .x 245+y 236=1B .x 236+y 227=1 C .x 227+y 218=1 D .x 218+y 29=1 (2)已知P (1,1)为椭圆x 24+y 22=1内一定点,经过P 引一条弦,使此弦被P 点平分,则此弦所在的直线方程为________.[答案] (1) D (2) x +2y -3=0[解析] (1)因为直线AB 过点F (3,0)和点(1,-1),所以直线AB 的方程为y =12(x -3),代入椭圆方程x 2a 2+y 2b 2=1消去y ,得⎝ ⎛⎭⎪⎫a24+b 2x 2-32a 2x+94a 2-a 2b 2=0, 所以AB 的中点的横坐标为32a 22⎝ ⎛⎭⎪⎫a 24+b 2=1,即a 2=2b 2,又a 2=b 2+c 2,所以b =c =3,a =32, 故E 的方程为x 218+y 29=1.(2)法一 易知此弦所在直线的斜率存在,所以设其方程为y -1=k (x -1),此弦的两端点坐标分别为A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y -1=k (x -1),x 24+y 22=1,消去y 整理得,(2k 2+1)x 2-4k (k -1)x +2(k 2-2k -1)=0,∴x 1+x 2=4k (k -1)2k 2+1, 又∵x 1+x 2=2,∴4k (k -1)2k 2+1=2,解得k =-12. 故此弦所在的直线方程为y -1=-12(x -1),即x +2y -3=0.法二 易知此弦所在直线的斜率存在,所以设斜率为k , 此弦的两端点坐标分别为A (x 1,y 1),B (x 2,y 2), 则x 214+y 212=1①,x 224+y 222=1②, ①-②得(x 1+x 2)(x 1-x 2)4+(y 1+y 2)(y 1-y 2)2=0,∵x 1+x 2=2,y 1+y 2=2, ∴x 1-x 22+y 1-y 2=0,∴k =y 1-y 2x 1-x 2=-12. ∴此弦所在的直线方程为y -1=-12(x -1),即x +2y -3=0.【类题通法】处理有关中点弦及对应直线斜率关系的问题时,常用“点差法”,步骤如下:【对点训练】1.若椭圆的中心在原点,一个焦点为(0,2),直线y =3x +7与椭圆相交所得弦的中点的纵坐标为1,则这个椭圆的方程为________.[答案] x 28+y 212=1[解析] 因为椭圆的中心在原点,一个焦点为(0,2),则a 2-b 2=4,所以可设椭圆方程为y 2b 2+4+x 2b2=1,由⎩⎪⎨⎪⎧y =3x +7,y 2b 2+4+x 2b2=1,消去x ,整理得 (10b 2+4)y 2-14(b 2+4)y -9b 4+13b 2+196=0,设直线y =3x +7与椭圆相交所得弦的端点为(x 1,y 1),(x 2,y 2), 由一元二次方程根与系数的关系得:y 1+y 2=14(b 2+4)10b 2+4=2. 解得:b 2=8.所以a 2=12. 则椭圆方程为x 28+y 212=1.2.过椭圆x 216+y 24=1内一点P (3,1),且被这点平分的弦所在直线的方程是________.[答案] 3x +4y -13=0[解析] 设直线与椭圆交于A (x 1,y 1),B (x 2,y 2)两点, 由于A ,B 两点均在椭圆上, 故x 2116+y 214=1,x 2216+y 224=1, 两式相减得(x 1+x 2)(x 1-x 2)16+(y 1+y 2)(y 1-y 2)4=0.又∵P 是A ,B 的中点,∴x 1+x 2=6,y 1+y 2=2,∴k AB =y 1-y 2x 1-x 2=-34. ∴直线AB 的方程为y -1=-34(x -3).即3x +4y -13=0.。

高三数学教案:圆锥曲线的综合问题

高三数学教案:圆锥曲线的综合问题

第八节 圆锥曲线的综合应用一、基本知识概要:1知识精讲:圆锥曲线的综合问题包括:解析法的应用,数形结合的思想,与圆锥曲线有关的定值、最值等问题,主要沿着两条主线,即圆锥曲线科内综合与代数间的科间综合,灵活运用解析几何的常用方法,解决圆锥曲线的综合问题;通过问题的解决,进一步掌握函数与方程、等价转化、分类讨论等数学思想.2重点难点:正确熟练地运用解析几何的方法解决圆锥曲线的综合问题,从中进一步体会分类讨论、等价转化等数学思想的运用.3思维方式:数形结合的思想,等价转化,分类讨论,函数与方程思想等.4特别注意:要能准确地进行数与形的语言转换和运算、推理转换,并在运算过程中注意思维的严密性,以保证结果的完整。

二、例题:例1. A ,B 是抛物线)0(22>=p px y 上的两点,且OA OB ⊥(O 为坐标原点)求证:(1)A ,B 两点的横坐标之积,纵坐标之积分别是定植; (2)直线AB 经过一个定点证明:(1)设,,2,2),,(),,(21212221212211=+∴⊥==y y x x OB OA px y px y y x B y x A 则两式相乘得2212214,4p x x p y y =-=)0,2),0,2),2(2).(2,2,),(2)2(212112112121212221p x x p p x y y p y x x y y p y y AB y y p k x x x x p y y AB 时,显然也过点(当过定点(化简得的方程所以直线当=-+=-+=-+=≠-=-所以直线AB 过定点(2p,0)例2、(2005年春季北京,18)如图,O 为坐标原点,直线l 在x 轴和y 轴上的截距分别是a 和b )0,0(≠>b a ,且交抛物线)(),(于22112,N ,M )0(2y x y x p px y >=两点。

(1) 写出直线l 的截距式方程 (2) 证明:by y 11121=+(3) 当p a 2=时,求MON ∠的大小。

数学一轮复习第八章平面解析几何第九节圆锥曲线的综合问题第1课时最值范围证明问题学案含解析

数学一轮复习第八章平面解析几何第九节圆锥曲线的综合问题第1课时最值范围证明问题学案含解析

第九节圆锥曲线的综合问题最新考纲考情分析1.掌握解决直线与椭圆、抛物线的位置关系的思想方法.2.了解圆锥曲线的简单应用.3.理解数形结合的思想.1.直线与椭圆、抛物线的位置关系是近几年高考命题的热点.2.考查知识有直线与椭圆、抛物线相交,涉及弦长、中点、面积、对称、存在性问题.3.题型主要以解答题的形式出现,属中高档题。

知识点一直线与圆锥曲线的位置关系1.直线与圆锥曲线的位置关系判断直线l与圆锥曲线C的位置关系时,通常将直线l的方程Ax+By+C=0(A,B不同时为0)代入圆锥曲线C的方程F(x,y)=0,消去y(也可以消去x)得到一个关于变量x(或变量y)的一元方程.即错误!消去y,得ax2+bx+c=0。

(1)当a≠0时,设一元二次方程ax2+bx+c=0的判别式为Δ,则Δ>0⇔直线与圆锥曲线C相交;Δ=0⇔直线与圆锥曲线C相切;Δ<0⇔直线与圆锥曲线C相离.(2)当a=0,b≠0时,即得到一个一元一次方程,则直线l 与圆锥曲线C相交,且只有一个交点,此时,若C为双曲线,则直线l与双曲线的渐近线的位置关系是平行;若C为抛物线,则直线l与抛物线的对称轴的位置关系是平行或重合.2.圆锥曲线的弦长设斜率为k(k≠0)的直线l与圆锥曲线C相交于A,B两点,A(x1,y1),B(x2,y2),则|AB|=错误!|x1-x2|=错误!·错误!=错误!·|y1-y2|=错误!·错误!.知识点二圆锥曲线中的最值与取值范围问题圆锥曲线中的最值与取值范围问题一直是高考命题的热点,各种题型都有,命题角度很广,归纳起来常见的命题角度有:1.转化为函数利用基本不等式或二次函数求最值;2.利用三角函数有界性求最值;3.数形结合利用几何性质求最值.知识点三圆锥曲线中的定值与定点问题1.这类问题一般考查直线与圆锥曲线的位置关系,一元二次方程的根与系数之间的关系,考查斜率、向量的运算以及运算能力.2.解决这类定点与定值问题的方法有两种:一是研究一般情况,通过逻辑推理与计算得到定点或定值,这种方法难度大,运算量大,且思路不好寻找;另外一种方法就是先利用特殊情况确定定点或定值,然后验证,这样在整理式子或求值时就有了明确的方向.1.思考辨析判断下列结论正误(在括号内打“√”或“×”)(1)直线l与椭圆C相切的充要条件是:直线l与椭圆C只有一个公共点.(√)(2)直线l与双曲线C相切的充要条件是:直线l与双曲线C只有一个公共点.(×)(3)直线l与抛物线C相切的充要条件是:直线l与抛物线C 只有一个公共点.(×)(4)如果直线x=ty+a与圆锥曲线相交于A(x1,y1),B(x2,y2)两点,则弦长|AB|=错误!|y1-y2|.(√)解析:(2)因为直线l与双曲线C的渐近线平行时,也只有一个公共点,是相交,但并不相切.(3)因为直线l与抛物线C的对称轴平行或重合时,也只有一个公共点,是相交,但不相切.2.小题热身(1)过点(0,1)作直线,使它与抛物线y2=4x仅有一个公共点,这样的直线有(C)A.1条B.2条C.3条D.4条解析:结合图形分析可知,满足题意的直线共有3条:直线x=0,过点(0,1)且平行于x轴的直线以及过点(0,1)且与抛物线相切的直线(非直线x=0).(2)(2020·浙江八校联考)抛物线y=ax2与直线y=kx+b(k≠0)交于A,B两点,且这两点的横坐标分别为x1,x2,直线与x轴交点的横坐标是x3,则(B)A.x3=x1+x2B.x1x2=x1x3+x2x3C.x1+x2+x3=0 D.x1x2+x2x3+x3x1=0解析:由错误!消去y得ax2-kx-b=0,可知x1+x2=错误!,x1x2=-错误!,令kx+b=0得x3=-错误!,所以x1x2=x1x3+x2x3.(3)已知抛物线y=ax2(a>0)的准线为l,l与双曲线x24-y2=1的两条渐近线分别交于A,B两点,若|AB|=4,则a=错误!.解析:抛物线y=ax2(a〉0)的准线l:y=-错误!,双曲线错误!-y2=1的两条渐近线分别为y=错误!x,y=-错误!x,可得x A=-错误!,x B=错误!,可得|AB|=错误!-错误!=4,解得a=错误!。

高三数学一轮复习圆锥曲线的综合问题

高三数学一轮复习圆锥曲线的综合问题
何特征,熟练运用圆锥曲线的知识,将曲线的 几何特征转化为数量关系(如方程、不等式、函 数等),再结合代数知识解答,要重视函数思想、 方程及不等式思想、分类讨论思想和数形结合 思想等的应用.
3
第三页,共43页。
解决圆锥曲线综合问题的思路
1.对于圆锥曲线的综合问题,在对题目内涵 进行深刻挖掘的基础上,应用整体思想,构建 转化的“框架”,然后综合利用代数手段解 题.
例1 设F1、F2分别为椭圆C:
=1(a>b
>0)的左、右两个焦点.若M、N是椭圆C上关
于原点对称的两个点,点P是椭圆上任意一点,
当直线PM、PN的斜率都存在,并记为kPM、 kPN时.
求证:kPM·kPN是及点P位置无关的定值. 6
第六页,共43页。
[分析] 设出M点的坐标,利用已知条件得到 N的坐标,将kPM·kPN的值计算出来为定值即 可.
2.圆锥曲线的定义是解决综合题的基础.定 义在本质上揭示了平面上的动点及定点(或定直 线)的距离满足某种特殊关系,用数形结合思想 去理解圆锥曲线中的参数(a,b,c,e,p等) 的几何意义以及这些参数之间的相互关系,进 而通过它们之间的关系组成题设条件的转化.
4
第四页,共43页。
3.综合题中常常离不开直线及圆锥曲线的位 置关系,因此要树立将直线及圆锥曲线方程联 立,应用判别式、根及系数的关系的意识.
y
F=1+-kky
0,xF=(1+ky0)2, k2
1-ky0-1+ky0 ∴kEF=yxEE- -yxFF=(1-kky0)2-(1-+kky0)2
k2
k2
2
= k =- 1 (定值), -4ky0 2y0
k2 所以直线 EF 的斜率为定值.
11

高考数学一轮复习 第九章 平面解析几何 第9讲 圆锥曲线的综合问题 第2课时 定点、定值、探索性问题

高考数学一轮复习 第九章 平面解析几何 第9讲 圆锥曲线的综合问题 第2课时 定点、定值、探索性问题

第2课时 定点、定值、探索性问题圆锥曲线中的定点问题(师生共研)(2020·某某模拟)过抛物线C :y 2=4x 的焦点F 且斜率为k 的直线l 交抛物线C于A ,B 两点,且|AB |=8.(1)求直线l 的方程;(2)若A 关于x 轴的对称点为D ,求证:直线BD 过定点,并求出该点的坐标. 【解】 (1)由y 2=4x 知焦点F 的坐标为(1,0),则直线l 的方程为y =k (x -1), 代入抛物线方程y 2=4x ,得k 2x 2-(2k 2+4)x +k 2=0, 由题意知k ≠0,且Δ=[-(2k 2+4)]2-4k 2·k 2=16(k 2+1)>0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2k 2+4k2,x 1x 2=1.由抛物线的弦长公式知|AB |=x 1+x 2+2=8,则2k 2+4k2=6,即k 2=1,解得k =±1.所以直线l 的方程为y =±(x -1).(2)由(1)及抛物线的对称性知,D 点的坐标为(x 1,-y 1), 直线BD 的斜率k BD =y 2+y 1x 2-x 1=y 2+y 1y 224-y 214=4y 2-y 1, 所以直线BD 的方程为y +y 1=4y 2-y 1(x -x 1), 即(y 2-y 1)y +y 2y 1-y 21=4x -4x 1.因为y 21=4x 1,y 22=4x 2,x 1x 2=1,所以(y 1y 2)2=16x 1x 2=16, 即y 1y 2=-4(y 1,y 2异号).所以直线BD 的方程为4(x +1)+(y 1-y 2)y =0, 对任意y 1,y 2∈R ,有⎩⎪⎨⎪⎧x +1=0,y =0,解得⎩⎪⎨⎪⎧x =-1,y =0,即直线BD 恒过定点(-1,0).求解圆锥曲线中定点问题的两种方法(1)特殊推理法:先从特殊情况入手,求出定点,再证明定点与变量无关.(2)直接推理法:①选择一个参数建立方程,一般将题目中给出的曲线方程(包含直线方程)中的常数k 当成变量,将变量x ,y 当成常数,将原方程转化为kf (x ,y )+g (x ,y )=0的形式;②根据曲线(包含直线)过定点时与参数没有关系(即方程对参数的任意值都成立),得到方程组⎩⎪⎨⎪⎧f (x ,y )=0g (x ,y )=0;③以②中方程组的解为坐标的点就是曲线所过的定点,若定点具备一定的限制条件,可以特殊解决.(2020·某某模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)上动点P 到两焦点F 1,F 2的距离之和为4,当点P 运动到椭圆C 的一个顶点时,直线PF 1恰与以原点O 为圆心,以椭圆C 的离心率e 为半径的圆相切.(1)求椭圆C 的方程;(2)设椭圆C 的左、右顶点分别为A ,B ,若直线PA ,PB 分别交直线x =6于不同的两点M ,N ,则以线段MN 为直径的圆是否过定点?若是,请求出该定点的坐标;若不是,请说明理由.解:(1)由椭圆的定义可知2a =4,解得a =2.若点P 运动到椭圆的左、右顶点时,直线PF 1与圆一定相交,则点P 只能在椭圆的上、下顶点,不妨设点P 运动到椭圆的上顶点(0,b ),F 1为左焦点(-c ,0),则直线PF 1:bx -cy +bc =0.由题意得原点O 到直线PF 1的距离等于椭圆C 的离心率e , 所以bc b 2+c 2=ca, 又a 2=b 2+c 2,故b 2=1.故椭圆C 的方程为x 24+y 2=1.(2)由题意知,直线PA ,PB 的斜率存在且都不为0, 设直线PA 的斜率为k ,点P (x 0,y 0),x 0≠±2, 又A (-2,0),B (2,0),所以k PA ·k PB =k ·k PB =y 0x 0+2·y 0x 0-2=y 20x 20-4=1-x 204x 20-4=-14,则k PB =-14k.所以直线PA 的方程为y =k (x +2), 令x =6,得y =8k ,则M (6,8k ); 直线PB 的方程为y =-14k (x -2),令x =6,得y =-1k,则N ⎝ ⎛⎭⎪⎫6,-1k .因为8k ·⎝ ⎛⎭⎪⎫-1k =-8<0,所以以线段MN 为直径的圆与x 轴交于两点,设点G ,H ,并设MN 与x 轴的交点为K , 在以线段MN 为直径的圆中应用相交弦定理,得|GK |·|HK |=|MK |·|NK |=|8k |·⎪⎪⎪⎪⎪⎪-1k =8,因为|GK |=|HK |,所以|GK |=|HK |=22,所以以线段MN 为直径的圆恒过点(6-22,0),点(6+22,0).圆锥曲线中的定值问题(多维探究) 角度一 定线段的长已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (1,0),且经过点P ⎝ ⎛⎭⎪⎫12,354.(1)求椭圆C 的方程;(2)若直线l 与椭圆C 相切,过点F 作FQ ⊥l ,垂足为Q ,求证:|OQ |为定值(其中O 为坐标原点).【解】 (1)由题意可知椭圆C 的左焦点为F ′(-1,0),则半焦距c =1. 由椭圆定义可知 2a =|PF |+|PF ′|=⎝ ⎛⎭⎪⎫1-122+⎝ ⎛⎭⎪⎫0-3542+⎝ ⎛⎭⎪⎫-1-122+⎝ ⎛⎭⎪⎫0-3542=4, 所以a =2,b 2=a 2-c 2=3,所以椭圆C 的方程为x 24+y 23=1. (2)证明:①当直线l 的斜率不存在时,l 的方程为x =±2,点Q 的坐标为(-2,0)或(2,0),此时|OQ |=2;②当直线l 的斜率为0时,l 的方程为y =±3,点Q 的坐标为(1,-3)或(1,3), 此时|OQ |=2;③当直线l 的斜率存在且不为0时,设直线l 的方程为y =kx +m (k ≠0). 因为FQ ⊥l ,所以直线FQ 的方程为y =-1k(x -1).由⎩⎪⎨⎪⎧y =kx +m ,x 24+y 23=1消去y ,可得(3+4k 2)x 2+8kmx +4m 2-12=0.因为直线l 与椭圆C 相切,所以Δ=(8km )2-4×(3+4k 2)×(4m 2-12)=0, 整理得m 2=4k 2+3.(*)由⎩⎪⎨⎪⎧y =kx +m ,y =-1k (x -1)得Q ⎝ ⎛⎭⎪⎫1-km k 2+1,k +m k 2+1, 所以|OQ |=⎝ ⎛⎭⎪⎫1-km k 2+12+⎝ ⎛⎭⎪⎫k +m k 2+12=1+k 2m 2+k 2+m2(k 2+1)2, 将(*)式代入上式,得|OQ |=4(k 4+2k 2+1)(k 2+1)2=2. 综上所述,|OQ |为定值,且定值为2.直接探求,变量代换探求圆锥曲线中的定线段的长的问题,一般用直接求解法,即先利用弦长公式把要探求的线段表示出来,然后利用题中的条件(如直线与曲线相切等)得到弦长表达式中的相关量之间的关系式,把这个关系式代入弦长表达式中,化简可得弦长为定值.角度二 定几何图形的面积(2020·某某模拟)如图,设点A ,B 的坐标分别为(-3,0),(3,0),直线AP ,BP 相交于点P ,且它们的斜率之积为-23.(1)求点P 的轨迹方程;(2)设点P 的轨迹为C ,点M ,N 是轨迹C 上不同于A 、B 的两点,且满足AP ∥OM ,BP ∥ON ,求证:△MON 的面积为定值.【解】 (1)设点P 的坐标为(x ,y ),由题意得,k AP ·k BP =y x +3·y x -3=-23(x ≠±3),化简得,点P 的轨迹方程为x 23+y 22=1(x ≠±3). (2)证明:由题意可知,M ,N 是轨迹C 上不同于A 、B 的两点,且AP ∥OM ,BP ∥ON , 则直线OM ,ON 的斜率必存在且不为0,k OM ·k ON =k AP ·k BP =-23.①当直线MN 的斜率为0时,设M (x 0,y 0),N (-x 0,y 0),则⎩⎪⎨⎪⎧y 20x 20=23,x 203+y202=1,得⎩⎪⎨⎪⎧|x 0|=62,|y 0|=1, 所以S △MON =12|y 0||2x 0|=62.②当直线MN 的斜率不为0时,设直线MN 的方程为x =my +t ,代入x 23+y 22=1,得(3+2m 2)y 2+4mty +2t 2-6=0,(*)设M (x 1,y 1),N (x 2,y 2),则y 1,y 2是方程(*)的两根, 所以y 1+y 2=-4mt 3+2m 2,y 1y 2=2t 2-63+2m2.又k OM ·k ON =y 1y 2x 1x 2=y 1y 2m 2y 1y 2+mt (y 1+y 2)+t 2=2t 2-63t 2-6m 2,所以2t 2-63t 2-6m 2=-23,即2t 2=2m 2+3,满足Δ>0.又S △MON =12|t ||y 1-y 2|=|t |-24t 2+48m 2+722(3+2m 2), 所以S △MON =26t 24t 2=62. 综上,△MON 的面积为定值,且定值为62.探求圆锥曲线中几何图形的面积的定值问题,一般用直接求解法,即可先利用三角形面积公式(如果是其他凸多边形,可分割成若干个三角形分别求解)把要探求的几何图形的面积表示出来,然后利用题中的条件得到几何图形的面积表达式中的相关量之间的关系式,把这个关系式代入几何图形的面积表达式中,化简即可.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦点为F 1,F 2,离心率为12,点P 为其上一动点,且三角形PF 1F 2面积的最大值为3,O 为坐标原点.(1)求椭圆C 的方程;(2)若点M ,N 为C 上的两个动点,求常数m ,使OM →·ON →=m 时,点O 到直线MN 的距离为定值,求这个定值.解:(1)依题意知⎩⎪⎨⎪⎧c 2=a 2-b 2,bc =3,c a =12,解得⎩⎨⎧a =2,b =3,所以椭圆C 的方程为x 24+y 23=1.(2)设M (x 1,y 1),N (x 2,y 2),则x 1x 2+y 1y 2=m ,当直线MN 的斜率存在时,设其方程为y =kx +n ,则点O 到直线MN 的距离d =|n |k 2+1=n 2k 2+1,联立,得⎩⎪⎨⎪⎧3x 2+4y 2=12,y =kx +n ,消去y ,得(4k 2+3)x 2+8knx +4n 2-12=0,由Δ>0得4k 2-n2+3>0,则x 1+x 2=-8kn 4k 2+3,x 1x 2=4n 2-124k 2+3,所以x 1x 2+(kx 1+n )(kx 2+n )=(k 2+1)x 1x 2+kn (x 1+x 2)+n 2=m ,整理得7n2k 2+1=12+m (4k 2+3)k 2+1.因为d =n 2k 2+1为常数,则m =0,d =127=2217,此时7n 2k 2+1=12满足Δ>0. 当MN ⊥x 轴时,由m =0得k OM =±1,联立,得⎩⎪⎨⎪⎧3x 2+4y 2=12,y =±x ,消去y ,得x 2=127,点O 到直线MN 的距离d =|x |=2217亦成立.综上,当m =0时,点O 到直线MN 的距离为定值,这个定值是2217.圆锥曲线中的探索性问题(师生共研)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点分别为F 1,F 2,短轴的一个端点为P ,△PF 1F 2内切圆的半径为b3,设过点F 2的直线l 被椭圆C 截得的线段为RS ,当l ⊥x 轴时,|RS |=3.(1)求椭圆C 的标准方程;(2)在x 轴上是否存在一点T ,使得当l 变化时,总有TS 与TR 所在直线关于x 轴对称?若存在,请求出点T 的坐标;若不存在,请说明理由.【解】 (1)由内切圆的性质,得12×2c ×b =12×(2a +2c )×b 3,得c a =12.将x =c 代入x 2a 2+y 2b 2=1,得y =±b 2a ,所以2b2a=3.又a 2=b 2+c 2,所以a =2,b =3, 故椭圆C 的标准方程为x 24+y 23=1.(2)当直线l 垂直于x 轴时,显然x 轴上任意一点T 都满足TS 与TR 所在直线关于x 轴对称.当直线l 不垂直于x 轴时,假设存在T (t ,0)满足条件,设l 的方程为y =k (x -1),R (x 1,y 1),S (x 2,y 2).联立方程,得⎩⎪⎨⎪⎧y =k (x -1),3x 2+4y 2-12=0,得(3+4k 2)x 2-8k 2x +4k 2-12=0, 由根与系数的关系得⎩⎪⎨⎪⎧x 1+x 2=8k23+4k2,x 1x 2=4k 2-123+4k2①,其中Δ>0恒成立, 由TS 与TR 所在直线关于x 轴对称,得k TS +k TR =0(显然TS ,TR 的斜率存在), 即y 1x 1-t +y 2x 2-t=0 ②.因为R ,S 两点在直线y =k (x -1)上, 所以y 1=k (x 1-1),y 2=k (x 2-1),代入②得k (x 1-1)(x 2-t )+k (x 2-1)(x 1-t )(x 1-t )(x 2-t )=k [2x 1x 2-(t +1)(x 1+x 2)+2t ](x 1-t )(x 2-t )=0,即2x 1x 2-(t +1)(x 1+x 2)+2t =0 ③,将①代入③得8k 2-24-(t +1)8k 2+2t (3+4k 2)3+4k 2=6t -243+4k 2=0 ④,则t =4,综上所述,存在T (4,0),使得当l 变化时,总有TS 与TR 所在直线关于x 轴对称.存在性问题的求解策略解决存在性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件. (3)当要讨论的量能够确定时,可先确定,再证明结论符合题意.已知圆O :x 2+y 2=4,点F (1,0),P 为平面内一动点,以线段FP 为直径的圆内切于圆O ,设动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)M ,N 是曲线C 上的动点,且直线MN 经过定点⎝ ⎛⎭⎪⎫0,12,问在y 轴上是否存在定点Q ,使得∠MQO =∠NQO ,若存在,请求出定点Q ,若不存在,请说明理由.解:(1)设PF 的中点为S ,切点为T ,连接OS ,ST ,则|OS |+|SF |=|OT |=2,取F 关于y 轴的对称点F ′,连接F ′P ,所以|PF ′|=2|OS |,故|F ′P |+|FP |=2(|OS |+|SF |)=4,所以点P 的轨迹是以F ′,F 分别为左、右焦点,且长轴长为4的椭圆, 则曲线C 的方程为x 24+y 23=1.(2)假设存在满足题意的定点Q ,设Q (0,m ),当直线MN 的斜率存在时,设直线MN 的方程为y =kx +12,M (x 1,y 1),N (x 2,y 2).联立,得⎩⎪⎨⎪⎧x 24+y 23=1,y =kx +12,消去y ,得(3+4k 2)x 2+4kx -11=0,则Δ>0,x 1+x 2=-4k3+4k 2,x 1x 2=-113+4k2, 由∠MQO =∠NQO ,得直线MQ 与NQ 的斜率之和为零,易知x 1或x 2等于0时,不满足题意,故y 1-m x 1+y 2-mx 2=kx 1+12-m x 1+kx 2+12-m x 2=2kx 1x 2+⎝ ⎛⎭⎪⎫12-m (x 1+x 2)x 1x 2=0,即2kx 1x 2+⎝ ⎛⎭⎪⎫12-m (x 1+x 2)=2k ·-113+4k 2+⎝ ⎛⎭⎪⎫12-m ·-4k 3+4k 2=4k (m -6)3+4k 2=0,当k ≠0时,m =6,所以存在定点(0,6),使得∠MQO =∠NQO ;当k =0时,定点(0,6)也符合题意.易知当直线MN 的斜率不存在时,定点(0,6)也符合题意. 综上,存在定点(0,6),使得∠MQO =∠NQO .解析几何减少运算量的常见技巧技巧一 巧用平面几何性质已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A.13 B .12 C.23D .34【解析】 设OE 的中点为N ,如图,因为MF ∥OE ,所以有ON MF =a a +c ,MF OE =a -ca.又因为OE =2ON ,所以有12=aa +c ·a -c a ,解得e =c a =13,故选A.【答案】 A此题也可以用解析法解决,但有一定的计算量,巧用三角形的相似比可简化计算. 技巧二 设而不求,整体代换对于直线与圆锥曲线相交所产生的中点弦问题,涉及求中点弦所在直线的方程,或弦的中点的轨迹方程的问题时,常常可以用“点差法”求解.已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B两点.若AB 的中点坐标为M (1,-1),则E 的标准方程为( )A.x 245+y 236=1 B .x 236+y 227=1 C.x 227+y 218=1 D .x 218+y 29=1 【解析】 通解:设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=2,y 1+y 2=-2,⎩⎪⎨⎪⎧x 21a 2+y 21b2=1,①x 22a 2+y22b 2=1,②①-②得(x 1+x 2)(x 1-x 2)a 2+(y 1+y 2)(y 1-y 2)b2=0, 所以k AB =y 1-y 2x 1-x 2=-b 2(x 1+x 2)a 2(y 1+y 2)=b 2a 2.又k AB =0+13-1=12,所以b 2a 2=12.又9=c 2=a 2-b 2,解得b 2=9,a 2=18, 所以椭圆E 的标准方程为x 218+y 29=1.优解:由k AB ·k OM =-b 2a 2得,-1-01-3×-11=-b 2a2得,a 2=2b 2,又a 2-b 2=9,所以a 2=18,b 2=9,所以椭圆E 的标准方程为x 218+y 29=1.【答案】 D本题设出A ,B 两点的坐标,却不求出A ,B 两点的坐标,巧妙地表达出直线AB 的斜率,通过将直线AB 的斜率“算两次”建立几何量之间的关系,从而快速解决问题.技巧三 巧用“根与系数的关系”,化繁为简某些涉及线段长度关系的问题可以通过解方程、求坐标,用距离公式计算长度的方法来解;但也可以利用一元二次方程,使相关的点的同名坐标为方程的根,由根与系数的关系求出两根间的关系或有关线段长度间的关系.后者往往计算量小,解题过程简捷.已知椭圆x 24+y 2=1的左顶点为A ,过A 作两条互相垂直的弦AM ,AN 交椭圆M ,N两点.(1)当直线AM 的斜率为1时,求点M 的坐标;(2)当直线AM 的斜率变化时,直线MN 是否过x 轴上的一定点?若过定点,请给出证明,并求出该定点;若不过定点,请说明理由.【解】 (1)直线AM 的斜率为1时,直线AM 的方程为y =x +2,代入椭圆方程并化简得5x 2+16x +12=0.解得x 1=-2,x 2=-65,所以M ⎝ ⎛⎭⎪⎫-65,45.(2)设直线AM 的斜率为k ,直线AM 的方程为y =k (x +2),联立方程⎩⎪⎨⎪⎧y =k (x +2),x 24+y 2=1, 化简得(1+4k 2)x 2+16k 2x +16k 2-4=0. 则x A +x M =-16k21+4k 2,又x A =-2,则x M =-x A -16k 21+4k 2=2-16k 21+4k 2=2-8k21+4k 2.同理,可得x N =2k 2-8k 2+4.由(1)知若存在定点,则此点必为P ⎝ ⎛⎭⎪⎫-65,0. 证明如下:因为k MP =y Mx M +65=k ⎝ ⎛⎭⎪⎫2-8k 21+4k 2+22-8k 21+4k 2+65=5k4-4k 2, 同理可计算得k PN =5k4-4k2. 所以直线MN 过x 轴上的一定点P ⎝ ⎛⎭⎪⎫-65,0.本例在第(2)问中可应用根与系数的关系求出x M =2-8k21+4k 2,这体现了整体思想.这是解决解析几何问题时常用的方法,简单易懂,通过设而不求,大大降低了运算量.技巧四 巧妙“换元”减少运算量变量换元的关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而将非标准型问题转化为标准型问题,将复杂问题简单化.变量换元法常用于求解复合函数的值域、三角函数的化简或求值等问题.如图,已知椭圆C 的离心率为32,点A ,B ,F 分别为椭圆的右顶点、上顶点和右焦点,且S △ABF =1-32.(1)求椭圆C 的方程;(2)已知直线l :y =kx +m 与圆O :x 2+y 2=1相切,若直线l 与椭圆C 交于M ,N 两点,求△OMN 面积的最大值.【解】 (1)由已知椭圆的焦点在x 轴上,设其方程为x 2a 2+y 2b 2=1(a >b >0),则A (a ,0),B (0,b ),F (c ,0)(c =a 2-b 2).由已知可得e 2=a 2-b 2a 2=34,所以a 2=4b 2,即a =2b ,可得c =3b ①.S △AFB =12×|AF |×|OB |=12(a -c )b =1-32②.将①代入②,得12(2b -3b )b =1-32,解得b =1,故a =2,c = 3.所以椭圆C 的方程为x 24+y 2=1.(2)圆O 的圆心为坐标原点,半径r =1,由直线l :y =kx +m 与圆O :x 2+y 2=1相切,得|m |1+k2=1,故有m 2=1+k 2③. 由⎩⎪⎨⎪⎧x 24+y 2=1,y =kx +m ,消去y ,得⎝ ⎛⎭⎪⎫14+k 2x 2+2kmx +m 2-1=0.由题可知k ≠0,即(1+4k 2)x 2+8kmx +4(m 2-1)=0, 所以Δ=16(4k 2-m 2+1)=48k 2>0.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1.所以|x 1-x 2|2=(x 1+x 2)2-4x 1x 2=⎝ ⎛⎭⎪⎫-8km 4k 2+12-4×4m 2-44k 2+1=16(4k 2-m 2+1)(4k 2+1)2④. 将③代入④中,得|x 1-x 2|2=48k2(4k 2+1)2,故|x 1-x 2|=43|k |4k 2+1.所以|MN |=1+k 2|x 1-x 2|=1+k 2×43|k |4k 2+1=43k 2(k 2+1)4k 2+1. 故△OMN 的面积S =12|MN |×1=12×43k 2(k 2+1)4k 2+1×1=23k 2(k 2+1)4k 2+1. 令t =4k 2+1,则t ≥1,k 2=t -14,代入上式,得S =23×t -14⎝ ⎛⎭⎪⎫t -14+1t2=32(t -1)(t +3)t2=32t 2+2t -3t 2=32-3t 2+2t+1=32-1t 2+23t +13=32-⎝ ⎛⎭⎪⎫1t -132+49, 所以当t =3,即4k 2+1=3,解得k =±22时,S 取得最大值,且最大值为32×49=1.破解此类题的关键:一是利用已知条件,建立关于参数的方程,解方程,求出参数的值,二是通过变量换元法将所给函数转化为值域容易确定的另一函数,求得其值域,从而求得原函数的值域,形如y =ax +b ±cx +d (a ,b ,c ,d 均为常数,且ac ≠0)的函数常用此法求解,但在换元时一定要注意新元的取值X 围,以保证等价转化,这样目标函数的值域才不会发生变化.[基础题组练]1.已知直线l 与双曲线x 24-y 2=1相切于点P ,l 与双曲线的两条渐近线交于M ,N 两点,则OM →·ON →的值为( )A .3B .4C .5D .与P 的位置有关解析:选A.依题意,设点P (x 0,y 0),M (x 1,y 1),N (x 2,y 2),其中x 20-4y 20=4,则直线l 的方程是x 0x 4-y 0y =1,题中双曲线的两条渐近线方程为y =±12x .①当y 0=0时,直线l 的方程是x =2或x =-2.由⎩⎪⎨⎪⎧x =2x 24-y 2=0,得⎩⎪⎨⎪⎧x =2y =±1,此时OM →·ON →=(2,-1)·(2,1)=4-1=3,同理可得当直线l 的方程是x =-2时,OM →·ON →=3.②当y 0≠0时,直线l 的方程是y =14y 0(x 0x -4).由⎩⎪⎨⎪⎧y =14y 0(x 0x -4)x24-y 2=0,得(4y 2-x 20)x2+8x 0x -16=0(*),又x 20-4y 20=4,因此(*)即是-4x 2+8x 0x -16=0,x 2-2x 0x +4=0,x 1x 2=4,OM →·ON →=x 1x 2+y 1y 2=x 1x 2-14x 1x 2=34x 1x 2=3.综上所述,OM →·ON →=3,故选A.2.已知抛物线y 2=2px (p >0)的焦点为F ,△ABC 的顶点都在抛物线上,且满足FA →+FB →+FC →=0,则1k AB +1k AC +1k BC=________.解析:设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),F ⎝ ⎛⎭⎪⎫p 2,0,由FA →+FB →=-FC →,得y 1+y 2+y 3=0.因为k AB =y 2-y 1x 2-x 1=2p y 1+y 2,所以k AC =2p y 1+y 3,k BC =2p y 2+y 3,所以1k AB +1k AC +1k BC =y 1+y 22p +y 3+y 12p+y 2+y 32p=0. 答案:03.(2020·某某模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2.点M在椭圆C 上滑动,若△MF 1F 2的面积取得最大值4时,有且仅有2个不同的点M 使得△MF 1F 2为直角三角形.(1)求椭圆C 的方程;(2)过点P (0,1)的直线l 与椭圆C 分别相交于A ,B 两点,与x 轴交于点Q .设QA →=λPA →,QB →=μPB →,求证:λ+μ为定值,并求该定值.解:(1)由对称性知,点M 在短轴端点时,△MF 1F 2为直角三角形且∠F 1MF 2=90°,且S △MF 1F 2=4,所以b =c 且S =12·2c ·b =bc=4,解得b =c =2,a 2=b 2+c 2=8, 所以椭圆C 的方程为x 28+y 24=1.(2)证明:显然直线l 的斜率不为0,设直线l :x =t (y -1),联立⎩⎪⎨⎪⎧x 28+y 24=1,x =t (y -1),消去x ,得(t 2+2)y 2-2t 2y +t 2-8=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2t 2t 2+2,y 1y 2=t 2-8t 2+2.令y =0,则x =-t ,所以Q (-t ,0), 因为QA →=λPA →,所以y 1=λ(y 1-1), 所以λ=y 1y 1-1.因为QB →=μPB →,所以y 2=μ(y 2-1),所以μ=y 2y 2-1.所以λ+μ=y 1y 1-1+y 2y 2-1=2y 1y 2-(y 1+y 2)y 1y 2-(y 1+y 2)+1=83. 4.(2020·某某某某联考)设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,下顶点为A ,O 为坐标原点,点O 到直线AF 2的距离为22,△AF 1F 2为等腰直角三角形. (1)求椭圆C 的标准方程;(2)直线l 与椭圆C 分别相交于M ,N 两点,若直线AM 与直线AN 的斜率之和为2,证明:直线l 恒过定点,并求出该定点的坐标.解:(1)由题意可知,直线AF 2的方程为x c +y-b=1, 即-bx +cy +bc =0,则bc b 2+c 2=bc a=22.因为△AF 1F 2为等腰直角三角形,所以b =c , 又a 2=b 2+c 2,可得a =2,b =1,c =1, 所以椭圆C 的标准方程为x 22+y 2=1.(2)证明:由(1)知A (0,-1).当直线l 的斜率存在时,设直线l 的方程为y =kx +t (t ≠±1), 代入x 22+y 2=1,得(1+2k 2)x 2+4ktx +2t 2-2=0,所以Δ=16k 2t 2-4(1+2k 2)(2t 2-2)>0,即t 2-2k 2<1. 设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-4kt1+2k 2,x 1x 2=2t 2-21+2k2.因为直线AM 与直线AN 的斜率之和为2, 所以k AM +k AN =y 1+1x 1+y 2+1x 2=kx 1+t +1x 1+kx 2+t +1x 2=2k +(t +1)(x 1+x 2)x 1x 2=2k -(t +1)·4kt2t 2-2=2, 整理得t =1-k .所以直线l 的方程为y =kx +t =kx +1-k =k (x -1)+1,显然直线y =k (x -1)+1经过定点(1,1).当直线l 的斜率不存在时,设直线l 的方程为x =m .因为直线AM 与直线AN 的斜率之和为2,设M (m ,n ),则N (m ,-n ), 所以k AM +k AN =n +1m +-n +1m =2m=2,解得m =1, 此时直线l 的方程为x =1,显然直线x =1也经过该定点(1,1). 综上,直线l 恒过点(1,1).[综合题组练]1.(2020·某某五市十校联考)已知动圆C 过定点F (1,0),且与定直线x =-1相切. (1)求动圆圆心C 的轨迹E 的方程;(2)过点M (-2,0)的任一条直线l 与轨迹E 分别相交于不同的两点P ,Q ,试探究在x 轴上是否存在定点N (异于点M ),使得∠QNM +∠PNM =π?若存在,求点N 的坐标;若不存在,说明理由.解:(1)法一:由题意知,动圆圆心C 到定点F (1,0)的距离与其到定直线x =-1的距离相等,又由抛物线的定义,可得动圆圆心C 的轨迹是以F (1,0)为焦点,x =-1为准线的抛物线,其中p =2.所以动圆圆心C 的轨迹E 的方程为y 2=4x .法二:设动圆圆心C (x ,y ),由题意知(x -1)2+y 2=|x +1|, 化简得y 2=4x ,即动圆圆心C 的轨迹E 的方程为y 2=4x . (2)假设存在点N (x 0,0),满足题设条件.由∠QNM +∠PNM =π可知,直线PN 与QN 的斜率互为相反数,即k PN +k QN =0.① 由题意知直线PQ 的斜率必存在且不为0,设直线PQ 的方程为x =my -2.联立⎩⎪⎨⎪⎧y 2=4x ,x =my -2,得y 2-4my +8=0.由Δ=(-4m )2-4×8>0,得m >2或m <- 2. 设P (x 1,y 1),Q (x 2,y 2),则y 1+y 2=4m ,y 1y 2=8. 由①式得k PN +k QN =y 1x 1-x 0+y 2x 2-x 0=y 1(x 2-x 0)+y 2(x 1-x 0)(x 1-x 0)(x 2-x 0)=0,所以y 1(x 2-x 0)+y 2(x 1-x 0)=0, 即y 1x 2+y 2x 1-x 0(y 1+y 2)=0.消去x 1,x 2,得14y 1y 22+14y 2y 21-x 0(y 1+y 2)=0,14y 1y 2(y 1+y 2)-x 0(y 1+y 2)=0, 因为y 1+y 2≠0,所以x 0=14y 1y 2=2,所以存在点N (2,0).使得∠QNM +∠PNM =π.2.(2020·某某某某教学质量监测)已知抛物线C :x 2=2py (p >0)的焦点为F ,过点F 的直线分别交抛物线于A ,B 两点.(1)若以AB 为直径的圆的方程为(x -2)2+(y -3)2=16,求抛物线C 的标准方程; (2)过点A ,B 分别作抛物线的切线l 1,l 2,证明:l 1,l 2的交点在定直线上. 解:(1)设AB 中点为M ,A 到准线的距离为d 1,B 到准线的距离为d 2,M 到准线的距离为d ,则d =y M +p2.由抛物线的定义可知,d 1=|AF |,d 2=|BF |,所以d 1+d 2=|AB |=8, 由梯形中位线可得d =d 1+d 22=4,所以y M +p2=4.又y M =3,所以3+p2=4,可得p =2,所以抛物线C 的标准方程为x 2=4y .(2)证明:设A (x 1,y 1),B (x 2,y 2),由x 2=2py ,得y =x 22p ,则y ′=xp,所以直线l 1的方程为y -y 1=x 1p (x -x 1),直线l 2的方程为y -y 2=x 2p(x -x 2),联立得x =x 1+x 22,y =x 1x 22p, 即直线l 1,l 2的交点坐标为⎝⎛⎭⎪⎫x 1+x 22,x 1x 22p .因为AB 过焦点F ⎝ ⎛⎭⎪⎫0,p 2,由题可知直线AB 的斜率存在,故可设直线AB 方程为y -p2=kx ,代入抛物线x 2=2py 中,得x 2-2pkx -p 2=0,所以x 1x 2=-p 2,y =x 1x 22p =-p 22p =-p2,p 2上.所以l1,l2的交点在定直线y=-。

高考数学一轮复习 8.10 圆锥曲线的综合问题精品教学案(学生版) 新人教版

高考数学一轮复习 8.10 圆锥曲线的综合问题精品教学案(学生版) 新人教版

【考纲解读】1.了解圆锥曲线的简单应用,理解数形结合的思想.2.领会转化的数学思想,提高综合解题能力.【考点预测】高考对此部分内容考查的热点与命题趋势为:1.平面解析几何是历年来高考重点内容之一,经常与逻辑、不等式、三角函数等知识结合起来考查,在选择题、填空题与解答题中均有可能出现,在解答题中考查,一般难度较大,与其他知识结合起来考查,在考查平面解析几何基础知识的同时,又考查数形结合思想、转化思想和分类讨论等思想,以及分析问题、解决问题的能力.2.2013年的高考将会继续保持稳定,坚持考查解析几何与其他知识的结合,在选择题、填空题中继续搞创新,命题形式会更加灵活.【要点梳理】1.圆锥曲线中的最值问题2.圆锥曲线中的面积问题3.圆锥曲线中的定点或定值问题【例题精析】考点一 圆锥曲线中的最值与面积问题例1. (2012年高考重庆卷文科21)(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分)已知椭圆的中心为原点O ,长轴在x 轴上,上顶点为A ,左、右焦点分别为12,F F ,线段12,OF OF 的中点分别为12,B B ,且△12AB B 是面积为4的直角三角形。

(Ⅰ)求该椭圆的离心率和标准方程;(Ⅱ)过1B作直线交椭圆于,P Q ,22PB QB ⊥,求△2PB Q 的面积【变式训练】1.(2012年高考安徽卷文科20)(本小题满分13分)如图,21F F 分别是椭圆C :22a x +22by =1(0>>b a )的左、右焦点,A 是椭圆C 的顶点,B 是直线2AF 与椭圆C 的另一个交点,1F ∠A 2F =60°.(Ⅰ)求椭圆C 的离心率;(Ⅱ)已知△A B F 1的面积为403,求,a b 的值.考点二 定点(定值)问题例2.(2012年高考福建卷文科21)(本小题满分12分)如图,等边三角形OAB 的边长为83,且其三个顶点均在抛物线E :x 2=2py (p >0)上。

高考数学 圆锥曲线的综合问题(学案)绝密资料

高考数学 圆锥曲线的综合问题(学案)绝密资料

圆锥曲线的综合问题★知识梳理★1.直线与圆锥曲线C 的位置关系:将直线l 的方程代入曲线C 的方程,消去y 或者消去x ,得到一个关于x (或y )的方程ax 2+bx +c =0.(1)交点个数:①当 a =0或a≠0,⊿=0 时,曲线和直线只有一个交点;②当 a≠0,⊿>0时,曲线和直线有两个交点;③ 当⊿<0 时,曲线和直线没有交点。

(2) 弦长公式: 2.对称问题:曲线上存在两点关于已知直线对称的条件:①曲线上两点所在的直线与已知直线垂直(得出斜率)②曲线上两点所在的直线与曲线有两个公共点(⊿>0)③曲线上两点的中点在对称直线上。

3.求动点轨迹方程:①轨迹类型已确定的,一般用待定系数法;②动点满足的条件在题目中有明确的表述且轨迹类型未知的,一般用直接法;③一动点随另一动点的变化而变化,一般用代入转移法。

★重难点突破★重点:掌握直线与圆锥曲线的位置关系的判断方法及弦长公式;掌握弦中点轨迹的求法; 理解和掌握求曲线方程的方法与步骤,能利用方程求圆锥曲线的有关范围与最值 难点:轨迹方程的求法及圆锥曲线的有关范围与最值问题重难点:综合运用方程、函数、不等式、轨迹等方面的知识解决相关问题 1.体会“设而不求”在解题中的简化运算功能①求弦长时用韦达定理设而不求;②弦中点问题用“点差法”设而不求.2.体会数学思想方法(以方程思想、转化思想、数形结合思想为主)在解题中运用问题1:已知点1F 为椭圆15922=+y x 的左焦点,点)1,1(A ,动点P 在椭圆上,则||||1PF PA +的最小值为 . 点拨:设2F 为椭圆的右焦点,利用定义将||1PF 转化为||2PF ,结合图形,||||6||||21PF PA PF PA -+=+,当2F A P 、、共线时最小,最小值为2-6★热点考点题型探析★考点1直线与圆锥曲线的位置关系 题型1:交点个数问题[例1 ] 设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A .[-21,21] B .[-2,2] C .[-1,1] D .[-4,4]【解题思路】解决直线与圆锥曲线的交点个数问题的通法为判别式法 [解析] 易知抛物线28yx =的准线2x =-与x 轴的交点为Q (-2 , 0),于是,可设过点Q (-2 , 0)的直线l 的方程为(2)y k x =+,4)(1 ||1||212212122x x x x k x x k AB ⋅-+⋅+=-⋅+=联立222228,(48)40.(2),y x k x k x k y k x ⎧=⇒+-+=⎨=+⎩ 其判别式为2242(48)1664640k k k ∆=--=-+≥,可解得 11k -≤≤,应选C.【名师指引】(1)解决直线与圆锥曲线的交点问题的方法:一是判别式法;二是几何法(2)直线与圆锥曲线有唯一交点,不等价于直线与圆锥曲线相切,还有一种情况是平行于对称轴(抛物线)或平行于渐近线(双曲线)(3)联立方程组、消元后得到一元二次方程,不但要对∆进行讨论,还要对二次项系数是否为0进行讨论【新题导练】1. (09摸底)已知将圆228x y +=上的每一点的纵坐标压缩到原来的12,对应的横坐标不变,得到曲线C ;设)1,2(M ,平行于OM 的直线l 在y 轴上的截距为m (m ≠0),直线l 与曲线C 交于A 、B 两个不同点. (1)求曲线C 的方程;(2)求m 的取值范围.[解析](1)设圆上的动点为)','('y x P 压缩后对应的点为),(y x P ,则⎩⎨⎧==yy xx 2'',代入圆的方程得曲线C 的方程:12822=+y x (2)∵直线l 平行于OM ,且在y 轴上的截距为m,又21=OMK , ∴直线l 的方程为m x y +=21. 由221,2 1.82y x m x y ⎧=+⎪⎪⎨⎪+=⎪⎩, 得 222240x mx m ++-= ∵直线l 与椭圆交于A 、B 两个不同点,∴22(2)4(24)0,m m ∆=--> 解得220m m -<<≠且.∴m 的取值范围是2002m m -<<<<或. 题型2:与弦中点有关的问题[例2](08韶关调研)已知点A 、B 的坐标分别是(1,0)-,(1,0).直线,AM BM 相交于点M ,且它们的斜率之积为-2. (Ⅰ)求动点M 的轨迹方程; (Ⅱ)若过点1(,1)2N 的直线l 交动点M 的轨迹于C 、D 两点, 且N 为线段CD 的中点,求直线l 的方程. 【解题思路】弦中点问题用“点差法”或联立方程组,利用韦达定理求解 [解析] (Ⅰ)设(,)M x y , 因为2AM BMk k ⋅=-,:()22221x y x +=≠±(Ⅱ) 设1122(,),(,)C x y D x y 当直线l ⊥x 轴时,l 的方程为12x =,则11(),(,2222C D ,它的中点不是N ,不合题意 设直线l 的方程为11()2y k x -=-将1122(,),(,)C x y D x y 代入()22221x y x +=≠±得 221122x y +=…………(1) 222222x y += (2)(1)-(2)整理得:12121212122()12()212y y x x k x x y y ⨯-+==-=-=--+⨯直线l 的方程为111()22y x -=--即所求直线l 的方程为230x y +-= 解法二: 当直线l ⊥x 轴时,直线l 的方程为12x =,则11(,(,2222C D , 其中点不是N ,不合题意.故设直线l 的方程为11()2y k x -=-, 将其代入()22221x y x +=≠±化简得222(2)2(1)(1)2022k k k x k x ++-+--=由韦达定理得222212221224(1)4(2)[(1)2]0(1)222(1)2(2)2(1)22(3)2k k k k k k x x k k x x k ⎧--+-->⎪⎪⎪-⎪+=-⎨+⎪⎪--⎪⋅=⎪+⎩,又由已知N 为线段CD 的中点,得122(1)222kk x x k -+=-+12=,解得12k =-,将12k =-代入(1)式中可知满足条件.此时直线l 的方程为111()22y x -=--,即所求直线l 的方程为230x y +-=【名师指引】通过将C 、D 的坐标代入曲线方程,再将两式相减的过程,称为代点相减.这里,代点相减后,适当变形,出现弦PQ 的斜率和中点坐标,是实现设而不求(即点差法)的关键.两种解法都要用到“设而不求”,它对简化运算的作用明显,用“点差法”解决弦中点问题更简洁 【新题导练】2.椭圆141622=+y x 的弦被点)1,2(P 所平分,求此弦所在直线的方程。

2019届高考理科数学一轮复习精品学案:第54讲圆锥曲线的综合问题第2课时(含解析)

2019届高考理科数学一轮复习精品学案:第54讲圆锥曲线的综合问题第2课时(含解析)

第 2 课时 最值﹑范围﹑证明问题【讲堂考点研究】例 1 [ 思路点拨 ] (1) 由极点坐标及椭圆的离心率 , 即可求得 a 和 c 的值 , 从而可求得椭圆方程 ;(2) 分类议论 , 当斜率为 0 时 , 即可求得 m 的值 , 设直线 l 的方程 , 代入椭圆方程 , 利用根与系数的关系及弦长公式即可求得 m 的表达式 , 利用导数求得函数的单一性及最值 , 即可求得 m 的最大值 .解 :(1) 由于椭圆 :1( 0) 的极点坐标为 (± ,0), 且离心率为,C + = a>b>因此a=, 且 = , 解得 1b= .故椭圆 C 的方程为 +y 2=1.(2) 由于 = >2, 因此直线 MN 的斜率存在 .又由于直线 MN 在 y 轴上的截距为 m , 因此可设直线 MN 的方程为 y=kx+m ,代入椭圆方程 2 得(1+6 2 2 kmx+6( 2=0,+y =1, k ) x +12 m- 1) 由于(12 ) 2 - 24(1 6 2)(21) 24(1 6 22) 0,= km+ km-=+ k -m >因此2162.m< + k设 M ( x 1, y 1), N ( x 2, y 2),由根与系数的关系得 x 1+x 2= , x 1x 2=,则 = |x 1-x 2|= =.由于 =,因此 =,2.整理得 m=令 k2+1=t ≥1,则 k2=t- 1,2= 75- 18t+≤= , 因此 m=等号成立的条件是2 2 2 2, 切合题意. t= ,此时 k = , m= ,知足 m<1+6k故 m的最大值为.变式题解:(1)曲线C上的点知足|PF1|+|PF2|=2>|F 1F2|= 2,∴曲线 C是以 F1, F2为焦点的椭圆,且 a=, c=1, b=1,∴曲线 C的方程是+y2=1.(2) ∵=λ=μa,∴M, N, F2三点共线,且直线 MN的斜率为, ∴直线 MN的方程为 y=( x- 1),与椭圆方程联立得7x2- 12x+4=0,设 M( x1, y1), N( x2, y2),∴==.设 P( cosθ,sinθ),到直线的距离d= = ,∴P MN ∴d max=,△ MNP的最大值为|MN| · max.∴S d =例 2 [ 思路点拨 ] (1) 第一依据抛物线的准线方程可求得 a 的值,而后依据椭圆的离心率联合a2=b2+c2可求得 b 的值,由此求得椭圆 C 和抛物线 C 的方程;(2)由题意知直线的斜率必定存在, 由此设直线l : y=kx+2, 代1 2入椭圆的方程 , 消去y获得对于x的一元二次方程 , 而后利用鉴别式大于零及根与系数的关系, 利用“O在以线段 PQ为直径的圆的外面”等价于“· >0”成立不等式,求得 k 的取值范围 .解 :(1) 由题意得= , 2, 故抛物线 2 的方程为 2 2y.又e= =,∴c=, 1, 从而椭圆 1 的方程为∴a= C x =- ∴b= C+y2=1.(2)明显直线 x=0不知足题设条件,故可设直线 l : y=kx+2, P( x1, y1), Q( x2, y2) .由得 (1 +4k2) x2+16kx+12=0.∵2 2∴k∈-∞,-∪,+∞ , =(16 k) - 4×12(1 +4k ) >0,x1 +x2=, x1x2=,依据题意 , 得 0°<∠POQ<90°, 即·>0,∴·=x1x2+y1y2=x1x2+( kx1+2)( kx2+2) =(1 +k2) x1x2+2k( x1+x2) +4=+2k×+4=>0,解得- 2<k<2.综上得 k∈- 2, -∪,2.变式题解:(1) 由题知F ,0 , 3 2+,|FD|= |FA|=34 , 则D3 4 ,0, 的中= + + + p + + p+ FD点坐标为+2+,0 , 则+2+=3+2, 解得p=2, 故C的方程为y2=4x.(2) 证明 : 依题可设直线AB 的方程为0(≠ 0), ( 1,y 1), ( 2, y2),则 (2,-y 2).x=my+x m A x B x E x由消去 x , 得244 0 0,由于x 0≥ ,因此1621600,y - my- x = = m+ x >y 1 +y 2=4m , y 1y 2=- 4x 0 .设 P 的坐标为 ( x P ,0), 则=( x 2-x P , -y 2), =( x 1-x P , y 1) .由题知∥ , 因此 ( x 2-x P ) y 1+y 2( x 1-x P ) =0,即 x 2y 1+y 2x 1== =( y 1+y 2) x P ,明显 y 1+y 2=4m ≠0, 因此 x P ==-x 0, 即证得点 P 的坐标为 ( -x 0,0) .由题知△ EPB 为等腰直角三角形 , 因此 k AP =1, 即=1, 即=1,222, x 0<1.因此 y 1-y 2=4, 因此 ( y 1+y 2) - 4y 1y 2=16, 即 16m+16x 0 =16, 则 m=1-x 0 又由于 x 0≥ , 因此 ≤ x 0<1.d= = =,令=t ∈ 1,, 则 x 0=2-t 2, d= = - 2t , 易知 f ( t ) = - 2t 在 1, 上是减函数 , 因此 d ∈,2 .例 3 [ 思路点拨 ] (1) 设经过焦点的直线 AB 的方程为 y=k x- ( k ≠ 0), 联立直线的方程和抛物线的方程,利用韦达定理以及斜率之积等于-p 求出 p 的值 , 由此求得抛物线方程 ;(2) 利用 (1) 求得 M 点的坐标 , 利用直线 OM 的方程求出 D 点的坐标 , 二者横坐标的比值大于2,得证 .解 :(1) 设 A ( x , y ), B ( x , y ), 直线 AB ( 不垂直于 x 轴 ) 的方程可设为 y=k x- ( k ≠0) .1122∵ 直线 过点 F 且与抛物线 C 交于 , 两点 ,ABA B∴ =2px 1 , =2px 2.∵直线与的斜率之积为,∴,∴2, 得 1 2 4 OA OB -p =-p =p x x = .由得 k2x2- ( k2p+2p) x+=0,此中( 2 2 ) 2 2 2 2 0, ∴x+x = , x x = ,1 2 1 2∴p=4,∴抛物线 C的方程为 y2=8x.(2) 证明 : 设M( x0, y0), D( x3, y3), ∵M为线段AB的中点 ,∴x=( x +x = =,y =k x - =,0 12) 0 (02)∴直线 OD的斜率 k OD= =,∴直线 OD的方程为 y=x,代入抛物线方程y2=8x, 得 x3=, ∴=k2+2,2∴2∵k>0, = =k +2>2.变式题解:(1) 依题意得= , 1, 222, + = a =b +c解得 a2=4, b2=2,故椭圆 C的方程为+=1.(2) 证明 : 由椭圆的对称性, 不如假定存在k>0,使得= .由题意得a2=2b2,则椭圆 C:+ =1,联立直线l 与椭圆 C的方程可得(1 +2k2) x2+4kbx=0,解得 x P=-, 因此=×,由于 BP⊥BQ,因此=×=×,由于= ,因此2×=×, 即 2k3- 2k2+4k- 1=0.记f ( )232 2 4 1, 由于0, 0, 因此函数f存在零点 , x = x - x + x- f < f >因此存在k∈R,使得= .【备选原因】例 1 考察直线与抛物线的地点关系, 以及面积最值的求解 ; 例 2 以抛物线为载体, 综合考察动点的轨迹问题、对称问题及范围问题;例3第(2) 问要点在于对地点关系的考察, 将证明共线问题转变为斜率问题 .1 [配合例 1 使用 ] [ 2017·云南师范大学隶属中学月考 ] 已知抛物线 :2 2 ( 0), 圆 :( 2)2 2 4,C y = px p> M x- +y = 圆心到抛物线准线的距离为3,点 ( 0,y 0)( x 0≥5)是抛物线在第一象限上的点, 过点P 作圆的两条切线 , M P x M分别与 x 轴交于A, B两点 .(1)求抛物线 C的方程;(2)求△ PAB面积的最小值 .解 :(1)由题知2+ =3,得p=2,∴抛物线方程为y2=4x.(2) 设切线方程为y-y 0=k( x-x 0), k≠0,令 y=0,解得 x=x0-,∴ 切线与 x 轴的交点为,0,x -圆心 (2,0) 到切线的距离 d= =2, ∴(2 k+y 0-kx 0) 2=4( k 2+1),整理得 (- 4x 0) k 2+(4 y 0- 2x 0y 0) k+ - 4=0.设两条切线的斜率分别为 k 1, k 2, 则 k 1+k 2= , k 1·k 2=,∴S =x -- x -·y ==2 =2=2 ( x - 1) + +2 .△ PAB记 t=x 0- 1∈ [4, +∞ ), 则 f ( t ) =t+ +2.∵f' ( t ) =1- =>0, ∴f ( t ) 在 [4, +∞) 上单一递加 , ∴f (t ) ≥ 4+ +2= , ∴S △ PAB ≥ 2× = ,∴△ PAB 面积的最小值为 .2 [ 配合例 2 使用 ] [ 2017·安徽江南十校联考 ] 在平面直角坐标系 xOy 中 , 点 M 到点 F (1,0) 的距离比它到 y 轴的距离大 1.(1) 求点 M 的轨迹 C 的方程 ;(2) 若在y 轴右边 , 曲线 C 上存在两点对于直线x- 2 0对称,求 的取值范围.y-m= m 解 :(1) 设点 M 的坐标为 ( x , y ) .由题意得= +1,即 = +1,化简得 y 2=4x ( x ≥ 0) 或 y=0( x<0),∴点 M 的轨迹 C 的方程为 y 2=4x ( x ≥ 0) 或 y=0( x<0) .(2) 设在 y 轴右边 , 曲线 C 上的两点 A ( x 1, y 1), B ( x 2, y 2)( x 1>0, x 2>0) 对于直线 x- 2y-m=0 对称 , 则可设直线 AB 的方程为 2x+y+n=0.由得 y 2+2y+2n=0, 则 4- 8n>0 且 y 1+y 2=-2,∴n< , 线段的中点为 P, - 1.AB∵P 在直线 x- 2y-m=0 上 , ∴ +2-m=0, 即 m=- .∵n< , ∴m>, 即 m 的取值范围为, +∞ .3 [ 配合例 3 使用 ] [ 2017·皖南一模 ] 如下图 , 已知椭圆 C : +y 2=1 的左极点为A , 右焦点为 F , O 为原 点 , , 是 y 轴上的两个动点 , 且⊥ , 直线 和 分别与椭圆C 交于 ( 异于 ), ( 异于 ) 两点.M NMF NF AM AN E M D N(1) 求△ MFN 面积的最小值 ;(2) 证明 : E , O , D 三点共线 .解 :(1) 易知 F (1,0), 设 M (0, t 1), N (0, t 2),⊥ ,1 120,得1 2=- 1,∵MF NF ∴ ·= +t t =t t∴S = ×1×|t-t 2|= ( |t |+|t|)≥ ×2=1,△ MFN112当且仅当 t 1=-t 2=1 时取等号 ,∴△ MFN 面积的最小值为 1.(2) 证明:易知 (,0).A -设 (0, t ), 由 (1) 可得N 0, - ( t ≠±1),M直线 AM , AN 的方程分别为y= x+t , y=- x- ,联立化简得 (1 +t 2) x 2+2 t 2x+2t 2- 2=0,∴- x E=, 可得x E=, y E=×+t=, 可得k OE=.联立化简得 (1 +t2) x2+2x+2- 2t 2 =0,可得 - x D=, 解得x D=, y D=-×- =, 可得k OD=, ∴k OE=k OD,∴E, O, D三点共线.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§9.8圆锥曲线的综合问题★知识梳理★1.直线与圆锥曲线C 的位置关系:将直线l 的方程代入曲线C 的方程,消去y 或者消去x ,得到一个关于x (或y )的方程ax 2+bx +c =0.(1)交点个数:①当 a =0或a≠0,⊿=0 时,曲线和直线只有一个交点;②当 a≠0,⊿>0时,曲线和直线有两个交点;③ 当⊿<0 时,曲线和直线没有交点。

(2) 弦长公式: 2.对称问题:曲线上存在两点关于已知直线对称的条件:①曲线上两点所在的直线与已知直线垂直(得出斜率)②曲线上两点所在的直线与曲线有两个公共点(⊿>0)③曲线上两点的中点在对称直线上。

3.求动点轨迹方程:①轨迹类型已确定的,一般用待定系数法;②动点满足的条件在题目中有明确的表述且轨迹类型未知的,一般用直接法;③一动点随另一动点的变化而变化,一般用代入转移法。

★重难点突破★重点:掌握直线与圆锥曲线的位置关系的判断方法及弦长公式;掌握弦中点轨迹的求法; 理解和掌握求曲线方程的方法与步骤,能利用方程求圆锥曲线的有关范围与最值 难点:轨迹方程的求法及圆锥曲线的有关范围与最值问题重难点:综合运用方程、函数、不等式、轨迹等方面的知识解决相关问题 1.体会“设而不求”在解题中的简化运算功能①求弦长时用韦达定理设而不求;②弦中点问题用“点差法”设而不求.2.体会数学思想方法(以方程思想、转化思想、数形结合思想为主)在解题中运用问题1:已知点1F 为椭圆15922=+y x 的左焦点,点)1,1(A ,动点P 在椭圆上,则||||1PF PA +的最小值为 .点拨:设2F 为椭圆的右焦点,利用定义将||1PF 转化为||2PF ,结合图形,||||6||||21PF PA PF PA -+=+,当2F A P 、、共线时最小,最小值为2-6★热点考点题型探析★考点1直线与圆锥曲线的位置关系 题型1:交点个数问题[例1 ] 设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A .[-21,21] B .[-2,2] C .[-1,1] D .[-4,4]【解题思路】解决直线与圆锥曲线的交点个数问题的通法为判别式法 [解析] 易知抛物线28y x =的准线2x =-与x 轴的交点为Q (-2 , 0), 于是,可设过点Q (-2 , 0)的直线l 的方程为(2)y k x =+,4)(1 ||1||212212122x x x x k x x k AB ⋅-+⋅+=-⋅+=联立222228,(48)40.(2),y x k x k x k y k x ⎧=⇒+-+=⎨=+⎩ 其判别式为2242(48)1664640k k k ∆=--=-+≥,可解得 11k -≤≤,应选C. 【名师指引】(1)解决直线与圆锥曲线的交点问题的方法:一是判别式法;二是几何法(2)直线与圆锥曲线有唯一交点,不等价于直线与圆锥曲线相切,还有一种情况是平行于对称轴(抛物线)或平行于渐近线(双曲线)(3)联立方程组、消元后得到一元二次方程,不但要对∆进行讨论,还要对二次项系数是否为0进行讨论【新题导练】1. (09摸底)已知将圆228x y +=上的每一点的纵坐标压缩到原来的12,对应的横坐标不变,得到曲线C ;设)1,2(M ,平行于OM 的直线l 在y 轴上的截距为m (m ≠0),直线l 与曲线C 交于A 、B 两个不同点. (1)求曲线C 的方程;(2)求m 的取值范围.[解析](1)设圆上的动点为)','('y x P 压缩后对应的点为),(y x P ,则⎩⎨⎧==yy xx 2'',代入圆的方程得曲线C 的方程:12822=+y x(2)∵直线l 平行于OM ,且在y 轴上的截距为m,又21=OM K , ∴直线l 的方程为m x y +=21. 由221,2 1.82y x m x y ⎧=+⎪⎪⎨⎪+=⎪⎩, 得 222240x mx m ++-= ∵直线l 与椭圆交于A 、B 两个不同点,∴22(2)4(24)0,m m ∆=--> 解得220m m -<<≠且.∴m 的取值范围是2002m m -<<<<或. 题型2:与弦中点有关的问题[例2](08韶关调研)已知点A 、B 的坐标分别是(1,0)-,(1,0).直线,AM BM 相交于点M ,且它们的斜率之积为-2. (Ⅰ)求动点M 的轨迹方程;(Ⅱ)若过点1(,1)2N 的直线l 交动点M 的轨迹于C 、D 两点, 且N 为线段CD 的中点,求直线l 的方程. 【解题思路】弦中点问题用“点差法”或联立方程组,利用韦达定理求解 [解析] (Ⅰ)设(,)M x y , 因为2AM BM k k ⋅=-,:()22221x y x +=≠±(Ⅱ) 设1122(,),(,)C x y D x y 当直线l ⊥x 轴时,l 的方程为12x =,则11((,22C D ,它的中点不是N ,不合题意设直线l 的方程为11()2y k x -=- 将1122(,),(,)C x y D x y 代入()22221x y x +=≠±得221122x y +=…………(1) 222222x y += (2)(1)-(2)整理得:12121212122()12()212y y x x k x x y y ⨯-+==-=-=--+⨯ 直线l 的方程为111()22y x -=--即所求直线l 的方程为230x y +-= 解法二: 当直线l ⊥x 轴时,直线l 的方程为12x =,则11(,(,2222C D -, 其中点不是N ,不合题意.故设直线l 的方程为11()2y k x -=-,将其代入()22221x y x +=≠±化简得222(2)2(1)(1)2022k k k x k x ++-+--=由韦达定理得222212221224(1)4(2)[(1)2]0(1)222(1)2(2)2(1)22(3)2k k k k k k x x k k x x k ⎧--+-->⎪⎪⎪-⎪+=-⎨+⎪⎪--⎪⋅=⎪+⎩,又由已知N 为线段CD 的中点,得122(1)222kk x x k -+=-+12=,解得12k =-, 将12k =-代入(1)式中可知满足条件.此时直线l 的方程为111()22y x -=--,即所求直线l 的方程为230x y +-=【名师指引】通过将C 、D 的坐标代入曲线方程,再将两式相减的过程,称为代点相减.这里,代点相减后,适当变形,出现弦PQ 的斜率和中点坐标,是实现设而不求(即点差法)的关键.两种解法都要用到“设而不求”,它对简化运算的作用明显,用“点差法”解决弦中点问题更简洁 【新题导练】2.椭圆141622=+y x 的弦被点)1,2(P 所平分,求此弦所在直线的方程。

[解析]设弦所在直线与椭圆交于),(),,(2211y x N y x M 两点,则14162121=+y x ,14162222=+y x ,两式相减得:041622122212=-+-y y x x , 化简得0))((4))((21212121=-++-+y y y y x x x x , 把2,42121=+=+y y x x 代入得212112-=--=x x y y k MN故所求的直线方程为)2(211--=-x y ,即042=-+y x3.已知直线y =-x +1与椭圆)0(12222>>=+b a by a x 相交于A 、B 两点,且线段AB 的中点在直线L :x-2y =0上,求此椭圆的离心率[解析] 设),(),,(2211y x B y x A ,AB 的中点为),(00y x M ,代入椭圆方程得1221221=+by a x ,1222222=+b y a x ,两式相减,得2212122121y y x x b x x a y y -+=--+.AB 的中点为),(00y x M 在直线l 上,0200=-∴y x ,222002121==++∴y x y y x x ,而11221-==--AB k x x y y222122=∴=∴e a b 题型3:与弦长有关的问题[例3](山东泰州市联考)已知直线k x y +=2被抛物线y x 42=截得的弦长AB 为20,O 为坐标原点.(1)求实数k 的值;(2)问点C 位于抛物线弧AOB 上何处时,△ABC 面积最大?【解题思路】用“韦达定理”求弦长;考虑△ABC 面积的最大值取得的条件[解析](1)将k x y +=2代入y x 42=得0482=--k x x , 由△01664>+=k 可知4->k ,弦长AB 2016645=+⨯=k ,解得1=k ;(2)当1=k 时,直线为12+=x y ,要使得内接△ABC 面积最大,则只须使得2241=⨯='C Cx y ,即4=C x ,即C 位于(4,4)点处. 【名师指引】用“韦达定理”不要忘记用判别式确定范围 【新题导练】4. (山东省济南市高三统一考试)已知椭圆22122:1(0)x y C a b a b+=>>与直线10x y +-=相交于两点A B 、.(1)当椭圆的半焦距1c =,且222,,a b c 成等差数列时,求椭圆的方程; (2)在(1)的条件下,求弦AB 的长度||AB ;[解析](1)由已知得:2222222b a c b c =+=+,∴222,3b a ==所以椭圆方程为:22132x y +=(2)1122(,),(,)A x y B x y ,由2223610x y x y ⎧+=⎨+-=⎩,得25630x x --=∴121263,55x x x x +==-∴12|||AB x x =-==(文)已知点()A和)B,动点C 到A 、B 两点的距离之差的绝对值为2,点C 的轨迹与直线2y x =-交于D 、E 两点,求线段DE 的长.(文)解:根据双曲线的定义,可知C 的轨迹方程为2212y x -=.设()11,D x y ,()22,E x y ,联立222,1.2y x y x =-⎧⎪⎨-=⎪⎩得2460x x +-=.则12124,6x x x x +=-=-.所以12DE x =-==故线段DE 的长为 考点2:对称问题题型:对称的几何性质及对称问题的求法(以点的对称为主线,轨迹法为基本方法)【新题导练】[例4 ] 若直线l 过圆x 2+y 2+4x -2y =0的圆心M 交椭圆49:22y x C +=1于A 、B 两点,若A 、B 关于点M 对称,求直线l 的方程.[解析] )1,2(-M ,设),(),,(2211y x B y x A ,则2,42121=+-=+y y x x又1492121=+y x ,1492222=+y x ,两式相减得:04922122212=-+-y y x x , 化简得0))((9))((421212121=-++-+y y y y x x x x ,把2,42121=+-=+y y x x 代入得982112=--=x x y y k AB 故所求的直线方程为)2(211--=-x y ,即042=-+y x 所以直线l 的方程为 :8x -9y +25=0.5.已知抛物线y 2=2px 上有一内接正△AOB ,O 为坐标原点. 求证:点A 、B 关于x 轴对称;[解析]设),(),,(2211y x B y x A ,||||OB OA = ,22222121y x y x +=+∴22212122px x px x +=+∴,即0)2)((2121=++-p x x x x ,0,0,021>>>p x x ,21x x =∴,21y y -=,故点A 、B 关于x 轴对称6.在抛物线y 2=4x 上恒有两点关于直线y =kx +3对称,求k 的取值范围. [解析] (1)当0=k 时,曲线上不存在关于直线对称的两点.(2)当k≠0时,设抛物线y 2=4x 上关于直线对称的两点),(),,(2211y x B y x A ,AB 的中点为),(00y x M ,则直线AB 直线的斜率为直线k1-,可设b x k y AB +-=1:代入y 2=4x 得0442=-+kb ky y =∆016162>+kb k )(*kb y y k y y 4,42121-=⋅-=+k x x k y -=+-=210,2kb y y 2)(21++kb k 242+=,kb k x +=202M 在直线y =kx +3上,3)2(22++=-∴kb k k k kk bk 3222---=∴, 代入)(*得即01)3)(1(2<⋅+-+kk k k ,又032>+-k k 恒成立,所以-1<k <0. 综合(1)(2),k 的取值范围是(-1,0) 考点3 圆锥曲线中的范围、最值问题 题型:求某些变量的范围或最值[例5]已知椭圆22122:1(0)x y C a b a b+=>>与直线10x y +-=相交于两点A B 、.当椭圆的离心率e满足32e ≤≤,且0OA OB ⋅= (O 为坐标原点)时,求椭圆长轴长的取值范围. 【解题思路】通过“韦达定理”沟通a 与e 的关系[解析]由22222210b x a y a b x y ⎧+=⎨+-=⎩,得222222()2(1)0a b x a x a b +-+-=由22222(1)0a b a b =+-> ,得221a b +>此时222121222222(1),a a b x x x x a b a b-+==++ 由0OA OB ⋅=,得12120x x y y +=,∴12122()10x x x x -++=即222220a b a b +-=,故22221a b a =-由222222c a b e a a-==,得2222b a a e =-∴221211a e =+-由32e ≤≤得25342a ≤≤2a ≤≤所以椭圆长轴长的取值范围为 【名师指引】求范围和最值的方法:几何方法:充分利用图形的几何特征及意义,考虑几何性质解决问题 代数方法:建立目标函数,再求目标函数的最值. 【新题导练】7. 已知P 是椭圆C :12422=+y x 的动点,点)0,21(A 关于原点O 的对称点是B ,若|PB|的最小值为23,求点P 的横坐标的取值范围。

相关文档
最新文档