中考数学每日一练:频数(率)分布直方图练习题及答案_2020年填空题版

合集下载

中考数学每日一练:含30度角的直角三角形练习题及答案_2020年填空题版

中考数学每日一练:含30度角的直角三角形练习题及答案_2020年填空题版

中考数学每日一练:含30度角的直角三角形练习题及答案_2020年填空题版答案答案答案答案2020年中考数学:图形的性质_三角形_含30度角的直角三角形练习题~~第1题~~(2020郑州.中考模拟) 如图,在Rt △ABC 中,∠ACB=90°,∠A =30°,AC =,分别以点A ,B 为圆心,AC ,BC的长为半径画弧,交AB 于点D ,E ,则图中阴影部分的面积是________.考点: 含30度角的直角三角形;几何图形的面积计算-割补法;扇形面积的计算;~~第2题~~(2020玉林.中考模拟) 如图所示,在四边形ABCD 中,AB ∥CD ,AD ⊥CD ,点E 、F 分别是AB ,BC 的中点,AB=4,E F=2,∠B=60°,则CD 的长为________.考点: 等边三角形的判定与性质;含30度角的直角三角形;~~第3题~~(2020乌鲁木齐.中考模拟) 如图,在矩形中,. 若将绕点旋转后,点落在延长线上的点 处,点 经过的路径为 ,则图中阴影部分的面积为________.考点: 三角形的面积;含30度角的直角三角形;勾股定理;扇形面积的计算;~~第4题~~(2019蒙自.中考模拟) 如图:∠DAE=∠ADE=15°,DE ∥AB ,DF ⊥AB ,若AE=8,则DF 等于________.考点: 角平分线的性质;含30度角的直角三角形;~~第5题~~(2019抚顺.中考真卷)如图,直线的解析式是,直线的解析式是 ,点在上,的横坐标为,作交于点 ,点在 上,以, 为邻边在直线,间作菱形,分别以点 ,为圆心,以为半径画弧得扇形和扇形 ,记扇形与扇形重叠部分的面积为;延长交于点,点在上,以,为邻边在, 间作菱形,分别以点,为圆心,以为半径画弧得扇形和扇形 ,记扇形 与扇形 重叠部分的面积为 按照此规律继续作下去,则 __.(用含有正整数 的式子表示)答案答案答案答案答案考点: 探索图形规律;等边三角形的判定与性质;含30度角的直角三角形;菱形的性质;扇形面积的计算;~~第6题~~(2019葫芦岛.中考真卷) 如图,河的两岸a ,b 互相平行,点A ,B ,C 是河岸b 上的三点,点P 是河岸a 上的一个建筑物,某人在河岸b 上的A 处测得∠PAB =30°,在B 处测得∠PBC =75°,若AB =80米,则河两岸之间的距离约为________米.( ≈1.73,结果精确到0.1米)考点: 等腰直角三角形;含30度角的直角三角形;~~第7题~~(2019丹东.中考真卷) 如图,在△ABC 中,∠C =90°,DE 是AB 的垂直平分线,AD 恰好平分∠BAC.若DE =1,则BC 的长是________.考点: 角平分线的性质;线段垂直平分线的性质;含30度角的直角三角形;~~第8题~~(2019朝阳.中考真卷) 如图,把三角形纸片折叠,使点A 、点C 都与点B 重合,折痕分别为EF,DG ,得到,,若 ,则FG 的长为________.考点: 含30度角的直角三角形;三角形中位线定理;翻折变换(折叠问题);~~第9题~~(2019宿迁.中考真卷) 如图,,若的顶点在射线上,且,点在射线上运动,当是锐角三角形时, 的取值范围是________.考点: 垂线段最短;含30度角的直角三角形;勾股定理;答案~~第10题~~(2019南京.中考真卷) 在△ABC 中,AB =4,∠C =60°,∠A >∠B ,则BC 的长的取值范围是________.考点: 等边三角形的性质;含30度角的直角三角形;圆周角定理;2020年中考数学:图形的性质_三角形_含30度角的直角三角形练习题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:。

辽宁省2019年、2020年中考数学试题分类汇编——统计与概率(含答案)

辽宁省2019年、2020年中考数学试题分类汇编——统计与概率(含答案)

2019年、2020年数学中考试题分类——统计与概率一.全面调查与抽样调查(共2小题)1.(2019•朝阳)下列调查中,调查方式最适合普查(全面调查)的是()A.对全国初中学生视力情况的调查B.对2019年央视春节联欢晚会收视率的调查C.对一批飞机零部件的合格情况的调查D.对我市居民节水意识的调查2.(2019•抚顺)下列调查中,最适合采用全面调查的是()A.对全国中学生视力和用眼卫生情况的调查B.对某班学生的身高情况的调查C.对某鞋厂生产的鞋底能承受的弯折次数的调查D.对某池塘中现有鱼的数量的调查二.频数(率)分布直方图(共1小题)3.(2020•鞍山)为了解某校学生的睡眠情况,该校数学小组随机调查了部分学生一周的平均每天睡眠时间,设每名学生的平均每天睡眠时间为x时,共分为四组:A.6≤x<7,B.7≤x<8,C.8≤x<9,D.9≤x≤10,将调查结果绘制成如图两幅不完整的统计图:注:学生的平均每天睡眠时间不低于6时且不高于10时.请回答下列问题:(1)本次共调查了名学生;(2)请补全频数分布直方图;(3)求扇形统计图中C组所对应的圆心角度数;(4)若该校有1500名学生,根据抽样调查结果,请估计该校有多少名学生平均每天睡眠时间低于7时.三.扇形统计图(共2小题)4.(2020•阜新)在“尚科学,爱运动”主题活动中,某校在七年级学生中随机抽取部分同学就“一分钟跳绳”进行测试,并将测试成绩x(单位:次)进行整理后分成六个等级,分别用A,B,C,D,E,F表示,并绘制成如图所示的两幅不完整的统计图表.请根据图表中所给出的信息解答下列问题:组别成绩x(单位:次)人数A70≤x<904B90≤x<11015C110≤x<13018D130≤x<15012E150≤x<170mF170≤x<1905(1)本次测试随机抽取的人数是人,m=;(2)求C等级所在扇形的圆心角的度数;(3)若该校七年级学生共有300人,且规定不低于130次的成绩为优秀,请你估计该校七年级学生中有多少人能够达到优秀.5.(2020•盘锦)某校为了解学生课外阅读时间情况,随机抽取了m名学生,根据平均每天课外阅读时间的长短,将他们分为A,B,C,D四个组别,并绘制了如图不完整的频数分布表和扇形统计图.频数分布表组别时间/(小时)频数/人数A0≤t<0.52nB0.5≤t<120C1≤t<1.5n+10D t≥1.55请根据图表中的信息解答下列问题:(1)求m与n的值,并补全扇形统计图;(2)直接写出所抽取的m名学生平均每天课外阅读时间的中位数落在的组别;(3)该校现有1500名学生,请你估计该校有多少名学生平均每天课外阅读时间不少于1小时.四.条形统计图(共4小题)6.(2020•朝阳)由于疫情的影响,学生不能返校上课,某校在直播授课的同时还为学生提供了四种辅助学习方式:A网上自测,B网上阅读,C网上答疑,D网上讨论.为了解学生对四种学习方式的喜欢情况,该校随机抽取部分学生进行问卷调查,规定被调查学生从四种方式中选择自己最喜欢的一种,根据调查结果绘制成如图两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)本次共调查了名学生;(2)在扇形统计图中,m的值是,D对应的扇形圆心角的度数是;(3)请补全条形统计图;(4)若该校共有2000名学生,根据抽样调查的结果,请你估计该校最喜欢方式D的学生人数.7.(2020•锦州)某中学八年级在新学学期开设了四门校本选修课程:A.轮滑;B.书法;C.舞蹈;D.围棋,要求每名学生必须选择且只能选择其中一门课程,学校随机抽查了部分八年级学生,对他们的课程选择情况进行了统计,并绘制了如图两幅不完整的统计图.请根据统计图提供的信息,解答下列问题:(1)此次共抽查了名学生;(2)请通过计算补全条形统计图;(3)若该校八年级共有900名学生,请估计选择C课程的有多少名学生.8.(2020•沈阳)某市为了将生活垃圾合理分类,并更好地回收利用,将垃圾分为可回收物、厨余垃圾、有害垃圾和其他垃圾四类.现随机抽取该市m吨垃圾,将调查结果制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)m=,n=;(2)根据以上信息直接补全条形统计图;(3)扇形统计图中,厨余垃圾所对应的扇形圆心角的度数为度;(4)根据抽样调查的结果,请你估计该市2000吨垃圾中约有多少吨可回收物.9.(2020•丹东)某校为了解疫情期间学生居家学习情况,以问卷调查的形式随机调查了部分学生居家学习的主要方式(每名学生只选最主要的一种),并将调查结果绘制成如图不完整的统计图.种类A B C D E学习方式老师直播教学课程国家教育云平台教学课程电视台播放教学课程第三方网上课程其他根据以上信息回答下列问题:(1)参与本次问卷调查的学生共有人,其中选择B类型的有人.(2)在扇形统计图中,求D所对应的圆心角度数,并补全条形统计图.(3)该校学生人数为1250人,选择A、B、C三种学习方式大约共有多少人?五.折线统计图(共1小题)10.(2020•阜新)如图,是小明绘制的他在一周内每天跑步圈数的折线统计图.下列结论正确的是()A .众数是9B .中位数是8.5C .平均数是9D .方差是7六.加权平均数(共2小题)11.(2019•铁岭)某公司招聘职员,公司对应聘者进行了面试和笔试(满分均为100分),规定笔试成绩占40%,面试成绩占60%.应聘者蕾蕾的笔试成绩和面试成绩分别为95分和90分,她的最终得分是( ) A .92.5分B .90分C .92分D .95分12.(2020•大连)某公司有10名员工,他们所在部门及相应每人所创年利润如下表所示.部门人数每人所创年利润/万元A 1 10B 2 8 C75这个公司平均每人所创年利润是 万元. 七.中位数(共2小题)13.(2020•辽阳)一组数据1,8,8,4,6,4的中位数是( ) A .4B .5C .6D .814.(2019•抚顺)一组数据1,3,﹣2,3,4的中位数是( ) A .1B .﹣2C .12D .3八.众数(共9小题)15.(2020•锦州)某校足球队有16名队员,队员的年龄情况统计如下:年龄/岁 13 14 15 16 人数3562则这16名队员年龄的中位数和众数分别是( )A.14,15B.15,15C.14.5,14D.14.5,15 16.(2020•朝阳)某书店与一山区小学建立帮扶关系,连续6个月向该小学赠送书籍的数量分别如下(单位:本):300,200,200,300,300,500这组数据的众数、中位数、平均数分别是()A.300,150,300B.300,200,200C.600,300,200D.300,300,30017.(2020•葫芦岛)一组数据1,4,3,1,7,5的众数是()A.1B.2C.2.5D.3.5 18.(2020•鞍山)我市某一周内每天的最高气温如下表所示:最高气温(℃)25262728天数1123则这组数据的中位数和众数分别是()A.26.5和28B.27和28C.1.5和3D.2和3 19.(2019•盘锦)在中考体育加试中,某班30名男生的跳远成绩如下表:成绩/m 1.95 2.00 2.05 2.10 2.15 2.25人数239853这些男生跳远成绩的众数、中位数分别是()A.2.10,2.05B.2.10,2.10C.2.05,2.10D.2.05,2.05 20.(2019•铁岭)为了建设“书香校园”,某班开展捐书活动,班长将本班44名学生捐书情况统计如下:捐书本数2345810捐书人数25122131该组数据捐书本数的众数和中位数分别为()A.5,5B.21,8C.10,4.5D.5,4.5 21.(2019•丹东)在从小到大排列的五个整数中,中位数是2,唯一的众数是4,则这五个数和的最大值是()A.11B.12C.13D.14 22.(2019•朝阳)李老师为了了解本班学生每周课外阅读文章的数量,抽取了7名同学进行调查,调查结果如下(单位:篇/周):,其中有一个数据不小心被墨迹污损.已知这组数据的平均数为4,那么这组数据的众数与中位数分别为()A.5,4B.3,5C.4,4D.4,5 23.(2019•葫芦岛)某校女子排球队12名队员的年龄分布如下表所示:年龄(岁)13141516人数(人)1254则该校女子排球队12名队员年龄的众数、中位数分别是()A.13,14B.14,15C.15,15D.15,14九.方差(共7小题)24.(2020•盘锦)在市运动会射击比赛选拔赛中,某校射击队甲、乙、丙、丁四名队员的10次射击成绩如图所示.他们的平均成绩均是9.0环,若选一名射击成绩稳定的队员参加比赛,最合适的人选是()A.甲B.乙C.丙D.丁25.(2020•辽阳)某校九年级进行了3次数学模拟考试,甲、乙、丙、丁4名同学3次数学成绩的平均分都是129分,方差分别是s甲2=3.6,s乙2=4.6,s丙2=6.3,s丁2=7.3,则这4名同学3次数学成绩最稳定的是()A .甲B .乙C .丙D .丁26.(2020•朝阳)临近中考,报考体育专项的同学利用课余时间紧张地训练,甲、乙两名同学最近20次立定跳远成绩的平均值都是2.58m ,方差分别是:S 甲2=0.075,S 乙2=0.04,这两名同学成绩比较稳定的是 (填“甲”或“乙”).27.(2020•葫芦岛)甲、乙两人参加“环保知识”竞赛,经过6轮比赛,他们的平均成绩都是97分.如果甲、乙两人比赛成绩的方差分别为s 甲2=6.67,s 乙2=2.50,则这6次比赛成绩比较稳定的是 .(填“甲”或“乙”)28.(2020•沈阳)甲、乙两人在相同条件下进行射击练习,每人10次射击成绩的平均值都是7环,方差分别为S 甲2=2.9,S 乙2=1.2,则两人成绩比较稳定的是 (填“甲”或“乙”).29.(2020•丹东)甲、乙两人进行飞镖比赛,每人投5次,所得平均环数相等,其中甲所得环数的方差为5,乙所得环数如下:2,3,5,7,8,那么成绩较稳定的是 (填“甲”或“乙”).30.(2020•营口)从甲、乙、丙三人中选拔一人参加职业技能大赛,经过几轮初赛选拔,他们的平均成绩都是87.9分,方差分别是S 甲2=3.83,S 乙2=2.71,S 丙2=1.52.若选取成绩稳定的一人参加比赛,你认为适合参加比赛的选手是 . 一十.统计量的选择(共1小题)31.(2019•阜新)商场经理调查了本商场某品牌女鞋一个月内不同尺码的销售量,如表:尺码/码 36 37 38 39 40 数量/双15281395商场经理最关注这组数据的( ) A .众数B .平均数C .中位数D .方差一十一.随机事件(共2小题)32.(2020•沈阳)下列事件中,是必然事件的是( ) A .从一个只有白球的盒子里摸出一个球是白球B .任意买一张电影票,座位号是3的倍数C .掷一枚质地均匀的硬币,正面向上D .汽车走过一个红绿灯路口时,前方正好是绿灯 33.(2019•盘锦)下列说法正确的是( )A .方差越大,数据波动越小B .了解辽宁省初中生身高情况适合采用全面调查C .抛掷一枚硬币,正面向上是必然事件D .用长为3cm ,5cm ,9cm 的三条线段围成一个三角形是不可能事件 一十二.概率公式(共5小题)34.(2020•阜新)掷一枚质地均匀的硬币5次,其中3次正面朝上,2次正面朝下,则再次掷出这枚硬币,正面朝下的概率是( ) A .1B .25C .35D .1235.(2020•大连)在一个不透明的袋子中有3个白球、4个红球,这些球除颜色不同外其他完全相同.从袋子中随机摸出一个球,它是红球的概率是( ) A .14B .13C .37D .4736.(2020•葫芦岛)一个不透明的口袋中有4个红球、2个白球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸到红球的概率是( ) A .16B .13C .12D .2337.(2020•丹东)四张背面完全相同的卡片,正面分别印有等腰三角形、圆、平行四边形、正六边形,现在把它们的正面向下,随机的摆放在桌面上,从中任意抽出一张,则抽到的卡片正面是中心对称图形的概率是( ) A .14B .12C .34D .138.(2020•锦州)在一个不透明的袋子中装有4个白球,a 个红球.这些球除颜色外都相同.若从袋子中随机摸出1个球,摸到红球的概率为23,则a = .一十三.列表法与树状图法(共9小题)39.(2020•锦州)A ,B 两个不透明的盒子里分别装有三张卡片,其中A 盒里三张卡片上分别标有数字1,2,3,B 盒里三张卡片上分别标有数字4,5,6,这些卡片除数字外其余都相同,将卡片充分摇匀.(1)从A 盒里抽取一张卡、抽到的卡片上标有数字为奇数的概率是 ; (2)从A 盒,B 盒里各随机抽取一张卡片,请用列表或画树状图的方法,求抽到的两张卡片上标有的数字之和大于7的概率.40.(2020•朝阳)某校准备组建“校园安全宣传队”,每班有两个队员名额,七年2班有甲、乙、丙、丁四位同学报名,这四位同学综合素质都很好,王老师决定采取抽签的方式确定人选.具体做法是:将甲、乙、丙、丁四名同学分别编号为1、2、3、4号,将号码分别写在4个大小、质地、形状、颜色均无差别的小球上,然后把小球放入不透明的袋子中,充分搅拌均匀后,王老师从袋中随机摸出两个小球,根据小球上的编号确定本班“校园安全宣传员”人选.(1)用画树状图或列表法,写出“王老师从袋中随机摸出两个小球”可能出现的所有结果.(2)求甲同学被选中的概率.41.(2020•盘锦)有四张正面分别标有数字1,2,3,4的不透明卡片,它们除数字外无其他差别,现将它们背面朝上洗匀.(1)随机抽取一张卡片,卡片上的数字是奇数的概率为.(2)随机抽取一张卡片,然后放回洗匀,再随机抽取一张卡片,请用列表或画树状图的方法,求两次抽取的卡片上的数字和等于6的概率.42.(2020•葫芦岛)某校计划组建航模、摄影、乐器、舞蹈四个课外活动小组,要求每名同学必须参加,并且只能选择其中一个小组.为了解学生对四个课外活动小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把此次调查结果整理并绘制成如图两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)本次被调查的学生有人;(2)请补全条形统计图,并求出扇形统计图中“航模”所对应的圆心角的度数;(3)通过了解,喜爱“航模”的学生中有2名男生和2名女生曾在市航模比赛中获奖,现从这4个人中随机选取2人参加省青少年航模比赛,请用列表或画树状图的方法求出所选的2人恰好是1名男生和1名女生的概率.43.(2020•鞍山)甲、乙两人去超市选购奶制品,有两个品牌的奶制品可供选购,其中蒙牛品牌有两个种类的奶制品:A.纯牛奶,B.核桃奶;伊利品牌有三个种类的奶制品:C.纯牛奶,D.酸奶,E.核桃奶.(1)甲从这两个品牌的奶制品中随机选购一种,选购到纯牛奶的概率是;(2)若甲喜爱蒙牛品牌的奶制品,乙喜爱伊利品牌的奶制品,甲、乙两人从各自喜爱的品牌中随机选购一种奶制品,请利用画树状图或列表的方法求出两人选购到同一种类奶制品的概率.44.(2020•沈阳)沈阳市图书馆推出“阅读沈阳书香盛京”等一系列线上线下相融合的阅读推广活动,需要招募学生志愿者.某校甲、乙两班共有五名学生报名,甲班一名男生,一名女生;乙班一名男生,两名女生.现从甲、乙两班各随机抽取一名学生作为志愿者,请用列表法或画树状图法求抽出的两名学生性别相同的概率.(温馨提示:甲班男生用A 表示,女生用B表示;乙班男生用a表示,两名女生分别用b1,b2表示).45.(2020•丹东)在一个不透明的口袋中装有4个依次写有数字1,2,3,4的小球,它们除数字外都相同,每次摸球前都将小球摇匀.(1)从中随机摸出一个小球,小球上写的数字不大于3的概率是.(2)若从中随机摸出一球不放回,再随机摸出一球,请用画树状图或列表的方法,求两次摸出小球上的数字和恰好是偶数的概率.46.(2020•营口)随着“新冠肺炎”疫情防控形势日渐好转,各地开始复工复学,某校复学后成立“防疫志愿者服务队”,设立四个“服务监督岗”:①洗手监督岗,②戴口罩监督岗,③就餐监督岗,④操场活动监督岗.李老师和王老师报名参加了志愿者服务工作,学校将报名的志愿者随机分配到四个监督岗.(1)李老师被分配到“洗手监督岗”的概率为;(2)用列表法或画树状图法,求李老师和王老师被分配到同一个监督岗的概率.47.(2020•辽阳)为培养学生的阅读习惯,某中学利用学生课外时间开展了以“走近名著”为主题的读书活动.为了有效了解学生课外阅读情况,现随机调查了部分学生每周课外阅读的时间,设被调查的每名学生每周课外阅读的总时间为x小时,将它分为4个等级:A(0≤x<2),B(2≤x<4),C(4≤x<6),D(x≥6),并根据调查结果绘制了如图两幅不完整的统计图:请你根据统计图的信息,解决下列问题:(1)本次共调查了名学生;(2)在扇形统计图中,等级D所对应的扇形的圆心角为°;(3)请补全条形统计图;(4)在等级D中有甲、乙、丙、丁4人表现最为优秀,现从4人中任选2人作为学校本次读书活动的宣传员,用列表或画树状图的方法求恰好选中甲和乙的概率.一十四.利用频率估计概率(共3小题)48.(2020•盘锦)为了解某地区九年级男生的身高情况,随机抽取了该地区1000名九年级男生的身高数据,统计结果如下:身高x/cm x<160160≤x<170170≤x<180x≥180人数60260550130根据以上统计结果,随机抽取该地区一名九年级男生,估计他的身高不低于170cm的概率是()A.0.32B.0.55C.0.68D.0.87 49.(2020•营口)某射击运动员在同一条件下的射击成绩记录如下:射击次数20801002004001000“射中九环以上”的次数186882168327823“射中九0.900.850.820.840.820.82环以上”的频率(结果保留两位小数)根据频率的稳定性,估计这名运动员射击一次时“射中九环以上”的概率约是()A.0.90B.0.82C.0.85D.0.84 50.(2019•阜新)一个不透明的袋子中有红球、白球共20个这些球除颜色外都相同将袋子中的球搅匀后,从中随意摸出1个球,记下颜色后放回,不断重复这个过程,共摸了100次,其中有30次摸到红球,由此可以估计袋子中红球的个数约为()A.12B.10C.8D.62019年、2020年辽宁省数学中考试题分类(13)——统计与概率参考答案与试题解析一.全面调查与抽样调查(共2小题)1.【解答】解:A、对全国初中学生视力情况的调查,适合用抽样调查,A不合题意;B、对2019年央视春节联欢晚会收视率的调查,适合用抽样调查,B不合题意;C、对一批飞机零部件的合格情况的调查,适合全面调查,C符合题意;D、对我市居民节水意识的调查,适合用抽样调查,D不合题意;故选:C.2.【解答】解:A、对全国中学生视力和用眼卫生情况的调查,适合抽样调查,故此选项错误;B、对某班学生的身高情况的调查,适合全面调查,故此选项正确;C、对某鞋厂生产的鞋底能承受的弯折次数的调查,适合抽样调查,故此选项错误;D、对某池塘中现有鱼的数量的调查,适合抽样调查,故此选项错误;故选:B.二.频数(率)分布直方图(共1小题)3.【解答】解:(1)本次共调查了17÷34%=50名学生,故答案为:50;(2)C组学生有50﹣5﹣18﹣17=10(名),补全的频数分布直方图如右图所示;(3)扇形统计图中C组所对应的圆心角度数是:360°×1050=72°,即扇形统计图中C组所对应的圆心角度数是72°;(4)1500×550=150(名),答:该校有150名学生平均每天睡眠时间低于7时.三.扇形统计图(共2小题)4.【解答】解:(1)15÷25%=60(人),m=60﹣4﹣15﹣18﹣12﹣5=6;答:本次测试随机抽取的人数是60人,故答案为60,6;(2)C等级所在扇形的圆心角的度数=360°×1860=108°,(3)该校七年级学生能够达到优秀的人数为300×12+6+560=115(人).故答案为:60,6.5.【解答】解:(1)m=20÷40%=50,2n+(n+10)=50﹣20﹣5,解得,n=5,A组所占的百分比为:2×5÷50×100%=20%,C组所占的百分比为:(5+10)÷50×100%=30%,补全的扇形统计图如右图所示;(2)∵A组有2×5=10(人),B组有20人,抽查的学生一共有50人,∴所抽取的m名学生平均每天课外阅读时间的中位数落在B组;(3)1500×5+10+550=600(名),答:该校有600名学生平均每天课外阅读时间不少于1小时.四.条形统计图(共4小题)6.【解答】解:(1)20÷40%=50(名); 故答案为:50;(2)15÷50×100%=30%,即m =30;1050×360°=72°;故答案为:30,72°;(3)50﹣20﹣15﹣10=5(名);(4)2000×1050=400(名).答:该校最喜欢方式D 的学生约有400名. 7.【解答】解:(1)这次学校抽查的学生人数是40÷80360=180(名), 故答案为:180名;(2)C 项目的人数为180﹣46﹣34﹣40=60(名) 条形统计图补充为:(3)估计全校选择C课程的学生有900×60180=300(名).8.【解答】解:(1)m=8÷8%=100,n%=100−30−2−8100×100%=60%,故答案为:100,60;(2)可回收物有:100﹣30﹣2﹣8=60(吨),补全完整的条形统计图如右图所示;(3)扇形统计图中,厨余垃圾所对应的扇形圆心角的度数为:360°×30100=108°,故答案为:108;(4)2000×60100=1200(吨),即该市2000吨垃圾中约有1200吨可回收物.9.【解答】解:(1)参与本次问卷调查的学生共有:240÷60%=400(人),其中选择B类型的有:400×10%=40(人);故答案为:400,40;(2)在扇形统计图中,D 所对应的圆心角度数为: 360°×(1﹣60%﹣10%﹣20%﹣6%)=14.4°, ∵400×20%=80(人), ∴选择C 种学习方式的有80人. ∴补全的条形统计图如下:(3)该校学生人数为1250人,选择A 、B 、C 三种学习方式大约共有: 1250×(60%+10%+20%)=1125(人).答:选择A 、B 、C 三种学习方式大约共有1125人. 五.折线统计图(共1小题)10.【解答】解:A .数据10出现的次数最多,即众数是10,故本选项错误; B .排序后的数据中,最中间的数据为9,即中位数为9,故本选项错误; C .平均数为:17(7+8+9+9+10+10+10)=9,故本选项正确;D .方差为17[(7﹣9)2+(8﹣9)2+(9﹣9)2+(9﹣9)2+(10﹣9)2+(10﹣9)2+(10﹣9)2]=87,故本选项错误; 故选:C .六.加权平均数(共2小题) 11.【解答】解:根据题意得: 95×40%+90×60%=92(分). 答:她的最终得分是92分. 故选:C .12.【解答】解:这个公司平均每人所创年利润是:110(10+2×8+7×5)=6.1(万).故答案为:6.1. 七.中位数(共2小题)13.【解答】解:一组数据1,4,4,6,8,8的中位数是4+62=5,故选:B .14.【解答】解:将这组数据从小到大排列为﹣2、1、3、3、4, 则这组数据的中位数为3, 故选:D . 八.众数(共9小题)15.【解答】解:共有16个数,最中间两个数的平均数是(14+15)÷2=14.5,则中位数是14.5;15出现了6次,出现的次数最多,则众数是15; 故选:D .16.【解答】解:众数:一组数据中出现次数最多的数据为这组数据的众数,这组数据中300出现了3次,次数最多,所以众数是300;中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,6个数据按顺序排列之后,处于中间的数据是300,300,所以中位数是300+3002=300;平均数是x =16(200+200+300+300+300+500)=300, 故选:D .17.【解答】解:本题中数据1出现了2次,出现的次数最多,所以本组数据的众数是1. 故选:A .18.【解答】解:共7天,中位数应该是排序后的第4天, 则中位数为:27, 28℃的有3天,最多, 所以众数为:28. 故选:B .19.【解答】解:由表可知,2.05出现次数最多,所以众数为2.05; 由于一共调查了30人,所以中位数为排序后的第15人和第16人的平均数,即:2.10. 故选:C .20.【解答】解:由表可知,5出现次数最多,所以众数为5; 由于一共调查了44人,所以中位数为排序后的第22和第23个数的平均数,即:5. 故选:A .21.【解答】解:因为五个整数从小到大排列后,其中位数是2,这组数据的唯一众数是4. 所以这5个数据分别是x ,y ,2,4,4,且x <y <2,当这5个数的和最大时,整数x ,y 取最大值,此时x =0,y =1, 所以这组数据可能的最大的和是0+1+2+4+4=11. 故选:A .22.【解答】解:设被污损的数据为x , 则4+x +2+5+5+4+3=4×7, 解得x =5,∴这组数据中出现次数最多的是5,即众数为5篇/周, 将这7个数据从小到大排列为2、3、4、4、5、5、5, ∴这组数据的中位数为4篇/周, 故选:A .23.【解答】解:∵这组数据中15出现5次,次数最多, ∴众数为15岁,中位数是第6、7个数据的平均数, ∴中位数为15+152=15岁,故选:C .九.方差(共7小题)24.【解答】解:∵四人的平均成绩相同,而观察图形可知,乙和丙的波动较大, ∴应在丁和甲中做出选择. ∵丁有两次成绩恰好为平均成绩,∴丁比甲稳定.故选:D .25.【解答】解:∵s 甲2=3.6,s 乙2=4.6,s 丙2=6.3,s 丁2=7.3,且平均数相等, ∴s 甲2<s 乙2<s 丙2<s 丁2,∴这4名同学3次数学成绩最稳定的是甲, 故选:A .26.【解答】解:∵S 甲2=0.075,S 乙2=0.04 ∴S 甲2>S 乙2∴乙的波动比较小,乙比较稳定 故答案为:乙.27.【解答】解:∵s 甲2=6.67,s 乙2=2.50, ∴s 甲2>s 乙2,∴这6次比赛成绩比较稳定的是乙, 故答案为:乙.28.【解答】解:∵x 甲=7=x 乙,S 甲2=2.9,S 乙2=1.2, ∴S 甲2>S 乙2, ∴乙的成绩比较稳定, 故答案为:乙. 29.【解答】解:∵x 乙=2+3+5+7+85=5,∴S 乙2=15×[(2﹣5)2+(3﹣5)2+(5﹣5)2+(7﹣5)2+(8﹣5)2]=265, ∵S 甲2=5<S 乙2,∴成绩较稳定的是甲, 故答案为:甲.30.【解答】解:∵平均成绩都是87.9分,S 甲2=3.83,S 乙2=2.71,S 丙2=1.52, ∴S 丙2<S 乙2<S 甲2, ∴丙选手的成绩更加稳定, ∴适合参加比赛的选手是丙, 故答案为:丙.一十.统计量的选择(共1小题)31.【解答】解:对这个商场的经理来说,最关注的是哪一型号的卖得最多,即是这组数据故选:A .一十一.随机事件(共2小题)32.【解答】解:A 、从一个只有白球的盒子里摸出一个球是白球,是必然事件; B 、任意买一张电影票,座位号是3的倍数,是随机事件; C 、掷一枚质地均匀的硬币,正面向上,是随机事件;D 、汽车走过一个红绿灯路口时,前方正好是绿灯,是随机事件; 故选:A .33.【解答】解:A 、方差越大,数据波动越大,故本选项错误; B 、了解辽宁省初中生身高情况适合采用抽样调查,故本选项错误; C 、抛掷一枚硬币,正面向上是不确定事件,故本选项错误;D 、用长为3cm ,5cm ,9cm 的三条线段围成一个三角形是不可能事件,故本选项正确; 故选:D .一十二.概率公式(共5小题)34.【解答】解:∵掷质地均匀硬币的试验,每次正面向上和向下的概率相同, ∴再次掷出这枚硬币,正面朝下的概率是12.故选:D .35.【解答】解:根据题意可得:袋子中有3个白球,4个红球,共7个, 从袋子中随机摸出一个球,它是红球的概率47.故选:D .36.【解答】解:根据题意可得:袋中有4个红球、2个白球,共6个, 从袋子中随机摸出1个球,则摸到红球的概率是46=23.故选:D .37.【解答】解:∵从这4张卡片中任意抽取一张共有4种等可能结果,其中抽到的卡片正面是中心对称图形的是圆、平行四边形、正六边形这3种结果, ∴抽到的卡片正面是中心对称图形的概率是34,故选:C .38.【解答】解:根据题意,得:aa+4=23,。

中考数学每日一练:整式的混合运算练习题及答案_2020年填空题版

中考数学每日一练:整式的混合运算练习题及答案_2020年填空题版

中考数学每日一练:整式的混合运算练习题及答案_2020年填空题版答案答案答案答案答案2020年中考数学:数与式_整式_整式的混合运算练习题~~第1题~~(2019绍兴.中考模拟) 如图,有多个长方形和正方形的卡片,图甲是选取了2块不同的卡片,拼成的一个图形,借助图中阴影部分面积的不同表示可以用来验证等式a (a+b )=a +ab 成立,根据图乙,利用面积的不同表示方法,仿照上边的式子写出一个等式________.考点: 整式的混合运算;~~第2题~~(2019梧州.中考模拟) 计算:(x+1)﹣(x ﹣1)(x+1)=________.考点: 整式的混合运算;~~第3题~~(2019菏泽.中考真卷) 计算的结果是________.考点: 整式的混合运算;~~第4题~~(2019荆门.中考模拟) 分解因式的结果是________.考点: 整式的混合运算;因式分解﹣运用公式法;~~第5题~~(2019雅安.中考真卷) 化简的结果是________.考点: 整式的混合运算;~~第6题~~(2019蒙城.中考模拟) 贾宪三角(如图1)最初于11世纪被发现,原图载于我国北宋时期数学家贾宪的《黄帝九章算法细草》一书中,原名“开方作法本源图”,用来作开方运算,在数学史上占有领先地位.我国南宋时期数学家杨辉对此有着记载之功,他于1261年写下的《详解九章算法》一书中记载着这一图表.因此,后人把这个图表称作贾宪三角或杨辉三角.与我们现在的学习练习最紧密的要算施蒂费尔的二项式乘方后展开式的系数规律(如图2).在贾宪三角中,第三行的三个数恰好对应着两数和的平方公式(a +b )=a +2ab +b 展开式的系数.再如,第四行的四个数恰好对应着两数和的立方公式(a +b )=a +3a b +3ab +b 展开式的系数,第五行的五个数恰好对应着两数和的四次方公式(a +b )=a +4a b +2222233223443答案答案答案答案答案6a b +4ab +b 展开式的系数,等等.由此可见,贾宪三角可以看作是对我们现在学习的两数和的平方公式的指数推广而得到的.同学们,贾宪三角告诉了我们二项式乘方展开式的系数规律,你发现其中的字母及字母指数的排列规律了吗?如果发现了,请你试着写出(a +b )、(a +b )与(a +b )的展开式.(a +b )=________ ,(a +b )=________,(a +b )=________考点: 整式的混合运算;~~第7题~~(2018上海.中考真卷) 计算:(a+1)﹣a =________.考点: 整式的混合运算;~~第8题~~(2018泰州.中考真卷) 计算:________.考点: 整式的混合运算;~~第9题~~(2018山西.中考模拟) 计算:3a ·a -(-2a )=________.考点: 整式的混合运算;~~第10题~~(2018嘉定.中考模拟) 计算:=________.考点: 整式的混合运算;2020年中考数学:数与式_整式_整式的混合运算练习题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:2234567567222432。

八下数学每日一练:平均数及其计算练习题及答案_2020年填空题版

八下数学每日一练:平均数及其计算练习题及答案_2020年填空题版

八下数学每日一练:平均数及其计算练习题及答案_2020年填空题版答案答案答案答案答案答案答案答案答案2020年八下数学:统计与概率_数据分析_平均数及其计算练习题~~第1题~~(2019西湖.八下期末) 已知数据a , a , a , a , a 的平均数是m ,且a >a >a >a >a >0,则数据a , a ,a , ﹣3,a , a 的平均数和中位数分别是________,________.考点: 平均数及其计算;中位数;~~第2题~~(2019鄞州.八下期末) 小明利用公式计算5个数据的方差,则这5个数据的标准差 的值是________.考点: 平均数及其计算;方差;极差、标准差;~~第3题~~(2019温岭.八下期末) 若八个数据x , x , x x , 的平均数为8,方差为1,增加一个数据8后所得的九个数据x , x , x , …x ;8的平均数 ________8,方差为S ________1.(填“>”、“=”、“<”)考点: 平均数及其计算;方差;~~第4题~~(2019莲都.八下期末) 一组数据:8,1,4,3,x 的平均数为x ,则这组数据的众数是________.考点: 平均数及其计算;众数;~~第5题~~(2019余杭.八下期末) 若一组数据1,3,a ,2,5的平均数是3,则a=________,这组数据的方差是________.考点: 平均数及其计算;方差;~~第6题~~(2019来宾.八下期末) 如图是小明统计本班同学的年龄后绘制的频数直方图,该班学生的平均年龄是________岁.考点: 频数(率)分布直方图;平均数及其计算;~~第7题~~(2019博白.八下期末) 已知一组数据1,2,0,﹣1,x ,1的平均数是1,那么这组数据的方差是________.考点: 平均数及其计算;方差;~~第8题~~(2019昭通.八下期末) 甲、乙两人各进行10次射击比赛,平均成绩均为9环,方差分别是:S =2,S =4,则射击成绩较稳定的是________(选填“甲”或“乙”).考点: 平均数及其计算;方差;~~第9题~~(2019温州.八下期中) 为筹备班级里的新年晚会,班长对全班同学爱吃哪几种水果作了民意调查,最终买什么水果,该由调查数据的________ 决定(在横线上填写:平均数或中位数或众数).考点: 平均数及其计算;中位数;众数;~~第10题~~12345123451234512 3 , ……812382甲2乙22答案(2019嘉兴.八下期中) 已知3 ,a ,4, b, 5这五个数据,其中a ,b 是方程x +2=3x 的两个根,那么这五个数据的平均数是________,方差是________.考点: 因式分解法解一元二次方程;平均数及其计算;方差;2020年八下数学:统计与概率_数据分析_平均数及其计算练习题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:2。

2020中考数学试题含答案 (36)

2020中考数学试题含答案 (36)

2020中考数学试卷一、填空题(每题3分,满分30分)1.(3分)2018年1月18日,国家统计局对外公布,我国经济总量首次站上80万亿的历史新台阶,将80万亿用科学记数法表示亿元.2.(3分)在函数y=中,自变量x的取值范围是.3.(3分)如图,在平行四边形ABCD中,添加一个条件,使平行四边形ABCD是矩形.4.(3分)在一个不透明的袋子中装有除颜色外完全相同的5个红球、3个白球、2个绿球,任意摸出一球,摸到白球的概率是.5.(3分)不等式组有3个整数解,则a的取值范围是.6.(3分)如图,AC为⊙O的直径,点B在圆上,OD⊥AC交⊙O于点D,连接BD,∠BDO=15°,则∠ACB=.7.(3分)用一块半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面,则此圆锥的高为.8.(3分)如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值为.9.(3分)Rt△ABC中,∠ABC=90°,AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是.10.(3分)如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…….记△B1CB2面积为S1,△B2C1B3面积为S2,△B3C2B4面积为S3,则S n=.二、选择题(每题3分,满分30分)11.(3分)下列各运算中,计算正确的是()A.a12÷a3=a4B.(3a2)3=9a6C.(a﹣b)2=a2﹣ab+b2D.2a•3a=6a212.(3分)如图图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.13.(3分)如图是由若干个相同的小正方体搭成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数不可能是()A.3 B.4 C.5 D.614.(3分)某学习小组的五名同学在一次数学竞赛中的成绩分别是94分、98分、90分、94分、74分,则下列结论正确的是()A.平均分是91 B.中位数是90 C.众数是94 D.极差是2015.(3分)某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A.4 B.5 C.6 D.716.(3分)已知关于x的分式方程=1的解是负数,则m的取值范围是()A.m≤3 B.m≤3且m≠2 C.m<3 D.m<3且m≠217.(3分)如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕A逆时针方向旋转40°得到△ADE,点B经过的路径为弧BD,是图中阴影部分的面积为()A.π﹣6 B.πC.π﹣3 D.+π18.(3分)如图,∠AOB=90°,且OA、OB分别与反比例函数y=(x>0)、y=﹣(x<0)的图象交于A、B两点,则tan∠OAB的值是()A .B .C .1D .19.(3分)为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有( )A .4种B .3种C .2种D .1种20.(3分)如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,AE 平分∠BAD ,分别交BC 、BD 于点E 、P ,连接OE ,∠ADC=60°,AB=BC=1,则下列结论: ①∠CAD=30°②BD=③S 平行四边形ABCD =AB•AC ④OE=AD ⑤S △APO =,正确的个数是( )A .2B .3C .4D .5三、解答题(满分60分)21.(5分)先化简,再求值:(a ﹣)÷,其中a=,b=1.22.(6分)如图,在正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC 的三个顶点坐标分别为A (1,4),B (1,1),C (3,1).(1)画出△ABC 关于x 轴对称的△A 1B 1C 1.(2)画出△ABC 绕点O 逆时针旋转90°后得到的△A 2B 2C 2.(3)在(2)的条件下,求点A 所经过的路径长(结果保留π).23.(6分)如图,抛物线y=x2+bx+c与y轴交于点A(0,2),对称轴为直线x=﹣2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.(1)求此抛物线的解析式.(2)点P在x轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.24.(7分)为弘扬中华优秀传统文化,某校开展了“经典雅韵”诵读比赛活动,现随机抽取部分同学的成绩进行统计,并绘制如下两个不完整的统计图,请结合图中提供的信息,解答下列各题:(1)直接写出a的值,a=,并把频数分布直方图补充完整.(2)求扇形B的圆心角度数.(3)如果全校有2000名学生参加这次活动,90分以上(含90分)为优秀,那么估计获得优秀奖的学生有多少人?.25.(8分)某工厂甲、乙两车间接到加工一批零件的任务,从开始加工到完成这项任务共用了9天,乙车间在加工2天后停止加工,引入新设备后继续加工,直到与甲车间同时完成这项任务为止,设甲、乙车间各自加工零件总数为y(件),与甲车间加工时间x(天),y与x之间的关系如图(1)所示.由工厂统计数据可知,甲车间与乙车间加工零件总数之差z(件)与甲车间加工时间x(天)的关系如图(2)所示.(1)甲车间每天加工零件为件,图中d值为.(2)求出乙车间在引入新设备后加工零件的数量y与x之间的函数关系式.(3)甲车间加工多长时间时,两车间加工零件总数为1000件?26.(8分)如图,在Rt△BCD中,∠CBD=90°,BC=BD,点A在CB的延长线上,且BA=BC,点E在直线BD上移动,过点E作射线EF⊥EA,交CD所在直线于点F.(1)当点E在线段BD上移动时,如图(1)所示,求证:AE=EF;(2)当点E在直线BD上移动时,如图(2)、图(3)所示,线段AE与EF又有怎样的数量关系?请直接写出你的猜想,不需证明.27.(10分)为了落实党的“精准扶贫”政策,A、B两城决定向C、D两乡运送肥料以支持农村生产,已知A、B两城共有肥料500吨,其中A城肥料比B城少100吨,从A城往C、D两乡运肥料的费用分别为20元/吨和25元/吨;从B城往C、D两乡运肥料的费用分别为15元/吨和24元/吨.现C乡需要肥料240吨,D乡需要肥料260吨.(1)A城和B城各有多少吨肥料?(2)设从A城运往C乡肥料x吨,总运费为y元,求出最少总运费.(3)由于更换车型,使A城运往C乡的运费每吨减少a(0<a<6)元,这时怎样调运才能使总运费最少?28.(10分)如图,在平面直角坐标系中,菱形ABCD的边AB在x轴上,点B 坐标(﹣3,0),点C在y轴正半轴上,且sin∠CBO=,点P从原点O出发,以每秒一个单位长度的速度沿x轴正方向移动,移动时间为t(0≤t≤5)秒,过点P作平行于y轴的直线l,直线l扫过四边形OCDA的面积为S.(1)求点D坐标.(2)求S关于t的函数关系式.(3)在直线l移动过程中,l上是否存在一点Q,使以B、C、Q为顶点的三角形是等腰直角三角形?若存在,直接写出Q点的坐标;若不存在,请说明理由.中考数学试卷参考答案与试题解析一、填空题(每题3分,满分30分)1.(3分)2018年1月18日,国家统计局对外公布,我国经济总量首次站上80万亿的历史新台阶,将80万亿用科学记数法表示8×105亿元.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将80万亿用科学记数法表示为:8×105亿.故答案为:8×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(3分)在函数y=中,自变量x的取值范围是x≥0且x≠1.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x≥0且x﹣1≠0,解得:x≥0且x≠1.故答案为:x≥0且x≠1.【点评】考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.3.(3分)如图,在平行四边形ABCD中,添加一个条件AC=BD或∠ABC=90°,使平行四边形ABCD是矩形.【分析】根据矩形的判定方法即可解决问题;【解答】解:若使▱ABCD变为矩形,可添加的条件是:AC=BD;(对角线相等的平行四边形是矩形),∠ABC=90°等(有一个角是直角的平行四边形是矩形),故答案为:任意写出一个正确答案即可,如:AC=BD或∠ABC=90°.故答案为AC=BD或∠ABC=90°【点评】本题主要考查了平行四边形的性质与矩形的判定,熟练掌握矩形是特殊的平行四边形是解题关键.4.(3分)在一个不透明的袋子中装有除颜色外完全相同的5个红球、3个白球、2个绿球,任意摸出一球,摸到白球的概率是.【分析】根据随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,用白球的个数除以总个数,求出恰好摸到白球的概率是多少即可.【解答】解:∵袋子中共有10个球,其中白球有3个,∴任意摸出一球,摸到白球的概率是,故答案为:.【点评】此题主要考查了概率公式的应用,要熟练掌握,解答此题的关键是要明确:随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.5.(3分)不等式组有3个整数解,则a的取值范围是﹣2≤a<﹣1.【分析】先解x的不等式组,然后根据整数解的个数确定a的取值范围.【解答】解:解不等式x﹣a>0,得:x>a,解不等式1﹣x>2x﹣5,得:x<2,∵不等式组有3个整数解,∴不等式组的整数解为﹣1、0、1,则﹣2≤a<﹣1,故答案为:﹣2≤a<﹣1.【点评】本题考查了一元一次不等式组的整数解,难度适中,关键是根据整数解确定关于a的不等式组.6.(3分)如图,AC为⊙O的直径,点B在圆上,OD⊥AC交⊙O于点D,连接BD,∠BDO=15°,则∠ACB=60°.【分析】连接DC,得出∠BDC的度数,进而得出∠A的度数,利用互余解答即可.【解答】解:连接DC,∵AC为⊙O的直径,OD⊥AC,∴∠DOC=90°,∠ABC=90°,∵OD=OC,∴∠ODC=45°,∵∠BDO=15°,∴∠BDC=30°,∴∠A=30°,∴∠ACB=60°,故答案为:60°.【点评】此题考查圆周角定理,关键是根据直径和垂直得出∠BDC的度数.7.(3分)用一块半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面,则此圆锥的高为.【分析】设圆锥的底面圆的半径为r,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式得到2πr=,然后求出r后利用勾股定理计算圆锥的高.【解答】解:设圆锥的底面圆的半径为r,根据题意得2πr=,解得r=1,所以此圆锥的高==.故答案为.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.8.(3分)如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值为2.【分析】作DC关于AB的对称点D′C′,以BC中的O为圆心作半圆O,连D′O分别交AB及半圆O于P、G.将PD+PG转化为D′G找到最小值.【解答】解:如图:取点D关于直线AB的对称点D′.以BC中点O为圆心,OB为半径画半圆.连接OD′交AB于点P,交半圆O于点G,连BG.连CG并延长交AB于点E.由以上作图可知,BG⊥EC于G.PD+PG=PD′+PG=D′G由两点之间线段最短可知,此时PD+PG最小.∵D′C=4,OC′=6∴D′O=∴D′G=2∴PD+PG的最小值为2故答案为:2【点评】本题考查线段和的最小值问题,通常思想是将线段之和转化为固定两点之间的线段和最短.9.(3分)Rt△ABC中,∠ABC=90°,AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是 3.6或4.32或4.8.=6,找出所有可【分析】在Rt△ABC中,通过解直角三角形可得出AC=5、S△ABC能的剪法,并求出剪出的等腰三角形的面积即可.【解答】解:在Rt△ABC中,∠ACB=90°,AB=3,BC=4,∴AC==5,S=AB•BC=6.△ABC沿过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,有三种情况:①当AB=AP=3时,如图1所示,S等腰△ABP=S△ABC=×6=3.6;②当AB=BP=3,且P在AC上时,如图2所示,作△ABC的高BD,则BD===2.4,∴AD=DP==1.8,∴AP=2AD=3.6,∴S等腰△ABP =S△ABC=×6=4.32;④当CB=CP=4时,如图3所示,S等腰△BCP=S△ABC=×6=4.8.综上所述:等腰三角形的面积可能为3.6或4.32或4.8.故答案为3.6或4.32或4.8.【点评】本题考查了勾股定理、等腰三角形的性质以及三角形的面积,找出所有可能的剪法,并求出剪出的等腰三角形的面积是解题的关键.10.(3分)如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…….记△B1CB2面积为S1,△B2C1B3面积为S2,△B3C2B4面积为S3,则S n=•()n﹣1.【分析】先计算出S1=,再根据阴影三角形都相似,后面的三角形面积是前面面积的.【解答】解:∵等边三角形ABC的边长为2,AB1⊥BC,∴BB1=B1C=1,∠ACB=60°,∴B1B2=B1C=,B2C=,∴S1=××=依题意得,图中阴影部分的三角形都是相似图形,且相似比为,故S n=•()n﹣1.故答案为:•()n﹣1.【点评】此题考查了等边三角形的性质,属于规律型试题,熟练掌握等边三角形的性质是解本题的关键.二、选择题(每题3分,满分30分)11.(3分)下列各运算中,计算正确的是()A.a12÷a3=a4B.(3a2)3=9a6C.(a﹣b)2=a2﹣ab+b2D.2a•3a=6a2【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=a9,不符合题意;B、原式=27a6,不符合题意;C、原式=a2﹣2ab+b2,不符合题意;D、原式=6a2,符合题意.故选:D.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.12.(3分)如图图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念进行判断即可.【解答】解:A、不是轴对称图形,是中心对称图形,不合题意;B、不是轴对称图形,是中心对称图形,不合题意;C、是轴对称图形,也是中心对称图形,符合题意;D、不是轴对称图形,也不是中心对称图形,不合题意.故选:C.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.13.(3分)如图是由若干个相同的小正方体搭成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数不可能是()A.3 B.4 C.5 D.6【分析】左视图底面有2个小正方体,主视图与左视图相同,则可以判断出该几何体底面最少有2个小正方体,最多有4个.根据这个思路可判断出该几何体有多少个小立方块.【解答】解:左视图与主视图相同,可判断出底面最少有2个,最多有4个小正方体.而第二层则只有1个小正方体.则这个几何体的小立方块可能有3或4或5个.故选:D.【点评】本题考查了由三视图判断几何体,难度不大,主要考查了考生的空间想象能力以及三视图的相关知识.14.(3分)某学习小组的五名同学在一次数学竞赛中的成绩分别是94分、98分、90分、94分、74分,则下列结论正确的是()A.平均分是91 B.中位数是90 C.众数是94 D.极差是20【分析】直接利用平均数、中位数、众数以及极差的定义分别分析得出答案.【解答】解:A、平均分为:(94+98+90+94+74)=90(分),故此选项错误;B、五名同学成绩按大小顺序排序为:74,90,94,94,98,故中位数是94分,故此选项错误;C、94分、98分、90分、94分、74分中,众数是94分.故此选项正确;D、极差是98﹣74=24,故此选项错误.故选:C.【点评】此题主要考查了平均数、中位数、众数以及极差的定义,正确把握相关定义是解题关键.15.(3分)某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A.4 B.5 C.6 D.7【分析】设共有x个班级参赛,根据第一个球队和其他球队打(x﹣1)场球,第二个球队和其他球队打(x﹣2)场,以此类推可以知道共打(1+2+3+…+x﹣1)场球,然后根据计划安排15场比赛即可列出方程求解.【解答】解:设共有x个班级参赛,根据题意得:=15,解得:x1=6,x2=﹣5(不合题意,舍去),则共有6个班级参赛.故选:C.【点评】此题考查了一元二次方程的应用,关键是准确找到描述语,根据等量关系准确的列出方程.此题还要判断所求的解是否符合题意,舍去不合题意的解.16.(3分)已知关于x的分式方程=1的解是负数,则m的取值范围是()A.m≤3 B.m≤3且m≠2 C.m<3 D.m<3且m≠2【分析】直接解方程得出分式的分母为零,再利用x≠﹣1求出答案.【解答】解:=1解得:x=m﹣3,∵关于x的分式方程=1的解是负数,∴m﹣3<0,解得:m<3,当x=m﹣3=﹣1时,方程无解,则m≠2,故m的取值范围是:m<3且m≠2.故选:D.【点评】此题主要考查了分式方程的解,正确得出分母不为零是解题关键.17.(3分)如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕A逆时针方向旋转40°得到△ADE,点B经过的路径为弧BD,是图中阴影部分的面积为()A.π﹣6 B.πC.π﹣3 D.+π【分析】根据AB=5,AC=3,BC=4和勾股定理的逆定理判断三角形的形状,根据旋转的性质得到△AED的面积=△ABC的面积,得到阴影部分的面积=扇形ADB 的面积,根据扇形面积公式计算即可.【解答】解:∵AB=5,AC=3,BC=4,∴△ABC为直角三角形,由题意得,△AED的面积=△ABC的面积,由图形可知,阴影部分的面积=△AED的面积+扇形ADB的面积﹣△ABC的面积,∴阴影部分的面积=扇形ADB的面积==π,故选:B.【点评】本题考查的是扇形面积的计算、旋转的性质和勾股定理的逆定理,根据图形得到阴影部分的面积=扇形ADB的面积是解题的关键.18.(3分)如图,∠AOB=90°,且OA、OB分别与反比例函数y=(x>0)、y=﹣(x<0)的图象交于A、B两点,则tan∠OAB的值是()A.B.C.1 D.【分析】首先过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,易得△OBD∽△AOC,又由点A在反比例函数y=的图象上,点B在反比例函数y=﹣的图象上,即可得S△AOC =2,S△OBD=,然后根据相似三角形面积的比等于相似比的平方,即可得=,然后由正切函数的定义求得答案.【解答】解:过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,∴∠ACO=∠ODB=90°,∴∠OBD+∠BOD=90°,∵∠AOB=90°,∴∠BOD +∠AOC=90°,∴∠OBD=∠AOC ,∴△OBD ∽△AOC , ∴=()2,∵点A 在反比例函数y=的图象上,点B 在反比例函数y=﹣的图象上, ∴S △OBD =,S △AOC =2, ∴=,∴tan ∠OAB==. 故选:A .【点评】此题考查了相似三角形的判定与性质、反比例函数的性质以及直角三角形的性质.注意掌握数形结合思想的应用,注意掌握辅助线的作法.19.(3分)为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有( )A .4种B .3种C .2种D .1种【分析】设购买篮球x 个,排球y 个,根据“购买篮球的总钱数+购买排球的总钱数=1200”列出关于x 、y 的方程,由x 、y 均为正整数即可得.【解答】解:设购买篮球x 个,排球y 个,根据题意可得120x +90y=1200,则y=,∵x 、y 均为正整数,∴x=1、y=12;x=4、y=8;x=7、y=4;所以购买资金恰好用尽的情况下,购买方案有3种,故选:B .【点评】本题主要考查二元一次方程的应用,解题的关键是理解题意,依据相等关系列出方程.20.(3分)如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,AE 平分∠BAD ,分别交BC 、BD 于点E 、P ,连接OE ,∠ADC=60°,AB=BC=1,则下列结论: ①∠CAD=30°②BD=③S 平行四边形ABCD =AB•AC ④OE=AD ⑤S △APO =,正确的个数是( )A .2B .3C .4D .5【分析】①先根据角平分线和平行得:∠BAE=∠BEA ,则AB=BE=1,由有一个角是60度的等腰三角形是等边三角形得:△ABE 是等边三角形,由外角的性质和等腰三角形的性质得:∠ACE=30°,最后由平行线的性质可作判断;②先根据三角形中位线定理得:OE=AB=,OE ∥AB ,根据勾股定理计算OC==和OD 的长,可得BD 的长;③因为∠BAC=90°,根据平行四边形的面积公式可作判断;④根据三角形中位线定理可作判断;⑤根据同高三角形面积的比等于对应底边的比可得:S △AOE =S △EOC =OE•OC=,=,代入可得结论.【解答】解:①∵AE 平分∠BAD ,∴∠BAE=∠DAE ,∵四边形ABCD是平行四边形,∴AD∥BC,∠ABC=∠ADC=60°,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE=1,∴△ABE是等边三角形,∴AE=BE=1,∵BC=2,∴EC=1,∴AE=EC,∴∠EAC=∠ACE,∵∠AEB=∠EAC+∠ACE=60°,∴∠ACE=30°,∵AD∥BC,∴∠CAD=∠ACE=30°,故①正确;②∵BE=EC,OA=OC,∴OE=AB=,OE∥AB,∴∠EOC=∠BAC=60°+30°=90°,Rt△EOC中,OC==,∵四边形ABCD是平行四边形,∴∠BCD=∠BAD=120°,∴∠ACB=30°,∴∠ACD=90°,Rt△OCD中,OD==,∴BD=2OD=,故②正确;③由②知:∠BAC=90°,∴S▱ABCD=AB•AC,故③正确;④由②知:OE是△ABC的中位线,∴OE=AB,∵AB=BC,∴OE=BC=AD,故④正确;⑤∵四边形ABCD是平行四边形,∴OA=OC=,∴S△AOE =S△EOC=OE•OC==,∵OE∥AB,∴,∴=,∴S△AOP===;故⑤正确;本题正确的有:①②③④⑤,5个,故选:D.【点评】本题考查了平行四边形的性质、等腰三角形的性质、直角三角形30度角的性质、三角形面积和平行四边形面积的计算;熟练掌握平行四边形的性质,证明△ABE是等边三角形是解决问题的关键,并熟练掌握同高三角形面积的关系.三、解答题(满分60分)21.(5分)先化简,再求值:(a﹣)÷,其中a=,b=1.【分析】根据分式的减法和除法可以化简题目中的式子,然后将a、b的值代入化简后的式子即可解答本题.【解答】解:(a﹣)÷===a﹣b,当a=,b=1时,原式==﹣.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.22.(6分)如图,在正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(1,4),B(1,1),C(3,1).(1)画出△ABC关于x轴对称的△A1B1C1.(2)画出△ABC绕点O逆时针旋转90°后得到的△A2B2C2.(3)在(2)的条件下,求点A所经过的路径长(结果保留π).【分析】(1)直接利用关于x轴对称的性质得出对应点位置进而得出答案;(2)利用旋转的性质得出对应点位置进而得出答案;(3)直接利用弧长公式计算得出答案.【解答】解:(1)如图:△A1B1C1,即为所求;(2)如图:△A2B2C2,即为所求;(3)r==,A经过的路径长:×2×π×=π.【点评】此题主要考查了旋转变换以及轴对称变换和弧长公式应用,正确得出对应点位置是解题关键.23.(6分)如图,抛物线y=x2+bx+c与y轴交于点A(0,2),对称轴为直线x=﹣2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.(1)求此抛物线的解析式.(2)点P在x轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.【分析】(1)由对称轴直线x=2,以及A点坐标确定出b与c的值,即可求出抛物线解析式;(2)由抛物线的对称轴及BC的长,确定出B与C的横坐标,代入抛物线解析式求出纵坐标,确定出B与C坐标,利用待定系数法求出直线AB解析式,作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M,由已知面积之比求出QH的长,确定出Q横坐标,代入直线AB解析式求出纵坐标,确定出Q坐标,再利用待定系数法求出直线CQ解析式,即可确定出P的坐标.【解答】解:(1)由题意得:x=﹣=﹣=﹣2,c=2,解得:b=4,c=2,则此抛物线的解析式为y=x2+4x+2;(2)∵抛物线对称轴为直线x=﹣2,BC=6,∴B横坐标为﹣5,C横坐标为1,把x=1代入抛物线解析式得:y=7,∴B(﹣5,7),C(1,7),设直线AB解析式为y=kx+2,把B坐标代入得:k=﹣1,即y=﹣x+2,作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M,可得△AQH∽△ABM,∴=,∵点P在x轴上,直线CP将△ABC面积分成2:3两部分,∴AQ:QB=2:3或AQ:QB=3:2,即AQ:AB=2:5或AQ:QB=3:5,∵BM=5,∴QH=2或QH=3,当QH=2时,把x=﹣2代入直线AB解析式得:y=4,此时Q(﹣2,4),直线CQ解析式为y=x+6,令y=0,得到x=﹣6,即P(﹣6,0);当QH=3时,把x=﹣3代入直线AB解析式得:y=5,此时Q(﹣3,5),直线CQ解析式为y=x+,令y=0,得到x=﹣13,此时P (﹣13,0),综上,P的坐标为(﹣6,0)或(﹣13,0).【点评】此题考查了待定系数法求二次函数解析式,二次函数性质,以及二次函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.24.(7分)为弘扬中华优秀传统文化,某校开展了“经典雅韵”诵读比赛活动,现随机抽取部分同学的成绩进行统计,并绘制如下两个不完整的统计图,请结合图中提供的信息,解答下列各题:(1)直接写出a的值,a=30,并把频数分布直方图补充完整.(2)求扇形B的圆心角度数.(3)如果全校有2000名学生参加这次活动,90分以上(含90分)为优秀,那么估计获得优秀奖的学生有多少人?.【分析】(1)先根据E等级人数及其占总人数的比例可得总人数,再用D等级人数除以总人数可得a的值,用总人数减去其他各等级人数求得C等级人数可补全图形;(2)用360°乘以A等级人数所占比例可得;(3)用总人数乘以样本中E等级人数所占比例.【解答】解:(1)∵被调查的总人数为10÷=50(人),∴D等级人数所占百分比a%=×100%=30%,即a=30,C等级人数为50﹣(5+7+15+10)=13人,补全图形如下:故答案为:30;(2)扇形B的圆心角度数为360°×=50.4°;(3)估计获得优秀奖的学生有2000×=400人.【点评】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.(8分)某工厂甲、乙两车间接到加工一批零件的任务,从开始加工到完成这项任务共用了9天,乙车间在加工2天后停止加工,引入新设备后继续加工,直到与甲车间同时完成这项任务为止,设甲、乙车间各自加工零件总数为y(件),与甲车间加工时间x(天),y与x之间的关系如图(1)所示.由工厂统计数据可知,甲车间与乙车间加工零件总数之差z(件)与甲车间加工时间x(天)的关系如图(2)所示.(1)甲车间每天加工零件为80件,图中d值为770.(2)求出乙车间在引入新设备后加工零件的数量y与x之间的函数关系式.(3)甲车间加工多长时间时,两车间加工零件总数为1000件?【分析】(1)由图象的信息解答即可;(2)利用待定系数法确定解析式即可;(3)根据题意列出方程解答即可.【解答】解:(1)由图象甲车间每小时加工零件个数为720÷9=80个,d=770,故答案为:80,770(2)b=80×2﹣40=120,a=(200﹣40)÷80+2=4,∴B(4,120),C(9,770)设y BC=kx+b,过B、C,∴,解得,∴y=130x﹣400(4≤x≤9)(3)由题意得:80x+130x﹣400=1000,解得:x=答:甲车间加工天时,两车间加工零件总数为1000件【点评】本题为一次函数实际应用问题,关键是根据一次函数图象的实际意义和根据图象确定一次函数关系式解答.26.(8分)如图,在Rt△BCD中,∠CBD=90°,BC=BD,点A在CB的延长线上,且BA=BC,点E在直线BD上移动,过点E作射线EF⊥EA,交CD所在直线于点。

2020年云南省昆明市中考数学试题(解析版)

2020年云南省昆明市中考数学试题(解析版)

2020年云南省昆明市中考数学试卷一、填空题(本大题共6小题,每小题3分,共18分)1.(3分)|﹣10|=.2.(3分)分解因式:m2n﹣4n=.3.(3分)如图,点C位于点A正北方向,点B位于点A北偏东50°方向,点C位于点B 北偏西35°方向,则∠ABC的度数为°.4.(3分)要使有意义,则x的取值范围是.5.(3分)如图,边长为2cm的正六边形螺帽,中心为点O,OA垂直平分边CD,垂足为B,AB=17cm,用扳手拧动螺帽旋转90°,则点A在该过程中所经过的路径长为cm.6.(3分)观察下列一组数:﹣,,﹣,,﹣,…,它们是按一定规律排列的,那么这一组数的第n个数是.二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分)7.(4分)由5个完全相同的正方体组成的几何体的主视图是()A.B.C.D.8.(4分)下列判断正确的是()A.北斗系统第五十五颗导航卫星发射前的零件检查,应选择抽样调查B.一组数据6,5,8,7,9的中位数是8C.甲、乙两组学生身高的方差分别为S甲2=2.3,S乙2=1.8.则甲组学生的身高较整齐D.命题“既是矩形又是菱形的四边形是正方形”是真命题9.(4分)某款国产手机上有科学计算器,依次按键:,显示的结果在哪两个相邻整数之间()A.2~3B.3~4C.4~5D.5~610.(4分)下列运算中,正确的是()A.﹣2=﹣2B.6a4b÷2a3b=3abC.(﹣2a2b)3=﹣8a6b3D.•=a11.(4分)不等式组,的解集在以下数轴表示中正确的是()A.B.C.D.12.(4分)某校举行“停课不停学,名师陪你在家学”活动,计划投资8000元建设几间直播教室,为了保证教学质量,实际每间建设费用增加了20%,并比原计划多建设了一间直播教室,总投资追加了4000元.根据题意,求出原计划每间直播教室的建设费用是()A.1600元B.1800元C.2000元D.2400元13.(4分)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与y轴交于点B(0,﹣2),点A(﹣1,m)在抛物线上,则下列结论中错误的是()A.ab<0B.一元二次方程ax2+bx+c=0的正实数根在2和3之间C.a=D.点P1(t,y1),P2(t+1,y2)在抛物线上,当实数t>时,y1<y214.(4分)在正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫做格点三角形.如图,△ABC是格点三角形,在图中的6×6正方形网格中作出格点三角形△ADE(不含△ABC),使得△ADE∽△ABC(同一位置的格点三角形△ADE只算一个),这样的格点三角形一共有()A.4个B.5个C.6个D.7个三、解答题(本大题共9小题,满分70分.请考生用黑色碳素笔在答题卡相应的题号后答题区域内作答,必须写出运算步骤、推理过程或文字说明,超出答题区域的作答无效.特别注意:作图时,必须使用黑色碳素笔在答题卡上作图)15.(5分)计算:12021﹣+(π﹣3.14)0﹣(﹣)﹣1.16.(6分)如图,AC是∠BAE的平分线,点D是线段AC上的一点,∠C=∠E,AB=AD.求证:BC=DE.17.(7分)某鞋店在一周内销售某款女鞋,尺码(单位:cm)数据收集如下:2423.521.523.524.5232223.523.52322.523.523.522.524 2422.525232323.52322.52323.523.523242222.5绘制如图不完整的频数分布表及频数分布直方图:尺码/cm划记频数21.5≤x<22.5322.5≤x<23.523.5≤x<24.51324.5≤x<25.52(1)请补全频数分布表和频数分布直方图;(2)若店主要进货,她最应该关注的是尺码的众数,上面数据的众数为;(3)若店主下周对该款女鞋进货120双,尺码在23.5≤x<25.5范围的鞋应购进约多少双?18.(7分)有一个可自由转动的转盘,被分成了三个大小相同的扇形,分别标有数字2,4,6;另有一个不透明的瓶子,装有分别标有数字1,3,5的三个完全相同的小球.小杰先转动一次转盘,停止后记下指针指向的数字(若指针指在分界线上则重转),小玉再从瓶子中随机取出一个小球,记下小球上的数字.(1)请用列表或画树状图的方法(选其中一种)表示出所有可能出现的结果;(2)若得到的两数字之和是3的倍数,则小杰贏;若得到的两数字之和是7的倍数,则小玉赢,此游戏公平吗?为什么?19.(8分)为了做好校园疫情防控工作,校医每天早上对全校办公室和教室进行药物喷洒消毒,她完成3间办公室和2间教室的药物喷洒要19min;完成2间办公室和1间教室的药物喷洒要11min.(1)校医完成一间办公室和一间教室的药物喷洒各要多少时间?(2)消毒药物在一间教室内空气中的浓度y(单位:mg/m3)与时间x(单位:min)的函数关系如图所示:校医进行药物喷洒时y与x的函数关系式为y=2x,药物喷洒完成后y与x成反比例函数关系,两个函数图象的交点为A(m,n).当教室空气中的药物浓度不高于1mg/m3时,对人体健康无危害,校医依次对一班至十一班教室(共11间)进行药物喷洒消毒,当她把最后一间教室药物喷洒完成后,一班学生能否进入教室?请通过计算说明.20.(8分)如图,点P是⊙O的直径AB延长线上的一点(PB<OB),点E是线段OP的中点.(1)尺规作图:在直径AB上方的圆上作一点C,使得EC=EP,连接EC,PC(保留清晰作图痕迹,不要求写作法);并证明PC是⊙O的切线;(2)在(1)的条件下,若BP=4,EB=1,求PC的长.21.(9分)【材料阅读】2020年5月27日,2020珠峰高程测量登山队成功登顶珠穆朗玛峰,将用中国科技“定义”世界新高度.其基本原理之一是三角高程测量法,在山顶上立一个规标,找到2个以上测量点,分段测量山的高度,再进行累加.因为地球面并不是水平的,光线在空气中会发生折射,所以当两个测量点的水平距离大于300m时,还要考虑球气差,球气差计算公式为f=(其中d为两点间的水平距离,R为地球的半径,R取6400000m),即:山的海拔高度=测量点测得山的高度+测量点的海拔高度+球气差.【问题解决】某校科技小组的同学参加了一项野外测量某座山的海拔高度活动.如图,点A,B的水平距离d=800m,测量仪AC=1.5m,觇标DE=2m,点E,D,B在垂直于地面的一条直线上,在测量点A处用测量仪测得山项觇标顶端E的仰角为37°,测量点A处的海拔高度为1800m.(1)数据6400000用科学记数法表示为;(2)请你计算该山的海拔高度.(要计算球气差,结果精确到0.01m)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)22.(8分)如图,两条抛物线y1=﹣x2+4,y2=﹣x2+bx+c相交于A,B两点,点A在x 轴负半轴上,且为抛物线y2的最高点.(1)求抛物线y2的解析式和点B的坐标;(2)点C是抛物线y1上A,B之间的一点,过点C作x轴的垂线交y2于点D,当线段CD取最大值时,求S△BCD.23.(12分)如图1,在矩形ABCD中,AB=5,BC=8,点E,F分别为AB,CD的中点.(1)求证:四边形AEFD是矩形;(2)如图2,点P是边AD上一点,BP交EF于点O,点A关于BP的对称点为点M,当点M落在线段EF上时,则有OB=OM.请说明理由;(3)如图3,若点P是射线AD上一个动点,点A关于BP的对称点为点M,连接AM,DM,当△AMD是等腰三角形时,求AP的长.2020年云南省昆明市中考数学试卷参考答案与试题解析一、填空题(本大题共6小题,每小题3分,共18分)1.(3分)|﹣10|=10.【分析】绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【解答】解:根据负数的绝对值等于它的相反数,得|﹣10|=10.故答案为:10.2.(3分)分解因式:m2n﹣4n=n(m+2)(m﹣2).【分析】原式提取n,再利用平方差公式分解即可.【解答】解:原式=n(m2﹣4)=n(m+2)(m﹣2),故答案为:n(m+2)(m﹣2)3.(3分)如图,点C位于点A正北方向,点B位于点A北偏东50°方向,点C位于点B 北偏西35°方向,则∠ABC的度数为95°.【分析】根据题意得出∠1的度数,根据平角的定义即可得出∠ABC的度数.【解答】解:如图所示:由题意可得,∠1=∠A=50°,则∠ABC=180°﹣35°﹣50°=95°.故答案为:95.4.(3分)要使有意义,则x的取值范围是x≠﹣1.【分析】根据分式有意义的条件,求解即可.【解答】解:要使分式有意义,需满足x+1≠0.即x≠﹣1.故答案为:x≠﹣1.5.(3分)如图,边长为2cm的正六边形螺帽,中心为点O,OA垂直平分边CD,垂足为B,AB=17cm,用扳手拧动螺帽旋转90°,则点A在该过程中所经过的路径长为10πcm.【分析】求出OA的长,利用弧长公式计算即可.【解答】解:连接OD,OC.∵∠DOC=60°,OD=OC,∴△ODC是等边三角形,∴OD=OC=DC=2(cm),∵OB⊥CD,∴BC=BD=(cm),∴OB=BC=3(cm),∵AB=17cm,∴OA=OB+AB=20(cm),∴点A在该过程中所经过的路径长==10π(cm),故答案为10π.6.(3分)观察下列一组数:﹣,,﹣,,﹣,…,它们是按一定规律排列的,那么这一组数的第n个数是(﹣1)n..【分析】观察已知一组数,发现规律进而可得这一组数的第n个数.【解答】解:观察下列一组数:﹣=﹣,=,﹣=﹣,=,﹣=﹣,…,它们是按一定规律排列的,那么这一组数的第n个数是:(﹣1)n.故答案为:(﹣1)n.二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分)7.(4分)由5个完全相同的正方体组成的几何体的主视图是()A.B.C.D.【分析】根据从正面看得到的视图是主视图,可得答案.【解答】解:由5个完全相同的正方体组成的几何体的主视图是.故选:A.8.(4分)下列判断正确的是()A.北斗系统第五十五颗导航卫星发射前的零件检查,应选择抽样调查B.一组数据6,5,8,7,9的中位数是8C.甲、乙两组学生身高的方差分别为S甲2=2.3,S乙2=1.8.则甲组学生的身高较整齐D.命题“既是矩形又是菱形的四边形是正方形”是真命题【分析】根据调查方式、中位数、方差、正方形的判定等知识进行命题的判断即可.【解答】解:A.北斗系统第五十五颗导航卫星发射前的零件检查,应选择全面调查,所以A选项错误;B.一组数据6,5,8,7,9的中位数是7,所以B选项错误;C.甲、乙两组学生身高的方差分别为S甲2=2.3,S乙2=1.8.则乙组学生的身高较整齐,所以C选项错误;D.命题“既是矩形又是菱形的四边形是正方形”是真命题,所以D选项正确.故选:D.9.(4分)某款国产手机上有科学计算器,依次按键:,显示的结果在哪两个相邻整数之间()A.2~3B.3~4C.4~5D.5~6【分析】用计算器计算得3.464101615……得出答案.【解答】解:使用计算器计算得,4sin60°≈3.464101615,故选:B.10.(4分)下列运算中,正确的是()A.﹣2=﹣2B.6a4b÷2a3b=3abC.(﹣2a2b)3=﹣8a6b3D.•=a【分析】直接利用二次根式的加减运算法则和整式的除法运算法则、分式的乘法运算法则、积的乘方运算法则分别化简得出答案.【解答】解:A、﹣2=﹣,此选项错误,不合题意;B、6a4b÷2a3b=3a,此选项错误,不合题意;C、(﹣2a2b)3=﹣8a6b3,正确;D、•=•=﹣a,故此选项错误,不合题意;故选:C.11.(4分)不等式组,的解集在以下数轴表示中正确的是()A.B.C.D.【分析】先求出每个不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.【解答】解:,∵解不等式①得:x>﹣1,解不等式②得:x≤3,∴不等式组的解集是﹣1<x≤3,在数轴上表示为:,故选:B.12.(4分)某校举行“停课不停学,名师陪你在家学”活动,计划投资8000元建设几间直播教室,为了保证教学质量,实际每间建设费用增加了20%,并比原计划多建设了一间直播教室,总投资追加了4000元.根据题意,求出原计划每间直播教室的建设费用是()A.1600元B.1800元C.2000元D.2400元【分析】设原计划每间直播教室的建设费用是x元,则实际每间建设费用为1.2x元,根据“实际每间建设费用增加了20%,并比原计划多建设了一间直播教室,总投资追加了4000元”列出方程求解即可.【解答】解:设原计划每间直播教室的建设费用是x元,则实际每间建设费用为1.2x元,根据题意得:,解得:x=2000,经检验:x=2000是原方程的解,答:每间直播教室的建设费用是2000元,故选:C.13.(4分)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与y轴交于点B(0,﹣2),点A(﹣1,m)在抛物线上,则下列结论中错误的是()A.ab<0B.一元二次方程ax2+bx+c=0的正实数根在2和3之间C.a=D.点P1(t,y1),P2(t+1,y2)在抛物线上,当实数t>时,y1<y2【分析】由抛物线开口方向得到a>0,利用抛物线的对称轴方程得到b=﹣2a<0,则可对A选项进行判断;利用抛物线的对称性得到抛物线与x轴的另一个交点坐标在(2,0)与(3,0)之间,则根据抛物线与x轴的交点问题可对B选项进行判断;把B(0,﹣2),A(﹣1,m)和b=﹣2a代入抛物解析式可对C选项进行判断;利用二次函数的增减性对D进行判断.【解答】解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a<0,∴ab<0,所以A选项的结论正确;∵抛物线的对称轴为直线x=1,抛物线与x轴的一个交点坐标在(0,0)与(﹣1,0)之间,∴抛物线与x轴的另一个交点坐标在(2,0)与(3,0)之间,∴一元二次方程ax2+bx+c=0的正实数根在2和3之间,所以B选项的结论正确;把B(0,﹣2),A(﹣1,m)代入抛物线得c=﹣2,a﹣b+c=m,而b=﹣2a,∴a+2a﹣2=m,∴a=,所以C选项的结论正确;∵点P1(t,y1),P2(t+1,y2)在抛物线上,∴当点P1、P2都在直线x=1的右侧时,y1<y2,此时t≥1;当点P1在直线x=1的左侧,点P2在直线x=1的右侧时,y1<y2,此时0<t<1且t+1﹣1>1﹣t,即<t<1,∴当<t<1或t≥1时,y1<y2,所以D选项的结论错误.故选:D.14.(4分)在正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫做格点三角形.如图,△ABC是格点三角形,在图中的6×6正方形网格中作出格点三角形△ADE(不含△ABC),使得△ADE∽△ABC(同一位置的格点三角形△ADE只算一个),这样的格点三角形一共有()A.4个B.5个C.6个D.7个【分析】根据网格画出使得△ADE∽△ABC(同一位置的格点三角形△ADE只算一个)的格点三角形即可.【解答】解:如图,所以使得△ADE∽△ABC的格点三角形一共有6个.故选:C.三、解答题(本大题共9小题,满分70分.请考生用黑色碳素笔在答题卡相应的题号后答题区域内作答,必须写出运算步骤、推理过程或文字说明,超出答题区域的作答无效.特别注意:作图时,必须使用黑色碳素笔在答题卡上作图)15.(5分)计算:12021﹣+(π﹣3.14)0﹣(﹣)﹣1.【分析】直接利用零指数幂的性质以及负整数指数幂的性质、立方根的性质分别化简得出答案.【解答】解:原式=1﹣2+1+5=5.16.(6分)如图,AC是∠BAE的平分线,点D是线段AC上的一点,∠C=∠E,AB=AD.求证:BC=DE.【分析】根据全等三角形的判定:AAS证明△BAC≌△DAE,即可得BC=DE.【解答】证明:∵AC是∠BAE的平分线,∴∠BAC=∠DAE,∵∠C=∠E,AB=AD.∴△BAC≌△DAE(AAS),∴BC=DE.17.(7分)某鞋店在一周内销售某款女鞋,尺码(单位:cm)数据收集如下:2423.521.523.524.5232223.523.52322.523.523.522.524 2422.525232323.52322.52323.523.523242222.5绘制如图不完整的频数分布表及频数分布直方图:尺码/cm划记频数21.5≤x<22.531222.5≤x<23.523.5≤x <24.51324.5≤x<25.52(1)请补全频数分布表和频数分布直方图;(2)若店主要进货,她最应该关注的是尺码的众数,上面数据的众数为23.5;(3)若店主下周对该款女鞋进货120双,尺码在23.5≤x<25.5范围的鞋应购进约多少双?【分析】(1)根据各组频数之和为30,求出22.5~23.5的频数,进而补全频数分布表、频数分布直方图;(2)根据众数的意义,找出出现次数最多的数据即可;(3)样本估计总体,样本中,尺码在23.5≤x<25.5范围的鞋占调查总数的,因此估计120双的是尺码在23.5≤x<25.5范围的鞋的双数.【解答】解:(1)表中答案为:,12,补全的频数分布直方图如图所示:(2)样本中,尺码为23.5cm的出现次数最多,共出现9次,因此众数是23.5,故答案为:23.5;(3)120×=60(双)答:该款女鞋进货120双,尺码在23.5≤x<25.5范围的鞋应购进约60双.18.(7分)有一个可自由转动的转盘,被分成了三个大小相同的扇形,分别标有数字2,4,6;另有一个不透明的瓶子,装有分别标有数字1,3,5的三个完全相同的小球.小杰先转动一次转盘,停止后记下指针指向的数字(若指针指在分界线上则重转),小玉再从瓶子中随机取出一个小球,记下小球上的数字.(1)请用列表或画树状图的方法(选其中一种)表示出所有可能出现的结果;(2)若得到的两数字之和是3的倍数,则小杰贏;若得到的两数字之和是7的倍数,则小玉赢,此游戏公平吗?为什么?【分析】(1)利用列表法表示所有可能出现的结果情况,(2)根据(1)的表格,得出“和为3的倍数”“和为7的倍数”的概率即可.【解答】解:(1)用列表法表示所有可能出现的结果情况如下:(2)由(1)的表格可知,共有9种可能出现的结果,其中“和为3的倍数”的有3种,“和为7的倍数”的有3种,∴P(小杰胜)==,P(小玉胜)==,因此游戏是公平的.19.(8分)为了做好校园疫情防控工作,校医每天早上对全校办公室和教室进行药物喷洒消毒,她完成3间办公室和2间教室的药物喷洒要19min;完成2间办公室和1间教室的药物喷洒要11min.(1)校医完成一间办公室和一间教室的药物喷洒各要多少时间?(2)消毒药物在一间教室内空气中的浓度y(单位:mg/m3)与时间x(单位:min)的函数关系如图所示:校医进行药物喷洒时y与x的函数关系式为y=2x,药物喷洒完成后y与x成反比例函数关系,两个函数图象的交点为A(m,n).当教室空气中的药物浓度不高于1mg/m3时,对人体健康无危害,校医依次对一班至十一班教室(共11间)进行药物喷洒消毒,当她把最后一间教室药物喷洒完成后,一班学生能否进入教室?请通过计算说明.【分析】(1)设完成一间办公室和一间教室的药物喷洒各要xmin和ymin,则,即可求解;(2)点A(5,10),则反比例函数表达式为y=,当x=55时,y=<1,即可求解.【解答】解:(1)设完成一间办公室和一间教室的药物喷洒各要xmin和ymin,则,解得,故校医完成一间办公室和一间教室的药物喷洒各要3min和5min;(2)一间教室的药物喷洒时间为5min,则11个房间需要55min,当x=5时,y=2x=10,故点A(5,10),设反比例函数表达式为:y=,将点A的坐标代入上式并解得:k=50,故反比例函数表达式为y=,当x=50时,y==1,故一班学生能安全进入教室.20.(8分)如图,点P是⊙O的直径AB延长线上的一点(PB<OB),点E是线段OP的中点.(1)尺规作图:在直径AB上方的圆上作一点C,使得EC=EP,连接EC,PC(保留清晰作图痕迹,不要求写作法);并证明PC是⊙O的切线;(2)在(1)的条件下,若BP=4,EB=1,求PC的长.【分析】(1)利用尺规作图:以点E为圆心,EP长为半径画弧,在直径AB上方的圆上交一点C,再根据已知条件可得OE=EC=EP,根据三角形内角和可得∠ECO+∠ECP=90°,进而证明PC是⊙O的切线;(2)在(1)的条件下,根据BP=4,EB=1,可得EP的长,进而可得半径,再根据勾股定理即可求PC的长.【解答】解:(1)如图,点C即为所求;证明:∵点E是线段OP的中点,∴OE=EP,∵EC=EP,∴OE=EC=EP,∴∠COE=∠ECO,∠ECP=∠P,∵∠COE+∠ECO+∠ECP+∠P=180°,∴∠ECO+∠ECP=90°,∴OC⊥PC,且OC是⊙O的半径,∴PC是⊙O的切线;(2)∵BP=4,EB=1,∴OE=EP=BP+EB=5,∴OP=2OE=10,∴OC=OB=OE+EB=6,在Rt△OCP中,根据勾股定理,得PC==8.则PC的长为8.21.(9分)【材料阅读】2020年5月27日,2020珠峰高程测量登山队成功登顶珠穆朗玛峰,将用中国科技“定义”世界新高度.其基本原理之一是三角高程测量法,在山顶上立一个规标,找到2个以上测量点,分段测量山的高度,再进行累加.因为地球面并不是水平的,光线在空气中会发生折射,所以当两个测量点的水平距离大于300m时,还要考虑球气差,球气差计算公式为f=(其中d为两点间的水平距离,R为地球的半径,R取6400000m),即:山的海拔高度=测量点测得山的高度+测量点的海拔高度+球气差.【问题解决】某校科技小组的同学参加了一项野外测量某座山的海拔高度活动.如图,点A,B的水平距离d=800m,测量仪AC=1.5m,觇标DE=2m,点E,D,B在垂直于地面的一条直线上,在测量点A处用测量仪测得山项觇标顶端E的仰角为37°,测量点A处的海拔高度为1800m.(1)数据6400000用科学记数法表示为 6.4×106;(2)请你计算该山的海拔高度.(要计算球气差,结果精确到0.01m)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【分析】(1)科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.(2)如图,过点C作CH⊥BE于H.解直角三角形求出DB,加上海拔高度,加上球气差即可.【解答】解:(1)6400000=6.4×106,故答案为6.4×106.(2)如图,过点C作CH⊥BE于H.由题意AB=CH=800m,AC=BH=1.5m,在Rt△ECH中,EH=CH•tan37°≈600(m),∴DB=600﹣DE+BH=599.5(m),由题意f=≈0.043(m),∴山的海拔高度=599.5+0.043+1800≈2399.54(m).22.(8分)如图,两条抛物线y1=﹣x2+4,y2=﹣x2+bx+c相交于A,B两点,点A在x 轴负半轴上,且为抛物线y2的最高点.(1)求抛物线y2的解析式和点B的坐标;(2)点C是抛物线y1上A,B之间的一点,过点C作x轴的垂线交y2于点D,当线段CD取最大值时,求S△BCD.【分析】(1)由抛物线y1=﹣x2+4,可求出与x轴的交点A的坐标,再根据点A是抛物线y2=﹣x2+bx+c的最高点,可求出b、c的值,从而确定函数关系式;两个函数的关系式组成方程组求出交点坐标即可;(2)由CD=y1﹣y2得到一个二次函数的关系式,再利用函数的最值,求出相应的x的值,及CD的最大值,进而计算出三角形的面积.【解答】解:(1)当y1=0时,即﹣x2+4=0,解得x=2或x=﹣2,又点A在x轴的负半轴,∴点A(﹣2,0),∵点A(﹣2,0),是抛物线y2的最高点.∴﹣=﹣2,即b=﹣,把A(﹣2,0)代入y2=﹣x2﹣x+c得,c=﹣,∴抛物线y2的解析式为:y2=﹣x2﹣x﹣;由得,,,∵A(﹣2,0),∴点B(3,﹣5),答:抛物线y2的解析式为:y2=﹣x2﹣x﹣,点B(3,﹣5);(2)由题意得,CD=y1﹣y2=﹣x2+4﹣(﹣x2﹣x﹣),即:CD=﹣x2+x+,当x=﹣=时,CD最大=﹣×+×+=5,∴S△BCD=×5×(3﹣)=.23.(12分)如图1,在矩形ABCD中,AB=5,BC=8,点E,F分别为AB,CD的中点.(1)求证:四边形AEFD是矩形;(2)如图2,点P是边AD上一点,BP交EF于点O,点A关于BP的对称点为点M,当点M落在线段EF上时,则有OB=OM.请说明理由;(3)如图3,若点P是射线AD上一个动点,点A关于BP的对称点为点M,连接AM,DM,当△AMD是等腰三角形时,求AP的长.【分析】(1)根据有一个角是直角的平行四边形是矩形证明即可.(2)根据直角三角形斜边中线的性质证明即可.(3)分四种情形:如图3﹣1中,当MA=MD时.如图3﹣2中,当AM=AD时.如图3﹣3中,当DA=DM时,此时点P与D重合.如图3﹣4中,当MA=MD时,分别求解即可解决问题.【解答】(1)证明:∵四边形ABCD是矩形,∴AB=CD,AB∥CD,∠A=90°,∵AE=EB,DF=FC,∴AE=DF,AE∥DF,∴四边形AEFD是平行四边形,∵∠A=90°,∴四边形AEFD是矩形.(2)证明:如图2中,连接PM.BM.∵四边形AEFD是矩形,∴EF∥AD,∵BE=AE,∴BO=OP,由翻折可知,∠PMB=∠A=90°,∴OM=OB=OP.(3)解:如图3﹣1中,当MA=MD时,连接BM,过点M作MH⊥AD于H交BC于F.∵MA=MD,MH⊥AD,∴AH=HD=4,∵∠BAH=∠ABF=∠AHF=90°,∴四边形ABFH是矩形,∴BF=AH=4,AB=FH=5,∴∠BFM=90°,∵BM=BA=5,∴FM===3,∴HM=HF=FM=5﹣3=2,∵∠ABP+∠APB=90°,∠MAH+∠APB=90°,∴∠ABP=∠MAH,∵∠BAP=∠AHM=90°,∴△ABP∽△HAM,∴=,∴=,∴AP=.如图3﹣2中,当AM=AD时,连接BM,设BP交AM于F.∵AD=AM=8,BA=BM=5,BF⊥AM,∴AF=FM=4,∴BF===3,∵tan∠ABF==,∴=,∴AP=,如图3﹣3中,当DA=DM时,此时点P与D重合,AP=8.如图3﹣4中,当MA=MD时,连接BM,过点M作MH⊥AD于H交BC于F.∵BM=5,BF=4,∴FM=3,MH=3+5=8,由△ABP∽△HAM,可得=,∴=,∴AP=10,综上所述,满足条件的P A的值为或或8或10.。

中考数学每日一练:二次函数的最值练习题及答案_2020年填空题版

中考数学每日一练:二次函数的最值练习题及答案_2020年填空题版

中考数学每日一练:二次函数的最值练习题及答案_2020年填空题版答案答案答案答案答案答案答案答案2020年中考数学:函数_二次函数_二次函数的最值练习题~~第1题~~(2020农安.九上期中) 二次函数y=x ﹣2x ﹣5的最小值是________.考点: 二次函数的最值;~~第2题~~(2019哈尔滨.中考真卷) 二次函数y=-(x-6)+8的最大值是________。

考点: 二次函数的最值;~~第3题~~(2019哈尔滨.中考模拟) 二次函数y =﹣x ﹣2x+3的最大值是________.考点: 二次函数的最值;~~第4题~~(2019宿迁.中考模拟) 若min{a ,b ,c}表示a ,b ,c 三个数中的最小值,当y =min{x , x+2,8﹣x}(x≥0)时,则y 的最大值是________.考点: 比较一次函数值的大小;二次函数的最值;~~第5题~~(2019南京.中考模拟) 如图,矩形ABCD 中,AB =6,BC =8,E 为AB 的中点,P 为BC 上一动点,作PQ ⊥EP 交直线C D 于点Q ,设点P 每秒以1个单位长度的速度从点B 运动到点C停止,在此时间段内,点Q 运动的平均速度为每秒________个单位.考点: 二次函数的最值;矩形的性质;相似三角形的判定与性质;~~第6题~~(2019昆山.中考模拟)已知关于 的方程( 为实数)两非负实数根,则 的最小值是________.考点: 一元二次方程的根与系数的关系;二次函数的最值;~~第7题~~(2019浙江.中考模拟) 已知关于x 的代数式,当x =________时,代数式的最小值为________.考点: 配方法的应用;二次函数的最值;~~第8题~~(2019河南.中考模拟) 如图,扇形OAB 中,∠AOB=60°,扇形半径为4,点C 在上,CD ⊥OA ,垂足为点D ,当△OCD 的面积最大时,图中阴影部分的面积为________.考点: 二次函数的最值;三角形的面积;勾股定理;扇形面积的计算;2222答案答案~~第9题~~(2019潮南.中考模拟) 二次函数的最大值为________.考点: 二次函数的最值;~~第10题~~(2019乐山.中考真卷) 如图,点是双曲线 :()上的一点,过点 作 轴的垂线交直线: 于点,连结, .当点在曲线上运动,且点在 的上方时,△面积的最大值是________.考点: 一次函数图象与坐标轴交点问题;反比例函数的性质;反比例函数系数k 的几何意义;二次函数的最值;2020年中考数学:函数_二次函数_二次函数的最值练习题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:。

高二数学频率分布直方图练习题

高二数学频率分布直方图练习题

高二数学频率分布直方图练习题在高二数学学习中,频率分布直方图是一个重要的概念和工具。

它能够帮助我们直观地了解数据的分布情况,并能够进行一些有关数据分析的操作。

下面是一些高二数学频率分布直方图练习题,希望能对同学们的学习有所帮助。

1. 一家超市通过调查了解到顾客每天购买的饮料数量,数据如下:2, 3, 2, 4, 1, 2, 4, 2, 3, 2, 1, 3, 2, 1, 2, 4, 2, 3, 2, 1根据以上数据绘制频率分布直方图,并确定众数、中位数、均值。

2. 某班级同学们的体重数据如下:52, 55, 53, 57, 54, 56, 55, 51, 58, 60, 59, 62, 63, 64, 61, 56, 55, 54, 57, 59根据以上数据绘制频率分布直方图,并确定众数、中位数、均值。

3. 某城市某月份的降水量数据如下:20, 15, 18, 22, 17, 19, 23, 16, 21, 20, 15, 20, 19, 23, 20, 18, 16, 22, 19, 17根据以上数据绘制频率分布直方图,并确定众数、中位数、均值。

4. 下面是一组学生在一次月考中的数学成绩数据:90, 85, 78, 92, 88, 79, 81, 85, 86, 90, 84, 88, 92, 89, 77, 82, 84, 87, 91, 83根据以上数据绘制频率分布直方图,并确定众数、中位数、均值。

5. 某工厂生产了一批产品,产品的重量数据如下:2.5, 2.7, 2.8, 2.6, 2.9, 2.7, 2.6, 2.8, 2.7, 2.6, 2.8, 2.7, 2.5, 2.8, 2.6, 2.9根据以上数据绘制频率分布直方图,并确定众数、中位数、均值。

以上是几道关于频率分布直方图的练习题。

通过解决这些题目,我们可以巩固对频率分布直方图的理解和应用,提高数据分析的能力。

在实际问题中,频率分布直方图也可以用来对比不同数据集的分布情况,帮助我们做出更好的决策。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

答案
~~第9题~~ (2012温州.中考真卷) 赵老师想了解本校“生活中的数学知识”大赛的成绩分布情况,随机抽取了100份试卷的成绩(满 分为120分,成绩为整数),绘制成如图所示的统计图.由图可知,成绩不低于90分的共有________人.
考点: 频数(率)分布直方图;
答案
~~第10题~~ (2011河池.中考真卷) 某校为了了解九年级学生的体能情况,随机抽查了其中的30名学生,测试了1分钟仰卧起坐的次 数,并绘制成如图的频数分布直方图,则仰卧起坐次数在20~25次之间的频数是________.
~~第4题~~
(2019青浦.中考模拟) A班学生参加“垃圾分类知识”竞赛,已知竞赛得分都是整数,竞赛成绩的频数分布直方图,如图 所示,那么成绩高于60分的学生占A班参赛人数的百分比为________.
考点: 频数(率)分布直方图;
答案
~~第5题~~ (2017静安.中考模拟) 为了解全区5000名初中毕业生的体重情况,随机抽测了400名学生的体重,频率分布如图所示( 每小组数据可含最小值,不含最大值),其中从左至右前四个小长方形的高依次为0.02、0.03、0.04、0.05,由此可估计 全区初中毕业生的体重不小于60千克的学生人数约为________人.
(1) 补全频率分布表和频率分布直方图.
分组
频数
频率
4.5﹣22.5
2
0.050
22.5﹣30.5
3
30.5﹣38.5
10
0.250
38.5﹣46.5
19
46.5﹣54.5
5
0.125
54.5﹣62.5
1
0.025
合计
40
1.000
(2) 填空:在这个问题中,总体是,样本是.由统计结果分析的,这组数据的平均数是38.35(分),众数是,中位
考点: 频数(率)分布直方图;
答案
2020年 中 考 数 学 : 统 计 与 概 率 _数 据 收 集 与 处 理 _频 数 ( 率 ) 分 布 直 方 图 练 习 题 答 案
1.答案:
2.答案:
3.答案: 4.答案: 5.答案:
6.答案: 7.答案: 8.答案: 9.答案: 10.答案:
数是.
(3) 如果描述该校400名学生一周内平均每天参加课外锻炼时间的总体情况,你认为用平均数、众数、中位数中的哪
一个量比较合适?
(4) 估计这所学校有多少名学生,平均每天参加课外锻炼的时间多于30分?
考点: 总体、个体、样本、样本容量;用样本估计总体;频数(率)分布表;频数(率)分布直方图;众数;
考点: 频数(率)分布直方图;中位数;
答案
~~第2题~~ (2019襄阳.中考模拟) 某校为了了解全校400名学生参加课外锻炼的情况,随机对40名学生一周内平均每天参加课外锻 炼的时间进行了调查,结果如下:(单位:分) 40 21 35 24 40 38 23 52 35 62 36 15 51 45 40 42 40 32 43 36 34 53 38 40 39 32 45 40 50 45 40 40 26 45 40 45 35 40 42 45
答案
~~第3题~~ (2019云南.中考真卷) 某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考试成绩分 为A、B、C、D、E五个等级,绘制的统计图如下:
根据以上统计图提供的信息,则D等级这一组人数较多的班是___布直方图;
答案
考点: 用样本估计总体;频数(率)分布直方图;
答案
~~第6题~~ (2017杨浦.中考模拟) 某区从近期卖出的不同面积的商品房中随机抽取1000套进行统计,并根据结果绘出如图所示的统 计图.从中可知卖出的110m2~130 m2的商品房________套.
考点: 频数(率)分布直方图;
答案
~~第7题~~ (2017浙江.中考模拟) 九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数分布直方图(满分为30 分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是_______ _.
中考数学每日一练:频数(率)分布直方图练习题及答案_2020年填空题版
2020年 中 考 数 学 : 统 计 与 概 率 _数 据 收 集 与 处 理 _频 数 ( 率 ) 分 布 直 方 图 练 习 题
~~第1题~~ (2019莲都.中考模拟) 某校901班共有50名同学,如图是该次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均 为整数),则测试成绩的中位数所在的组别是________.
考点: 频数(率)分布直方图;
答案
~~第8题~~ (2015黄石.中考真卷) 九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数分布直方图(满分为30 分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是_______ _.
考点: 频数(率)分布直方图;
相关文档
最新文档