组合图形的面积计算
小学五年级数学《组合图形面积的计算》优秀教案三篇

小学五年级数学《组合图形面积的计算》优秀教案三篇组合图形面积的计算是平面图形知识在小学阶段的综合应用。
计算一个组合图形的面积,有时可以有多种方法,下面就是我给大家带来的小学五年级数学《组合图形面积的计算》优秀教案三篇,希望能帮助到大家!小学五年级数学《组合图形面积的计算》优秀教案一教学目标:1、知道求组合图形的面积就是求几个图形面积的和(或差);能正确地进行组合图形面积计算,并能灵活思考解决实际问题。
2、注重对组合图形的分析方法与计算技巧,有利于提高学生的识图能力、分析综合能力与空间想象能力。
教学方法:讲解法、演示法教学过程:一、割补法这类方法一般是从组合图形中分割成几种不同的基本图形,这类图形的阴影部分面积就是求几个基本图形面积之和(或者差)。
Ppt演示变化过程,并出示解题过程。
二、等积变形法。
这类方法是将题中的条件或问题替换成面积相等的另外的条件或问题,使原来复杂的图形变为简单明了的图形。
Ppt演示变化过程,并出示解题过程。
三、旋转法。
这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图。
Ppt演示变化过程,并出示解题过程。
四、小结方法求组合图形面积可按以下步骤进行1、弄清组合图形所求的是哪些部分的面积。
2、根据图中条件联想各种简单图形的特征,看组合图形可以分成几块什么样的图形,能否通过割补、等积变形、旋转等方法使图形化繁为简。
小学五年级数学《组合图形面积的计算》优秀教案二教学内容:《义务教育课程标准实验教科书数学》(人教版)五年级上册“组合图形的面积”教学目标:1、明确组合图形的意义,掌握用分解法或添补法求组合图形的面积。
2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
3、渗透转化的教学思想,提高学生运用新知识解决实际问题的能力,在自主探索活动中培养他们的创新精神。
教学重点:在探索活动中,理解组合图形面积计算的多种方法,会利用正方形、长方形、平行四边形、三角形、梯形这些平面图形面积来求组合图形的面积。
常见组合图形面积计算实例二

求阴影部分面积实例二求左面阴影部分的面积。
(单位:米)提示:阴影面积=大圆面积+ 2个1/2圆的面积-三角形面积。
1、大圆面积:已知圆的直径,求面积,先用直径除以2得到半径,再用圆周率乘以半径的平方可以得到。
答案:1、半圆面积:44÷2=22米3.14×22×22=1519.76平方米2、2个1/2圆的面积:22÷2=11米3.14×11×11=379.94平方米求左面阴影部分的面积。
(单位:米)提示:割补后阴影面积刚好成为半圆的面积减去一个三角形的面积。
1、半圆面积:已知圆的直径,求面积,先用直径除以2得到半径,再用圆周率乘以半径的平方可以得到。
再求圆面积的1/2,就用圆的面积乘以1/2。
2、求三角面积已知三角形形的底和高,求面积,用底乘以高除以2可以得到。
3、求阴影面积=半圆面积-三角形面积答案:1、半圆面积:80÷2=40米3.14×40×40×1/2=2512平方米2、三角形面积:80×40÷2=1600平方米3、阴影面积:2512 - 1600=912平方米2、2个1/2圆的面积:已知圆的直径,求面积,先用直径除以2得到半径,再用圆周率乘以半径的平方可以得到。
3、求三角面积已知三角形形的底和高,求面积,用底乘以高除以2可以得到。
4、阴影面积=大圆面积+ 2个1/2圆的面积-三角形面积。
3、三角形面积:44×44÷2=968平方米4、阴影面积:1519.76 + 379.94 - 968=931.7平方米求左面阴影部分的面积。
(单位:米)提示:阴影面积=大圆面积+ 2个1/2圆的面积-三角形面积。
1、大圆面积:已知圆的直径,求面积,先用直径除以2得到半径,再用圆周率乘以半径的平方可以得到。
2、小圆的面积:已知圆的直径,求面积,先用直径除以2得到半径,再用圆周率乘以半径的平方可以得到。
小学听课评课稿《组合图形的面积的计算》

小学听课评课稿《组合图形的面积的计算》今天,听了胡老师执教的《组合图形的面积的运算》一课,有点耳目一新的感受,原先,数学的复习课也能上得如此轻松。
胡老师这堂课的最大亮点确实是能够结合学生的实际特点,挑学生最喜爱的游戏卡片做载体,将整个课堂转化成大伙儿玩卡片的形式,在“玩中学,学中乐”的和谐氛围之中上完了整堂复习课。
亮点之二:精心设计复习内容。
胡老师在充分熟悉教材、了解了上课班级学生的能力、爱好的实际情形后,特地自行设计了一整堂适合这班学生的复习内容,并做了大量的前期预备工作,使本堂课能够顺利、圆满的上下来,工夫真是十分了得。
总之,这节课充分表达了胡老师先进的教学理念,充分表达了胡老师的爱生之情,给人以深刻的启发和借鉴。
因此,假如胡老师假如能在教学过程中更多些关注学习有困难学生的体验,给学生以充分的摸索时刻的话,我想本堂课将会取得更好的教学成效。
因此,我个人认为仍旧有一些需要共同探究的地点,比如:1、数学源于生活而用于生活,应用数学知识解决生活中的实际问题是我们学习数学的归宿。
本课的最后,是否能够向学生展现了生活中的组合图形,从中提出数学问题,并加以解决。
我想通过联系实际,运算面积,进一步激发了学生对数学学习的爱好,关心学生更好地应用所学的知识。
如此,会使学生进一步感受到数学就在周围,激发学生从生活中查找数学问题的爱好,也培养了学生提出问题,解决问题的能力。
2、我觉得学生的练习内容是否过多,以至于学生在最后一两题,由于考虑的时刻过短,多数学生没能独立的运算出来。
而且,最后第二题有多种解决的方法,假如前面的时刻花的少一些,而将练习的重点放在那个地点的话,感受思维的层次又提升了许多。
“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。
其中“师傅”更早则意指春秋时国君的老师。
《说文解字》中有注曰:“师教人以道者之称也”。
“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。
《组合图形面积的计算》教学反思4篇

《组合图形面积的计算》教学反思4篇《组合图形面积的计算》教学反思篇1《组合图形的面积计算》是学生在学习了平行四边形、三角形、梯形的面积根底上,通过拼补的方法把组合图形转化成我们会计算面积的2个图形的面积进展计算,方法有许多种,学生选择适合自己的就可以。
本节课并不是要教会学生求几个组合图形的面积,而是让学生体会到割补、转化的方法是求未知平面图形面积的重要策略。
当学生真正获得了策略的学问、方法的学问的时候,就能举一反三、触类旁通。
通过这一堂课的教学,我感受最深的是:课堂教学是由学生、教师和教材组成的整体,只有发挥这个整体中各个局部及其相互关系的功能,才能取得最正确课堂教学效果。
在教学中不能以教师为中心来死搬硬套教材,而应把学生推到学习活动的中心。
本堂课制造性地对教材实施了由静态的信息变为动态的过程的再加工重组,较合理地利用了教材资源。
在教学中,先不给出数据,给学生留下充分的想象空间,使学生更广泛地理解什么是组合图形,更大限度地激活每个学生寻求组合图形面积计算的思维动力。
然后再紧紧围绕“依据最少的数据,寻求最正确求面积的方法”这个思维策略思想,逐步绽开有层次的思维训练。
尽管还是课本的内容,但却演绎出别样的精彩,学生也在其中品尝了学习的欢悦和胜利。
教材在这儿已经完全成为学生驾驭学习的工具和成长的阶梯了,真正是为学生的学习效劳,这或许就是教材重组的意义所在吧!课堂也存在缺乏,比方说对例题学习可设计一些思索提示,让学生在思索的根底上尝试解决,学生有需要的话点击提示,这样能使学生的思维处于积极状态,获得胜利的情感体验。
在后面的练习设计中,也可围绕肯定的问题情境设计一些联系实际的问题,发挥学生的主观能动性,以学生自主探究,查找解决问题的途径,真正将发觉问题,解决问题的成就感还给学生。
《组合图形面积的计算》教学反思篇2本课是小数数学的空间与几何的内容,与生活联系严密,有较强的有用性。
全课主要借助自主共性学习的平台,开展自主探究、沟通学习的方式进展学习。
组合立体图形的表面积的思路总结

组合立体图形的表面积的思路总结这是一个立体图形,它由六个面组成。
其中两个是全等的三角形。
其余四个分别是正方形、长方形和梯形。
要求组合后的总面积,也就是每个小图形的表面积如何计算?(注意这里有关面积和棱长的知识,是相当于第二次函数的)解决问题的思路是什么呢?在学习多边形表面积之前,已经知道三角形、平行四边形、长方形、梯形、正方形、圆、扇形、直线图形、曲线图形等多种表面积。
因此,要解决“组合立体图形”表面积计算,可以将几何图形进行归类。
然后再寻找不同的解决办法,最终才能够使问题获得解决。
组合立体图形表面积公式: S= S1+ S2+ S3+…+ Sn(1) S1:(三角形面积+梯形面积+三角形+梯形)/2 S2:(平行四边形面积+三角形+梯形)/2S3:(长方形面积+三角形+梯形)/2Sn:(直线图形面积+曲线图形)/2这些定义适用于所有的几何图形。
但对于某些特殊图形则需要采取变通措施。
如正方形表面积 S1=2* a* b* c,其中a 与 b 和 c 都是大于0的常数;又如三角形面积 S2=1/2a* sinB,其中 A、 B 都是小于0的常数,可见只要知道一个条件,另外两个也容易得出结果。
试想下,把上述图形看作三角形或者平行四边形,则 s= S1+ S2+ S3+…+ Sn(1)=1+2+3+…+9+12+14=43+64+96+144+384+480=720,即3×(720-720)/4=84(立方厘米),从而进而可推导出各图形表面积公式。
同样地,要解决梯形面积,可令 S2=( A2+ B2+ C2)÷2=12A+8B+4C,得出 S1=(2×12A+8B+4C)/2=48A,继续将前面的定义带入便可以求得 S2=2×(48-48)/2=6(平方厘米)。
这时候你会发现 s=12A+6(平方厘米)。
那么为了便于理解和应用,我们可以把一些简单的图形归纳起来,通过画一画,拼一拼来感受一些空间图形的基本性质,初步建立空间观念。
实际测量及组合图形面积的计算

第8讲实际测量及组合图形面积的计算一、教法建议【抛砖引玉】一、动手测量所需条件,算出图形的面积。
这组题,所需要的条件没有直接给出,需要自己动手测量数据后,利用面积公式进行计算,可以进一步培养学生的动手操作能力。
如:先测量,再计算图形的面积。
学生测量时应先标出单位,以及测量出的数据(注意测的数据要取整厘米数)。
量高时应先画出高再测量,最后用公式算出面积。
又如:请测量出三角形的底和高,并算出它的面积。
这题由于学生确定的底不一样,相应的高也就不一样。
但是计算结果应相同。
这样的实际测量的题目允许学生量出的数据有误差。
二、用工具在地面上测量距离以及以步代测量工具进行测量的方法的教学应抓住以下六个方面1.不论是直线距离的测量,还是步测或目测,在进行实际测量时都要在室外进行。
为了保证测量工作能顺利进行,课前的准备工作对保证课上有秩序地进行活动十分重要。
因此,要做到以下三点:(1)课前分好小组,每组确定小组长;(2)准备好测量工具,安排好测量场地;(3)计划好实际活动的步骤,分配好活动时间。
2.教学测定直线时,先要说明测定直线的意义和作用,着重说明不先测定直线就去测量两点间的距离,可能分段测量时出现曲折,从而降低测量结果的精确程度。
在介绍用工具测定直线的方法时,教师可以先找几个学生做示范。
然后让学生分组按照课前分别指定的两点之间测定直线,在地面上画出直线,并量出两点之间的距离。
学生实际测量时,教师要加强巡视指导,最后各组互相检查所测定距离是否比较准确。
如要测量下图中A点到B点的距离,可以按照下面的步骤测定一条直线:(1)两人先在A点和B点各插一根标杆;(2)第一个人在A点指挥,叫第三个人把另一根标杆插在C点,使它和B 点的标杆同时被A点的标杆挡住;(3)用同样的方法再把另一根标杆插在D点;(4)把所有这些点连接起来,就定出了一条直线。
测定直线后,就可以用卷尺或测绳逐段量出A、B两点之间的距离。
3.教学步测时,也要使学生了解它的实用意义,然后按以下步骤进行步测。
组合图形面积计算技巧十法

组合图形面积计算技巧“十法"一、相加相减法【点拨】:这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,相加求出整个图形的面积.或者将所求的不规则图形的面积看成是若干个基本规则图形的面积之差.【例题1】:求组合图形的面积。
(单位:厘米)【分析与解答】:上图中,要求整个图形的面积,只要先求出上面半圆的面积,再求出下面正方形的面积,然后把它们相加就可以了.4÷2=2(米)4×4+2×2×÷2=(平方厘米)【例题2】:长方形长6厘米,宽4厘米,求阴影部分的面积。
【分析与解答】:上图中,若求阴影部分的面积,只需先求出正方形面积再减去里面圆的面积即可.4÷2=2(米)6×4-2×2×÷(平方厘米)二、用比例知识求面积【点拨】:利用图形之间的比例关系解题。
【例题3】一块长方形耕地,它由四个小长方形拼合而成,其中三个小长方形的面积分别为15、18、30公顷,图中阴影部分的面积是多少?【分析与解答】:因为阴影部分也是一长方形,所以只要求出它的长、宽是多少就行,为此设它的长、宽分别为a、b,面积为18公顷的长方形的长、宽分别为c、d.直接按比例关系来理解。
因为(a×c):(d×c)=(a×b):(d×b),a:d=15:18=阴影面积:30,阴影面积为15×30÷18=25(公顷)。
三、等分法【点拨】:根据所求图形的对称性,将所求图形面积平均分成若干份,先求出其中的一份面积,然后求总面积。
【例题4】:求阴影部分的面积(单位:厘米)【分析与解答】:把原图平均分成八分,就得到下图,先求出每个小扇形面积中的阴影部分:×22÷4-2×2÷2=(平方厘米)阴影部分总面积为:×8=(平方厘米)四、等积变形【点拨】:将题中的条件或问题替换成面积相等的另外的条件或问题,使原来复杂的图形变为简单明了的图形。
计算组合图形面积的几种方法

计算组合图形面积的几种方法
一、分解法。
把一个组合图形根据它的特征和已知条件分割成几个简单的规则图形,分别算出各个图形的面积,最后求出它们的面积的和。
如下图就可以分割成一个梯形和一个平行四边形。
二、割补法。
就是把图形的某一部分割下来补到另一部分上,使它变成一个我们学过的某一个图形,然后进行计算。
如下图:
三、填补法。
就是把一个多边形先看成一个完整的规则图形,计算出它的面积以后,再减去空缺部分的面积。
如下图就可以看成一个长方形,求出它的面积以后,再减去空缺处的梯形的面积。
四、折叠法。
就是把组合图形折叠成几个完全相同的图形,然后先求出其中一个图形的面积,再求出几个图形的面积的和。
如下图就可以折叠成两个完全相同的梯形。
五、旋转法。
就是把原来图形进行一次或几次旋转以后,使它变成我们熟悉的新图形,然后进行计算。
如下图就可以利用旋转法,使阴影部分变成一个三角形。
计算一个组合图形的面积,有时可以有多种方法,我们要根据图形的特征和已知条件以及整体与部分的关系,选择最佳的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
组合图形的面积计算
教学目标
1.掌握计算环形面积的方法,并能准确掌握和计算其他一些简单组合图形的面积。
2.进一步应用圆的周长公式和面积公式解决一些和生活相关的实际问题.提高数学学习的兴趣和学好数学的自信心。
教学重点掌握求环形面积的方法
教学准备直尺、纸片、圆规、剪刀
活动方案导学策略个性调整
活动一:学习例10。
1.阅读例题:
上图是王师傅加工的一个圆环形铁片。
它的外圆半径是10厘米,内圆半径是6厘米。
你会求这个铁片的面积吗?
2. 小组讨论,确立解题思路。
第一步求
第二步求
第三步求
3.尝试解答。
4.小组交流。
活动二:拓展练习:
一扇窗户的形状由一个正方形和一个半圆形组合而成(如下图)。
这扇窗户的面积是多少平方活动一:学习例10。
1.出示圆环图形,这是什么图形?你知道吗?
2.出示例10题目,读题。
师:这是由两个同心圆组合成的圆环,要计算它的面积,你有什么好的方法?独立思考。
小组讨论,确立解题思路。
交流:(1)求出外圆的面积(2)求出内圆的面积(3)计算圆环的面积
1.学生独立操作计算。
2.组织交流解题方法,提问:有更简便的计算方法吗?
小结:求圆环的面积一般是把外圆的面积减去内圆的面积,还可以利用乘法分配率进行简便计算。
活动二:拓展练习:
1.出示题目和图形,学生读题。
师:(1)这个组合图形是有哪些基本图形组合而成的?
(2)半圆和正方形有什么相关联的地方?
明确:正方形的边长就是半圆的
米?
求图形中涂色部分的面积。
(单位:厘米)
组内交流解题思路。
【检测反馈】
1.先在图中量出需要的数据(取整毫米),再计算涂色部分的面积。
2下面三个正方形的边长都是3厘米,涂色部分的面积相等吗?为什么?
3.一个半径是8米的圆形水池,周围有一条2米宽的小路(如下图),这条小路的面积是多少平方米?直径。
(3)思考一下,半圆的面积该怎样计算?
2.学生独立计算。
3.交流解题方法,注意提醒学生半圆的面积必须把整圆的面积除以2。
小结:圆、半圆和其他基本的平面图形组合在一起,产生了许多美丽的组合图形。
在计算组合图形面积的时候,大家要看清,整个图形是由哪些基本的图形组合而成的。
【检测反馈】
1.思考:
(1)求涂色部分的面积,需要计算哪些基本图形的面积?(2)计算这些基本图形的面积分别需要哪些条件?
(3)第一个图形,两个基本图形有什么联系?第二个图形呢?
明确:左图中长方形的宽与圆的半径相等,右图中半圆的直径是三角形的高。
学生独立完成,并全班反馈交流。
全课总结:
今天学习了什么?你有什么收获?
教学反思。