半导体材料的特性参数和要求

合集下载

第一章半导体器件的特性讲解

第一章半导体器件的特性讲解
第一章 半导体器件的 特性
主要内容及要求
1.1 半导体的导电特性 1.2 PN结 1.3 二极管 1.4 双极型晶体管(BJT) 1.5 场效应管(FET)
基础,必须掌握: 基本概念,原理, 特征曲线、参数, 应用等。
了解原理,掌握特 征曲线、参数。
1.1 半导体的导电特性
半导体材料:
物质根据其导电能力(电阻率)的不同,可划分 导体、绝缘体和半导体。 -4 导 体:ρ<10 Ω·cm 9 绝缘体:ρ>10 Ω·cm 半导体:导电性能介于导体和绝缘体之间。 典型的元素半导体有硅Si和锗Ge ,此外,还有 化合物半导体砷化镓GaAs等。
1.5 场效应管
二、工作原理
VDS=0时, VGS 对沟道的控制作用
当VGS<0时, PN结反偏,| VGS | 耗尽层加厚沟道变窄。 VGS继续 减小,沟道继续变窄,当沟道夹断时, 对应的栅源电压VGS称为夹断电压VP ( 或VGS(off) )。 对于N沟道的JFET,VP <0。 若在漏源极间加上适当电压,沟道中有 电流ID流过。 VGS=0时,ID较大; VGS=VGS(off)时,ID近似为零, 这时管子截止。
1.5 场效应管
特点:
利用输入回路的电场效应控制输出回路的电流;仅靠半导体 中的多数载流子导电(单极型晶体管);输入阻抗高 (107~1012),噪声低,热稳定性好,抗辐射能力强,功 耗小。
分类:
1.5 场效应管
1.5.1结型场效应管 一、结构
N沟道结型场效应管结构示意图
N沟道管符号
P沟道管符号
晶体管结构示意图
晶体管符号
1.4 双极型晶体管
生成类型:合金型和平面型
要实现电流放大作用,要求: 发射区掺杂浓度高; 基区薄且掺杂浓度低; 集电结面积大。

什么叫半导体材料的特性

什么叫半导体材料的特性

什么叫半导体材料的特性?
半导体材料是一类具有特殊电学特性的材料,在现代电子学领域发挥着重要的作用。

半导体材料的特性主要表现在以下几个方面:
1. 晶体结构
半导体材料通常具有晶体结构,其中原子排列有序。

这种结构使得电子在材料中以禁带形式出现,能够在受激励时跃迁到导带中形成载流子。

2. 禁带宽度
半导体材料中的禁带宽度是指能带结构中导带和价带之间的能隙大小。

禁带宽度的大小直接影响了半导体材料的导电性能,如禁带宽度较小的半导体容易被激发产生导电行为。

3. 拓扑结构
半导体材料的电子结构和晶体结构决定了其拓扑性质,如在一维拓扑材料中,存在着边界态等特殊性质。

这些拓扑性质决定了半导体材料的一些特殊电学特性。

4. 光学性质
半导体材料通常具有良好的光学性质,如能够实现光电二极管、激光器等光电器件。

这些光学性质使得半导体材料在光电子领域有着广泛的应用。

5. 热电性质
部分半导体材料具有较好的热电性质,能够在温差作用下产生电能。

这种热电性质使得半导体材料在热电传感器、热电发电等领域具有应用前景。

总的来说,半导体材料具有晶体结构、禁带宽度、拓扑结构、光学性质和热电性质等多种特性,这些特性使得半导体材料在电子学、光电子学、热电领域有着广泛的应用和研究价值。

半导体材料的物理特性

半导体材料的物理特性

半导体材料的物理特性半导体材料是现代电子技术中极为重要的一种材料,不仅广泛用于集成电路和太阳能电池等领域,而且还具有很多独特的物理特性,这些特性直接影响了半导体器件的性能和应用。

因此,深入研究半导体材料的物理特性,对于提高半导体器件的性能和应用前景具有重要意义。

一、半导体材料的电学性质半导体材料的电学性质是指在外加电场作用下,半导体材料中自由电子和空穴的迁移性能。

在外加电场的作用下,半导体材料中的自由电子和空穴沿着电场方向运动,从而形成电流。

半导体材料的电学特性既受半导体本身的物理性质影响,又受气体、温度、杂质等外界条件的影响。

此外,半导体材料也存在电子注入、电子输运等现象,这些现象也会影响半导体材料的电学性质。

二、半导体材料的光学性质半导体材料的光学性质是指在外界光照射下,半导体材料的电子和空穴的能级变化、吸收、发射、衰减等光学特性。

半导体材料的光学性质主要是由半导体材料中的载流子、晶格振动等物理现象所决定的。

此外,半导体材料也存在多种激子效应,例如原子内激子、拓扑激子等激子相互作用,这些激子效应对半导体材料的光学特性也会产生影响。

三、半导体材料的磁学性质半导体材料的磁学性质是指在外界磁场作用下,半导体材料中电子、空穴受到力的作用产生的磁响应和反应。

半导体材料的磁学性质主要是由载流子、磁场和晶格中的自旋电子相互作用所决定的。

当前,半导体材料的磁学性质不断得到深入研究,不仅揭示了半导体中的自旋电子效应,而且为半导体磁场传感器等新型半导体材料器件的设计提供了新的思路。

四、半导体材料的热学性质半导体材料的热学性质是指在外界温度作用下,半导体材料中电子、空穴的能量状态、传热等热学特性。

当前,随着半导体材料器件进一步小型化,器件的高热效应成为极大的限制因素。

因此,深刻的认识半导体材料的热学性质对于制备高性能的半导体器件具有重要意义。

总之,半导体材料的物理特性是半导体器件性能和应用的决定因素之一。

从半导体材料的电学、光学、磁学和热学性质等各个方面深入地认识半导体材料的物理特性,对于研发高性能半导体器件具有非常重要的意义。

常见半导体材料特性参数

常见半导体材料特性参数

1627 2752 1414
2.56
3.42
8.5
0.5 0.2 4.9 2830 2830 2830 0.31 1240 2027 0.014 0.006 1700 1900 2.48 2.648 2.56 4.025 2.2 1.46 2.05
4.68
4.9 0.46
4.75
杨氏模量Gpa (与晶面有关) 200 (001) 191 (001)
60 50
80(210K)
0.677l,0.247t
l t 0.29 ,0.42
10940(50K) 400000(30K) 2400(40K)
100 450 180
240(150K) 28000(22K)
0.2l,0.42t 0.063 0.27 0.076lh,0.5hh 0.31∥c 0.55⊥c
2
有效质量 电子mn/m0 空穴mp/m0 0.2 0.13 0.12 1.1 0.19lh,1.3hh
14 500000(8K) 450 350000(6K)
0.33 ,0.25
l
t
lz3.53,lx0.24 hz3.53,hx10.42 0.16lh,0.49hh
0.98l,0.19t
3000(6K)
-1~3.2 4.05 4.6
1.4 1.00E+00
20~117 3
3.83 2 3.34 4.15 4 0.9 4.71 2.2 2.00E+00
12~40 20 24 4 35 1014~1016 1014 2.38E-09
26.7
60 3.6 53~56
波尔半径 A 31 32
热膨胀系数300K a/10 K 5.59

(完整版)半导体材料及特性

(完整版)半导体材料及特性

地球的矿藏多半是化合物,所以最早得到利用的半导体材料都是化合物,例如方铅矿(PbS)很早就用于无线电检波,氧化亚铜(Cu2O)用作固体整流器,闪锌矿(ZnS)是熟知的固体发光材料,碳化硅(SiC)的整流检波作用也较早被利用。

硒(Se)是最早发现并被利用的元素半导体,曾是固体整流器和光电池的重要材料。

元素半导体锗(Ge)放大作用的发现开辟了半导体历史新的一页,从此电子设备开始实现晶体管化。

中国的半导体研究和生产是从1957年首次制备出高纯度(99.999999%~99.9999999%) 的锗开始的。

采用元素半导体硅(Si)以后,不仅使晶体管的类型和品种增加、性能提高,而且迎来了大规模和超大规模集成电路的时代。

以砷化镓(GaAs)为代表的Ⅲ-Ⅴ族化合物的发现促进了微波器件和光电器件的迅速发展。

半导体材料可按化学组成来分,再将结构与性能比较特殊的非晶态与液态半导体单独列为一类。

按照这样分类方法可将半导体材料分为元素半导体、无机化合物半导体、有机化合物半导体和非晶态与液态半导体。

元素半导体:在元素周期表的ⅢA族至ⅦA族分布着11种具有半导性的元素,下表的黑框中即这11种元素半导体,其中C表示金刚石。

C、P、Se具有绝缘体与半导体两种形态;B、Si、Ge、Te具有半导性;Sn、As、Sb具有半导体与金属两种形态。

P的熔点与沸点太低,Ⅰ的蒸汽压太高、容易分解,所以它们的实用价值不大。

As、Sb、Sn的稳定态是金属,半导体是不稳定的形态。

B、C、Te也因制备工艺上的困难和性能方面的局限性而尚未被利用。

因此这11种元素半导体中只有Ge、Si、Se 3种元素已得到利用。

Ge、Si仍是所有半导体材料中应用最广的两种材料。

无机化合物半导体:四元系等。

二元系包括:①Ⅳ-Ⅳ族:SiC和Ge-Si合金都具有闪锌矿的结构。

②Ⅲ-Ⅴ族:由周期表中Ⅲ族元素Al、Ga、In和V族元素P、As、Sb组成,典型的代表为GaAs。

它们都具有闪锌矿结构,它们在应用方面仅次于Ge、Si,有很大的发展前途。

半导体材料有哪些特性及应用

半导体材料有哪些特性及应用

半导体材料特性及应用半导体材料是一种介于导体和绝缘体之间的材料,具有特殊的电子结构和导电性质。

半导体材料具有多种独特的特性,使其在电子、光电子、光伏和光通信等领域有广泛的应用。

半导体材料的主要特性1. 能带结构:半导体材料的电子能隙较窄,介于导体和绝缘体之间,使其在一定条件下可导电。

2. 斯特克斯位:半导体材料中的离子实栅靠近导带边缘,使电子在能带中具有很大的有效质量,有利于电子迁移。

3. 自由载流子浓度调控:通过施加外电场或调控杂质,可以有效调控半导体中的自由载流子浓度,实现半导体材料的导电性能调节。

4. 温度特性:半导体材料的电导率和载流子浓度都会随温度的变化而变化,通常表现为负温度系数。

5. 光电效应:半导体材料对光具有敏感性,可以通过光照射产生电子空穴对,实现光电转换及光电控制。

半导体材料的应用电子领域应用•集成电路(IC):半导体材料在微电子领域中广泛应用,作为IC芯片的基础材料,实现电子元器件、逻辑电路等功能。

•太阳能电池:半导体材料通过光电效应转化光能为电能,广泛应用于太阳能电池板制造。

光电子领域应用•激光器:利用半导体材料的光电效应和电子受激辐射特性,制作激光器用于光通信、医疗等领域。

•LED:利用半导体材料的电子激发辐射特性制造发光二极管,广泛应用于照明、显示等领域。

光伏领域应用•光伏电池:利用半导体材料的光电转换特性,制造光伏电池转化光能为电能,应用于太阳能发电系统。

光通信领域应用•光纤通信:利用半导体激光器和探测器构成的光通信系统,提供高速、远距离的光通信服务。

综上所述,半导体材料由于其特殊的电子结构和性质,在电子、光电子、光伏和光通信领域有着重要而广泛的应用。

随着科学技术的不断发展,半导体材料的应用前景将更为广阔。

半导体材料分析

半导体材料分析

1、半导体材料定义我们通常把导电性差的材料,如煤、人工晶体、琥珀、陶瓷等称为绝缘体。

而把导电性比较好的金属如金、银、铜、铁、锡、铝等称为导体。

可以简单的把介于导体和绝缘体之间的材料称为半导体(semiconductor material ),电阻率约在1m cm〜1G cm范围内与导体和绝缘体相比,半导体材料的发现是最晚的,直到20世纪30年代,当材料的提纯技术改进以后,半导体的存在才真正被学术界认可。

反映半导体内在基本性质的却是各种外界因素如光、热、磁、电等作用于半导体而引起的物理效应和现象,这些可统称为半导体材料的半导体性质。

构成固态电子器件的基体材料绝大多数是半导体,正是这些半导体材料的各种半导体性质赋予各种不同类型半导体器件以不同的功能和特性。

半导体的基本化学特征在于原子间存在饱和的共价键。

作为共价键特征的典型是在晶格结构上表现为四面体结构,所以典型的半导体材料具有金刚石或闪锌矿(ZnS)的结构。

由于地球的矿藏多半是化合物,所以最早得到利用的半导体材料都是化合物,例如方铅矿(PbS)很早就用于无线电检波,氧化亚铜(Cu2O)用作固体整流器,闪锌矿(ZnS)是熟知的固体发光材料,碳化硅(SiC)的整流检波作用也较早被利用。

硒(Se)是最早发现并被利用的元素半导体,曾是固体整流器和光电池的重要材料。

元素半导体锗(Ge)放大作用的发现开辟了半导体历史新的一页,从此电子设备开始实现晶体管化。

中国的半导体研究和生产是从1957年首次制备出高纯度的锗开始的。

采用元素半导体硅(Si)以后,不仅使晶体管的类型和品种增加、性能提高,而且迎来了大规模和超大规模集成电路的时代。

以砷化傢(GaAs)为代表的川-V族化合物的发现促进了微波器件和光电器件的迅速发展。

2、半导体材料的发展历史半导体的发现实际上可以追溯到很久以前,1833年,英国科学家电子学之父法拉第最先发现硫化银的电阻随着温度的变化情况不同于一般金属,一般情况下,金属的电阻随温度升高而增加,但巴拉迪发现硫化银材料的电阻是随着温度的上升而降低。

半导体材料电学性能

半导体材料电学性能
掺杂浓度:影响半导体材料的导电性和电阻率 掺杂类型:影响半导体材料的电学性质如n型半导体和p型半导体 掺杂深度:影响半导体材料的电学性质如表面掺杂和体掺杂 掺杂均匀性:影响半导体材料的电学性质如均匀掺杂和非均匀掺杂
载流子类型和浓度的影响
载流子类型:电子、 空穴、离子等
载流
太阳能电池是利用半导体材料将太阳能转化为电能的设备 半导体材料在太阳能电池中的应用主要包括硅、砷化镓等 太阳能电池的应用领域包括太阳能发电、太阳能路灯、太阳能热水器等 太阳能电池的发展趋势是提高转换效率、降低成本、提高稳定性和可靠性
传感器技术应用
温度传感器:用于测量温度广泛应用于家电、汽车等领域 湿度传感器:用于测量湿度广泛应用于农业、气象等领域 压力传感器:用于测量压力广泛应用于工业、医疗等领域 气体传感器:用于检测气体浓度广泛应用于环保、安全等领域 光传感器:用于检测光线强度广泛应用于照明、安防等领域 磁传感器:用于检测磁场强度广泛应用于电子、通信等领域

半导体材料在 生物技术、纳 米技术等领域
的应用
感谢您的观看
汇报人:
测量方法:霍尔效应、电子束 诱导电流等
影响因素:材料类型、温度、 掺杂浓度等
应用:半导体器件设计、性能 优化等
介电常数
介电常数是衡量半 导体材料电学性能 的重要参数之一
介电常数的大小直接影 响半导体材料的电导率、 电子迁移率和载流子浓 度等电学性能
介电常数与半导体 材料的晶格结构、 原子排列方式、杂 质浓度等因素有关
介电常数的测量方 法包括电桥法、阻 抗谱法、微波法等
影响半导体材料 电学性能的因素
温度的影响
温度升高半导体材 料的载流子浓度增 加电导率提高
温度升高半导体材 料的电子迁移率降 低影响器件性能
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

半导体材料的特性参数和要求有哪些?
半导体材料-特性参数
LED灯泡半导体材料虽然种类繁多但有一些固有的特性,称为半导体材料的特性参数。

这些特性参数不仅能反映半导体材料与其他非半导体材料之间的差别,而且更重要的是能反映各种半导体材料之间甚至同一种材料在不同情况下特性上的量的差别。

常用的半导体材料的特性参数有:禁带宽度、电阻率、载流子迁移率(载流子即半导体中参加导电的电子和空穴)、非平衡载流子寿命、位错密度。

禁带宽度由半导体的电子态、原子组态决定,反映组成这种材料的原子中价电子从束缚状态激发到自由状态所需的能量。

电阻率、载流子迁移率反映材料的导电能力。

非平衡载流子寿命反映半导体材料在外界作用(如光或电场)下内部的载流子由非平衡状态向平衡状态过渡的弛豫特性。

位错是晶体中最常见的一类晶体缺陷。

位错密度可以用来衡量半导体单晶材料晶格完整性的程度。

当然,对于非晶态半导体是没有这一反映晶格完整性的特性参数的。

半导体材料-特性要求
LED灯泡半导体材料的特性参数对于材料应用甚为重要。

因为不同的特性决定不同的用途。

晶体管对材料特性的要求:根据晶体管的工作原理,要求材料有较大的非平衡载流子寿命和载流子迁移率。

用载流子迁移率大的材料制成的晶体管可以工作于更高的频率(有较好的频率响应)。

晶体缺陷会影响晶体管的特性甚至使其失效。

晶体管的工作温度高温限决定于禁带宽度的大小。

禁带宽度越大,晶体管正常工作的高温限也越高。

光电器件对材料特性的要求:利用半导体的光电导(光照后增加的电导)性能的辐射探测器所适用的辐射频率范围与材料的禁带宽度有关。

材料的非平衡载流子寿命越大,则探测器的灵敏度越高,而从光作用于探测器到产生响应所需的时间(即探测器的弛豫时间)也越长。

因此,高的灵敏度和短的弛豫时间二者难于兼顾。

对于太阳电池来说,为了得到高的转
换效率,要求材料有大的非平衡载流子寿命和适中的禁带宽度(禁带宽度于1.1至1.6电子伏之间最合适)。

晶体缺陷会使半导体发光二极管、半导体激光二极管的发光效率大为降低。

温差电器件对材料特性的要求:为提高温差电器件的转换效率首先要使器件两端的温差大。

当低温处的温度(一般为环境温度)固定时,温差决定于高温处的温度,即温差电器件的工作温度。

为了适应足够高的工作温度就要求材料的禁带宽度不能太小,其次材料要有大的温差电动势率、小的电阻率和小的热导率。

载流子:电子运动速度等于迁移率乘以电场强度,也就是说相同的电场强度
下,载流子迁移率越大,运动得越快;迁移率小,运动得慢。

同一种半导体材料中,载流子类型不同,迁移率不同,一般是电子的迁移率高于空穴。

如室温下,低掺杂硅材料中,电子的迁移率为1350 (很明显用公式排版不好看,建议百度改进),而空穴的迁移率仅为480cm^2/(VS)。

迁移率主要影响到晶体管的两个性能:
一是载流子浓度一起决定半导体材料的电导率(电阻率的倒数)的大小。

迁移率越大,电阻率越小,通过相同电流时,功耗越小,电流承载能力越大。

由于电子的迁移率一般高于空穴的迁移率,因此,功率型MOSFET通常总是采用电子作为载流子的n沟道结构,而不采用空穴作为载流子的p沟道结构。

二是影响器件的工作频率。

双极晶体管频率响应特性最主要的限制是少数载流子渡越基区的时间。

迁移率越大,需要的渡越时间越短,晶体管的截止频率与基区材料的载流子迁移率成正比,因此提高载流子迁移率,可以降低功耗,提高器件的电流承载能力,同时,提高晶体管的开关转换速度。

一般来说P型半导体的迁移率是N型半导体的1/3到1/2.。

非平衡载流子:。

相关文档
最新文档