三因素混合方差分析事后简单效应多重比较语法
方差分析(包括三因素)讲解

2、CLASS 变量表;
CLASS必须的MODEL之前。
3、MODEL 因变量表=效应;
输出因变量均数,对主效应均数间的检
4、MEANS 效应[/选择项];
验。
5、ALPHA=p 显著性水平(缺省值为0.05)
是指因变量与自变量效应,模型如下:
1、主效应模型 MODEL y=a b c; (a b c是主效应,y是因变量)
计判断,得出结论。
5
方差分析的基本思想:把全部数据关于总均值的离差平方和 分解成几部分,每一部分表示某因素诸水平交互作用所产生 的效应,将各部分均方与误差均方相比较,从而确认或否认 某些因素或交互作用的重要性。
用公式概括为:
各因素引起
由个体差异 引起(误差)
总变异=组间变异+组内变异
种类:常用方差分析法有以下4种 1、完全随机设计资料的方差分析(单因素方差分析) 2、随机区组设计资料的方差分析(二因素方差分析) 3、拉丁方设计资料的方差分析(三因素方差分析) 4、R*C析因设计资料的方差分析(有交互因素方差分析)
3
第一节 概述
因素(因子)—— 可以控制的试验条件 因素的水平 —— 因素所处的状态或等级 单(双)因素方差分析——讨论一个(两个) 因素对试验结果有没有显著影响。
4
例如:某厂对某种晴棉漂白工艺中酸液浓度(g/k)进 行试验,以观察酸液浓度对汗布冲击强力有无显著影 响。
冲击强力 序号
1
浓度
2 3 4 56
计算出F值:
QA
4217.3
(3 1) 2 28.38
QE
1114.7
(3(6 1))
5
15
列表:
方差来源 因素A 试验误差 总误差
三因素方差分析.

7
三因素方差分析举例
残差的正态性检验结果:P=0.9422>0.05
Skewness/Kurtosis tests for Normality ------- joint -----Variable | Pr(Skewness) Pr(Kurtosis) adj chi2(2) Prob>chi2 -------------+------------------------------------------------------e | 0.915 0.743 0.12 0.9422
8
三因素方差分析举例
Full model结果:二级交互作用项P=0.0214<0.05
Source | Partial SS df MS F Prob > F -----------+---------------------------------------------------Model | .347361264 7 .049623038 1.55 0.2202 a | .00201666 1 .00201666 0.06 0.8049 b | .044490835 1 .044490835 1.39 0.2554 c | .048001913 1 .048001913 1.50 0.2382 a*b | .0244907 1 .0244907 0.77 0.3944 a*c | .003112983 1 .003112983 0.10 0.7591 b*c | .017424103 1 .017424103 0.54 0.4711 a*b*c | .207824069 1 .207824069 6.50 0.0214 Residual | .511622125 16 .031976383 -----------+---------------------------------------------------Total | .858983389 23 .037347104
方差分析中的多重比较

XD XC
XB XE XA
67 69.5 71.5 74 74.5
XC 2.5 XB 4.5 2.0 XE 7.0* 4.5 XA 7.5* 5.0
2 .5 3.0 0.5
等级排列为:
1、2、3、4、5
(2)根 据 比 较 等 级 r, 自 由 度 df w ,
在
附
表
中
查
相
应
的
q
0
或
.05
q
的
0.01
值
。
比 较 等 级 r ri -rj 1, 如 :
X
与
B
X
比
C
较,
r
2-1
1;
X
A
与
X
比
D
较
,
r
5
3
1
3;
[应用心理学专业必修课 心理统计学 淮北煤师院教育学院 李怀龙] Email:lihlong@
由 上 述 结 果 ,可 以 作 出 统 计 结 论
[应用心理学专业必修课 心理统计学 淮北煤师院教育学院 李怀龙] Email:lihlong@
6
Psychology Statistics
2、N-K法(q检验)
步骤:
(1)把要比较的各个平均数从小到大作等级排列;
如5个平均数从小到大顺序是XB,XC,XA,XE,XD, 则
27.3 29.6 26.4 31.5
[应用心理学专业必修课 心理统计学 淮北煤师院教育学院 李怀龙] Email:lihlong@
4.7.125多因素方差分析及软件操作

25
4.打开“单变量”的“绘制”对话框,选择“教学方法”为横轴变量
,选择“教学态度”为分线变量,单击“添加”,即显示这两个因素
变量的交互作用,即
26
5.打开“估计边际平均值”对话框,将左边因子与因子交互项中“教学
方法、教学态度、教学方法*教学态度”均移入右边 “显示均值”,选
中“比较主效应”。
平方和
自由度
均方
F
A因素
8.45
1
8.45
0.36
B因素
1264.05
1
1264.05
53.39**
A×B281.251281.25
组内变异
378.8
16
23.675
总变异
1932.55
19
变异来源
组间变异
19
11.88**
5.简单效应检验
在a1水平上B因素的平方和SSB(a1)
(a1)
642 + 1812 2452
H1:A因素主效应显著
B因素
H0:B因素主效应不显著
H1:B因素主效应显著
A×B
H0:A×B效应不显著
H1:A×B效应显著
12
2.计算F值
(1)计算平方和
∑∑X=64+181+95+137=477
∑∑X 2 =13309
2
2
(∑∑X)
477
= ∑∑X 2 −
=13309 −
= 13309 − 11376.45
例
研究不同的教学方法(A)和不同的教学态度(B)对儿童识字量的作
用。将20名被试随机分成四组(每组5人),每组接受一种实验处
三因素方差分析

-----------+----------------------------------------------------
Total | 6.90318355 23 .300138415
10
三因素方差分析举例
Reduced Model 2:所有二级交互项P<0.05
Source | Partial SS df
-------------+-------------------------------------------------------
e|
0.915
0.743
0.12
0.9422
方差齐性检验的主要结果:P=0.2202>0.10
Source | Partial SS df
MS
F Prob > F
方差
7
三因素方差分析举例
残差的正态性检验结果:P=0.9422>0.05
Skewness/Kurtosis tests for Normality
------- joint ------
Variable | Pr(Skewness) Pr(Kurtosis) adj chi2(2) Prob>chi2
Residual | 2.78586636 18 .154770354
-----------+----------------------------------------------------
Total | 6.90318355 23 .300138415
11
三因素方差分析举例: 用角模型进行简单效应比较
变量定义
不用正氟醚 A=1
用正氟醚 A=2
对于方差分析中因素的事后比较问题

对于方差分析中因素的事后比较问题差异研究的目的在于比较两组数据或多组数据之间的差异,通常包括以下几类分析方法,分别是方差分析、t检验和卡方检验。
三个方法的区别其实核心的区别是:数据类型不一样。
如果就是定类和定类,此时必须采用卡方分析;如果就是定类和定量,此时必须采用方差或者t检验。
方差和t检验的区别在于,对于t检验的x来讲,其只能为2个类别比如男和女。
如果x为3个类别比如本科以下,本科,本科以上;此时只能使用方差分析。
进一步细分三种方法的具体分类汇总1)方差分析根据x的不同,方差分析又可以进行细分。
x的个数为一个时,我们称之为单因素方差;x为2个时则为双因素方差;x为3个时则称作三因素方差,依次下去。
当x超过1个时,统称为多因素方差。
单因素方差分析,用作分析定类数据与定量数据之间的关系情况。
在采用单因素方差分析时,须要每个选项的样本量大于30,比如说男性和女性样本量分别就是和,如果发生某个选项样本量过少时必须首先展开界别分拆处置,比如说研究不同年龄组样本对于研究变量的差异性态度时,年龄大于20岁的样本量仅为20个,那么须要将大于20岁的选项与另外一组(比如说20~25岁)的界别分拆为一组,然后再展开单因素方差分析。
如果选项无法进行合并处理,比如研究不同专业样本对于变量的态度差异,研究样本的专业共分为市场营销、心理学、教育学和管理学四个专业,这四个专业之间为彼此独立无法进行合并组别,但是市场营销专业样本量仅为20并没有代表意义,因此可以考虑首先筛选出市场营销专业,即仅比较心理学,教育学和管理学这三个专业对某变量的差异性态度,当对比的组别超过三个,并且呈现出显著性差异时,可以考虑使用事后检验进一步对比具体两两组别间的差异情况。
方差分析中均值比较的方法

方差分析中均值比较的方法方差分析是统计学中常用的一种假设检验方法,用于比较多个样本均值是否有显著差异。
它通过分析不同组之间的方差来判断均值是否有显著差异,即通过计算组间的均方和组内的均方来进行比较。
方差分析有两种基本类型:单因素方差分析和多因素方差分析。
1.单因素方差分析:单因素方差分析主要是比较一个因素对于结果的影响,只有一个自变量。
在进行单因素方差分析时,首先需要确定因变量的类型是连续型还是离散型。
对于连续型的因变量,通常使用单因子方差分析方法;对于离散型的因变量,可以使用卡方检验等方法。
(1)单因素方差分析有三个基本要素:因变量、自变量和一个或多个水平。
因变量是研究对象,自变量是影响因子,水平是不同的取值类型。
(2)计算组间方差和组内方差。
组间方差是因变量的总方差被解释的部分,组内方差是因变量的多余差异(误差)。
方差的比例是判断均值是否有显著差异的依据。
(3)计算F值。
F值是组间均方除以组内均方。
F值越大,表示组间差异越大,样本均值差异的可靠性越高,有显著差异的可能性越大。
(4)根据F分布表和显著性水平(通常为0.05),确定拒绝域。
如果计算得到的F值大于F分布表中的临界值,就拒绝原假设,即认为组间均值存在显著差异。
2.多因素方差分析:多因素方差分析是在单因素方差分析的基础上,增加了一个或多个自变量,用来研究多个因素对于结果的影响以及交互作用。
多因素方差分析可以更全面地研究各因素的影响,并考虑因素之间的关系。
(1)主效应。
主效应用来检验各个自变量对于因变量的影响是否显著。
计算各个因素的F值和显著性水平。
(2)交互效应。
交互效应是指两个或多个因素之间的相互作用导致的影响,即一些因素对于因变量的影响在其他因素不同水平下是否有显著差异。
计算交互效应的F值和显著性水平。
(3)解释方差。
计算组间方差、组内方差、主效应方差和交互效应方差的比例来判断各个因素的影响程度。
注意事项:1.在进行方差分析之前,需要进行方差齐性和正态性检验,确保数据符合方差分析的前提条件。
多因素及重复测量方差分析中的简单效应

多因素及重复测量方差分析中的简单效应多因素及重复测量方差分析中的简单效应作者:萧诗首先申明,这篇东西不是我写的,应该是中大心理系的师兄的杰作,但是不知具体是哪一位了。
因为觉得有用,所以放上来了~大家以后遇到类似问题可以参考一下~在此非常感谢这位师兄,很详细很清楚~原来是苏予灵师兄啊~~撒花~!大家好,很多同学在实验设计中都涉及到了多因素设计,并且很多时候在SPSS中也需要用到重复测量方差分析。
例如,要比较三种刺激在前后测之间有没有差异,这是一个2(前后测)*3(三种刺激)的设计。
在进行双因素方差分析或重复测量方差分析时,SPSS能够给出前后测因素和刺激因素的交互作用,以及这两个因素的主效应,但是这些数据却无法回答这样的问题:第一种刺激在前后测之间有没有差异?前测的时候三种刺激之间有没有差异?这就是分析简单效应的问题。
要分析简单效应,一个比较直接的方法就是通过select case,把要分析的一个因素固定在一个水平,然后再对另一个因素进行分析。
例如,通过select case仅选择第一种刺激,那么对前后测进行t检验,就可以知道第一种刺激前后测之间有没有差异;选择前测数据,进行one-wa y ANOVA就能比较前测时三种刺激有没有差异。
此外,还有一种方法是通过改写SPSS语句来实现简单效应的分析。
以下我跟大家分享一下这种做法。
这里我主要举重复测量方差分析的例子,至于多因素方差分析,也可以用类似的方法。
数据见附件test.sav。
重复测量的一般做法大家应该都比较熟悉,这里就不再重复了。
关键在于定义好各个因素后,选择option,然后把两个因素和交互作用项放到右面的框中,然后选择相应的校正方式(多水平的话一般选择bonferroni,这个我也不太确定-_-||bonferroni得出的结果好像比较谨慎一些吧)。
此外,还可以根据需要把描述性统计、effect size、power等等统计量的选项勾上(虽然我也不知道有什么用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概念笔记
Main effect 一个因素的独立效应,即其不同水平引起的方差变异。
三因素的实验有三个主效应。
把某一因素的一个水平同该因素的其他水平比较,不考虑其他因素。
Interaction 多个因素的联合效应,A因素的作用受到B因素的影响,即有交互——two-way interaction. 当一因素作用受到另外两个因素影响,即三因素交互three-way interaction.
重复测量一个因素的三因素混合设计3*2*2的混合设计
A3*B2*R2 【A, B为被试间因素】
需要分析的有——
A, B, R 各自主效应
二重交互作用,A*B, A*R, B*R
三重交互作用,A*B*C
结果发现,
A, B为被试间因素,交互作用SIG
当二重交互作用SIG,需要进行simple effect检验。
A因素水平在B因素某一水平上的变异。
A在B1水平上的简单效应
A在B2水平上的简单效应
B在A1水平上的简单效应
B在A2水平上的简单效应
B在A3水平上的简单效应
如果三重交互作用SIG,需要进行三因素的简单简单效应分析simple simple effect. 某一因素的水平在另外两个因素的水平结合上的效应
在A1B1水平结合上,R1 与R2 差异
在A1B2水平结合上,R1 与R2 差异
在A2B1水平结合上,R1 与R2 差异
在A2B2水平结合上,R1 与R2 差异
在A3B1水平结合上,R1 与R2 差异
在A3B2水平结合上,R1 与R2 差异
重复测量方差分析之后,如果三重交互作用显著,需要编辑语法,
得出三个因素各自的简单效应
某一因素在其他两个因素的某一实验条件内的简单效应检验
三因素重复测量方差分析对应的会有3种简单效应检验结果
SPSS在输出简单效应检验结果的同时,也会报告多重比较结果,会有更直观的对比结果。
如果三重交互作用SIG,需要进行简单简单效应检验。
固定某两个因素水平组合,考察研究者最感兴趣的那个变量的效应。
MANOV A R1 R2 BY A(1,3) B(1,2)
/WSFACTORS=R(2)
/PRINT=CELLINFO(MEANS)
/WSDESIGN
/DESIGN
/WSDESIGN=R
/DESIGN=MWITHIN B(1) WITHIN A(1)
MWITHIN B(2) WITHIN A(1)
MWITHIN B(1) WITHIN A(2)
MWITHIN B(2) WITHIN A(2)
MWITHIN B(1) WITHIN A(3)
MWITHIN B(2) WITHIN A(3)
上述语法内容是检验被试内变量R在被试间变量A, B 上的简单简单效应。
如果想检验某一被试间变量A在被试内变量R和另一个被试间变量B上的简单简单效应MANOV A R1 R2 BY A(1,3) B(1,2)
/WSFACTORS=R(2)
/PRINT=CELLINFO(MEANS)
/WSDESIGN
/DESIGN
/WSDESIGN=MWITHIN C(1) MWITHIN C(2)
/DESIGN=A WITHIN B(1) A WITHIN B(2)
DA TASET ACTIVA TE DataSet2.
GLM V1C1 V1C2 V2C1 V2C2 BY SOA
/WSFACTOR=V 2 Polynomial C 2 Polynomial
/METHOD=SSTYPE(3)
/PRINT=DESCRIPTIVE ETASQ HOMOGENEITY
/CRITERIA=ALPHA(.05)
/WSDESIGN=V C V*C
/DESIGN=SOA.
GLM V1C1 V1C2 V2C1 V2C2 BY SOA
/WSFACTOR=V 2 Polynomial C 2 Polynomial
/METHOD=SSTYPE(3)
/PLOT=PROFILE(SOA*V*C C*SOA*V V*C*SOA)
/EMMEANS=TABLES(OVERALL)
/EMMEANS=TABLES(SOA) COMPARE ADJ(SIDAK)
/EMMEANS=TABLES(V) COMPARE ADJ(SIDAK)
/EMMEANS=TABLES(C) COMPARE ADJ(SIDAK)
/EMMEANS=TABLES(SOA*V)
/EMMEANS=TABLES(SOA*V*C) COMPARE (C) ADJ(SIDAK)
/EMMEANS=TABLES(SOA*V*C) COMPARE (V) ADJ(SIDAK)
/EMMEANS=TABLES(SOA*V*C) COMPARE (SOA) ADJ(SIDAK)
/PRINT=DESCRIPTIVE ETASQ HOMOGENEITY
/CRITERIA=ALPHA(.05)
/WSDESIGN=V C V*C
/DESIGN=SOA.
!一个被试内因素在另外两个因素组合条件下的简单简单效应检验语法如下所得结果与简单效应,多组比较结果一致
MANOV A V1C1 V1C2 V2C1 V2C2 BY SOA(1,3)
/WSFACTORS=V(2)C(2)
/PRINT=CELLINFO(MEANS)
/WSDESIGN
/DESIGN
/WSDESIGN= V WITHIN C(1) V WITHIN C(2)
/DESIGN=MWITHIN SOA(1) MWITHIN SOA(2) MWITHIN SOA(3).
!被试间因素在两个被试内因素上的简单简单效应语法如下所得结果与简单效应,多组比较结果一致
MANOV A V1C1 V1C2 V2C1 V2C2 BY SOA(1,3)
/WSFACTORS=V(2)C(2)
/PRINT=CELLINFO(MEANS)
/WSDESIGN
/DESIGN
/WSDESIGN=MWITHIN V(1) WITHIN C(1) MWITHIN V(2) WITHIN C(1) MWITHIN V(1) WITHIN C(2)
MWITHIN V(2) WITHIN C(2)
/DESIGN=SOA.
重复测量一个因素的三因素混合设计方差分析语法相关内容
MANOV A LQ1 LQ2 BY A(1,3) B(1,2)
/WSFACTORS=LQ(2)
/PRINT=CELLINFO(MEANS)
/WSDESIGN
/DESIGN
/WSDESIGN
/DESIGN=A WITHIN B(1) A WITHIN B(2).
DA TASET ACTIVA TE DataSet1.
GLM LQ1 LQ2 BY B A
/WSFACTOR=LQ 2 Polynomial
/METHOD=SSTYPE(3)
/POSTHOC=B A(SIDAK)
/PRINT=DESCRIPTIVE ETASQ HOMOGENEITY
/CRITERIA=ALPHA(.05)
/WSDESIGN=LQ
/DESIGN=B A B*A.
!多重比较
GLM LQ1 LQ2 BY B A
/WSFACTOR=LQ 2 Polynomial
/METHOD=SSTYPE(3)
/POSTHOC=B A(SIDAK)
/PLOT=PROFILE(B*A*LQ B*LQ*A LQ*B*A)
/EMMEANS=TABLES(OVERALL)
/EMMEANS=TABLES(B*A)
/EMMEANS=TABLES(B*A*LQ)
/EMMEANS=TABLES(B*LQ)
/EMMEANS=TABLES(A*LQ)
/EMMEANS=TABLES(B) COMPARE ADJ(SIDAK)
/EMMEANS=TABLES(A) COMPARE ADJ(SIDAK)
/EMMEANS=TABLES(B*A*LQ) COMPARE (A) ADJ(SIDAK)
/EMMEANS=TABLES(B*A*LQ) COMPARE (B) ADJ(SIDAK) /EMMEANS=TABLES(B*A*LQ) COMPARE (LQ) ADJ(SIDAK) /PRINT=DESCRIPTIVE ETASQ HOMOGENEITY
/CRITERIA=ALPHA(.05)
/WSDESIGN=LQ
/DESIGN=B A B*A.。