热力学第二定律习题详解

合集下载

物理化学-课后答案-热力学第二定律

物理化学-课后答案-热力学第二定律

物理化学-课后答案-热力学第二定律-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第三章 热力学第二定律【复习题】【1】指出下列公式的适用范围。

(1)min ln BB BS Rnx ∆=-∑;(2)12222111lnln ln ln P v p T V T S nR C nR C p T V T ∆=+=+; (3)dU TdS pdV =-; (4)G Vdp ∆=⎰(5),,S A G ∆∆∆作为判据时必须满足的条件。

【解】 (1)封闭体系平衡态,理想气体的等温混合,混合前后每种气体单独存在时的压力都相等,且等于混合后气体的总压力。

(2)非等温过程中熵的变化过程,对一定量的理想气体由状态A (P 1、V 1、T 1)改变到状态A (P 2、V 2、T 2)时,可由两种可逆过程的加和而求得。

(3)均相单组分(或组成一定的多组分)封闭体系,非体积功为0的任何过程;或组成可变的多相多组分封闭体系,非体积功为0的可逆过程。

(4)非体积功为0,组成不变的均相封闭体系的等温过程。

(5)S ∆:封闭体系的绝热过程,可判定过程的可逆与否; 隔离体系,可判定过程的自发与平衡。

A ∆:封闭体系非体积功为0的等温等容过程,可判断过程的平衡与否; G ∆:封闭体系非体积功为0的等温等压过程,可判断过程的平衡与否;【2】判断下列说法是否正确,并说明原因。

(1)不可逆过程一定是自发的,而自发过程一定是不可逆的; (2)凡熵增加过程都是自发过程; (3)不可逆过程的熵永不减少;(4)系统达平衡时,熵值最大,Gibbs 自由能最小;(5)当某系统的热力学能和体积恒定时,S ∆<0的过程不可能发生;(6)某系统从始态经过一个绝热不可逆过程到达终态,先在要在相同的始、终态之间设计一个绝热可逆过程;(7)在一个绝热系统中,发生了一个不可逆过程,系统从状态1变到了状态2,不论用什么方法,系统再也回不到原来状态了;(8)理想气体的等温膨胀过程,0U ∆=,系统所吸的热全部变成了功,这与Kelvin 的说法不符;(9)冷冻机可以从低温热源吸热放给高温热源,这与Clausius 的说法不符; (10)p C 恒大于V C 。

热力学第二定律(习题)

热力学第二定律(习题)
上一内容 下一内容 回主目录
返回
例题
将1mol、298K 的O2(g) 放在一恒压容器中,由 容器外的 13.96K 的液态 H2作冷却剂,使体系 冷却为 90.19K 的 O2 (l)。已知 O2在 90.19K 时 的摩尔气化热为 6.820 kJ·mol-1,试计算该冷却 过程中的体系熵变、环境熵变和总熵变。
−1
∴∆G = ∆H − ∆(TS ) = ∆H − (T2 S2 − T1S1 ) = −29488 J
上一内容
下一内容
回主目录
返回
例题
(C ) ∵ ∆S = nCv ,m ln(T2 T1 ) = 1.5 R ln 2 = 8.644 J ⋅ K −1 ∴ S 2 = S1 + ∆S = 108.6 J ⋅ K
上一内容 下一内容 回主目录
返回
例题
1mol He(视为理想气体) 其始态为V1=22.4 dm3, T1=273K,经由一任意变化到达终态,P2=202.65 kPa,T2=303K。试计算体系的熵变。
上一内容
下一内容
回主目录
返回
例题
解: 终态的体积为 V2= nRT2/P2=8.314×303/202.65 = 12.43 dm3 该过程中体系的熵变为: ∆S = nCV, m ln(T2/ T1)+nRln(V2/ V1) = n3/2 Rln(T2/ T1)+nRln(V2/ V1) =1×8.314×[3/2ln(303/273)+ln(12.43/22.4)] =-3.60 J·K-1
上一内容
下一内容
回主目录
返回
例题
298.15K 时,液态乙醇的摩尔标准熵为 160.7J· K -1 ·mol -1,在此温度下蒸气压是 7.866kPa, 蒸发热为 42.635 kJ·mol-1。 计算标准压力PӨ下,298.15K 时乙醇蒸气的摩尔标 准熵。假定乙醇蒸气为理想气体。

热力学第二定律复习题及解答

热力学第二定律复习题及解答

第三章 热力学第二定律一、思考题1. 自发过程一定是不可逆的,所以不可逆过程一定是自发的。

这说法对吗?答: 前半句是对的,后半句却错了。

因为不可逆过程不一定是自发的,如不可逆压缩过程。

2. 空调、冰箱不是可以把热从低温热源吸出、放给高温热源吗,这是否与第二定律矛盾呢?答: 不矛盾。

Claususe 说的是“不可能把热从低温物体传到高温物体,而不引起其他变化”。

而冷冻机系列,环境作了电功,却得到了热。

热变为功是个不可逆过程,所以环境发生了变化。

3. 能否说系统达平衡时熵值最大,Gibbs 自由能最小?答:不能一概而论,这样说要有前提,即:绝热系统或隔离系统达平衡时,熵值最大。

等温、等压、不作非膨胀功,系统达平衡时,Gibbs 自由能最小。

4. 某系统从始态出发,经一个绝热不可逆过程到达终态。

为了计算熵值,能否设计一个绝热可逆过程来计算?答:不可能。

若从同一始态出发,绝热可逆和绝热不可逆两个过程的终态绝不会相同。

反之,若有相同的终态,两个过程绝不会有相同的始态,所以只有设计除绝热以外的其他可逆过程,才能有相同的始、终态。

5. 对处于绝热瓶中的气体进行不可逆压缩,过程的熵变一定大于零,这种说法对吗? 答: 说法正确。

根据Claususe 不等式TQS d d ≥,绝热钢瓶发生不可逆压缩过程,则0d >S 。

6. 相变过程的熵变可以用公式H ST∆∆=来计算,这种说法对吗?答:说法不正确,只有在等温等压的可逆相变且非体积功等于零的条件,相变过程的熵变可以用公式THS ∆=∆来计算。

7. 是否,m p C 恒大于 ,m V C ?答:对气体和绝大部分物质是如此。

但有例外,4摄氏度时的水,它的,m p C 等于,m V C 。

8. 将压力为101.3 kPa ,温度为268.2 K 的过冷液体苯,凝固成同温、同压的固体苯。

已知苯的凝固点温度为278.7 K ,如何设计可逆过程?答:可以将苯等压可逆变温到苯的凝固点278.7 K :9. 下列过程中,Q ,W ,ΔU ,ΔH ,ΔS ,ΔG 和ΔA 的数值哪些为零?哪些的绝对值相等?(1)理想气体真空膨胀; (2)实际气体绝热可逆膨胀; (3)水在冰点结成冰;(4)理想气体等温可逆膨胀;(5)H 2(g )和O 2(g )在绝热钢瓶中生成水;(6)等温等压且不做非膨胀功的条件下,下列化学反应达到平衡:H 2(g )+ Cl 2(g )(g )答: (1)0Q WU H ==∆=∆=(2)0, R Q S U W =∆=∆= (3)e 0, , P G H Q A W ∆=∆=∆= (4)e 0, =, U H Q W G A ∆=∆=-∆=∆ (5)e = 0V U Q W ∆==(6)0=W,H U Q ∆=∆=,0=∆=∆G A10. 298 K 时,一个箱子的一边是1 mol N 2 (100 kPa),另一边是2 mol N 2 (200 kPa ),中间用隔板分开。

热力学第二定律习题解析

热力学第二定律习题解析

第二章热力学第二定律习题一 . 选择题:1. 理想气体绝热向真空膨胀,则 ( )(A) △S = 0,W = 0 (B) △H = 0,△U = 0(C) △G = 0,△H = 0 (D) △U = 0,△G = 02. 熵变△S 是(1) 不可逆过程热温商之和 (2) 可逆过程热温商之和(3) 与过程无关的状态函数 (4) 与过程有关的状态函数以上正确的是()(A) 1,2 (B) 2,3 (C) 2 (D) 43. 对于孤立体系中发生的实际过程,下式中不正确的是:()(A) W = 0 (B) Q = 0 (C) △S > 0 (D) △H = 04. 理想气体经可逆与不可逆两种绝热过程()(A) 可以从同一始态出发达到同一终态(B) 不可以达到同一终态(C) 不能断定 (A)、(B) 中哪一种正确(D) 可以达到同一终态,视绝热膨胀还是绝热压缩而定5. P⊖、273.15K 水凝结为冰,可以判断体系的下列热力学量中何者一定为零?(A) △U (B) △H (C) △S (D) △G6. 在绝热恒容的反应器中,H2和 Cl2化合成 HCl,此过程中下列各状态函数的变化值哪个为零? ( ) (A) △r U m (B) △r H m (C) △r S m (D) △r G m7. 在绝热条件下,用大于气筒内的压力,迅速推动活塞压缩气体,此过程的熵变为: ( ) (A) 大于零 (B) 等于零 (C) 小于零 (D) 不能确定8. H2和 O2在绝热钢瓶中生成水的过程:()(A) △H = 0 (B) △U = 0 (C) △S = 0 (D) △G = 09. 在 270K,101.325kPa 下,1mol过冷水经等温等压过程凝结为同样条件下的冰,则体系及环境的熵变应为: ( )(A) △S体系 < 0 ,△S环境 < 0 (B) △S体系 < 0 ,△S环境> 0(C) △S体系 > 0 ,△S环境 < 0 (D) △S体系 > 0 ,△S环境 > 010. 1mol 的单原子理想气体被装在带有活塞的气缸中,温度是 300K,压力为 1013250Pa。

热力学第二定律解答

热力学第二定律解答

-T 2第14章热力学第二定律14.1若准静态卡诺循环中的工作物质不是理想气体, 而是服从状态方程 p = aT 4 /3 (a 为常数)的物质,且其内能满足 U =aT 4V .试证明该可逆卡诺循环的效率公式仍为 =1 -T Q /T , •在p-V 图上画出其卡诺循环. 解:卡诺循环由两个等温过程和两个绝热过程构成。

根据状态方程 p 二 aT 4/3,等温 过程即为等压过程。

对于一般过程,根据内能公式和状态方程,有 对于绝热过程,dQ =0,故 dV 3「0, V T 即绝热过程满足T 3V =C ,或用压强表示为 p 3V 4 =C 。

故卡诺循环在 p-V 图上表示见图。

F 面计算Q ,,Q 2。

由于都是等温过程,故 dQ=4aT 4dV 。

因此, 344Q 2aT 2 (V 2 1V3)。

34 4Q iaT i 4(V i -V 4), 3又状态1 —2和3 — 4由绝热过程联系起来,有Th ”2,Q 2 T 2(T 23V^T 23V 3)T 2。

Q i T(T i 3V i -T i 3V 4)T i = 1_21 十E 。

Q i T i14.2 —热机工作于50 C 与250 C 之间,在一循环中对外输出的净功为 51.05 10 J ,求这一热机在一循环中所吸入和放出的最小热量. 解:当该循环为卡诺循环时,吸热 Q ,和放热Q 2都达到最小值,故此时 同时,Q i - Q 2 = A 。

故 Qi =At Th,Q 2 3将飞=323K , T 2 =523K , W =1.05 105J 代入,可得Q , =2.75 105J, Q 2 =1.70 105J 。

14.3 —制冰机低温部分的温度为 -10C ,散热部分的温度为 35C ,所耗功率为1500W , 制冰机的制冷系数是逆向卡诺循环制冷机制冷系数的1/3 •今用此制冰机将 25C 的水制成-10 C 的冰,则制冰机每小时能制冰多少千克?已知冰的熔解热为 80caLg‘,冰的比热为Q 2 1 T 2 1 263 - -1.95 °A 3T 1 -T 2 3 308 -263故制冷机每小时从低温部分吸热Q 2二;A = 1.95 1500 3600J=10.4 106J 。

物化热力学第二定律习题解答

物化热力学第二定律习题解答

热力学第二定律习题解答1.已知每克汽油燃烧时可放热 46.86 kJ 。

(1) 若用汽油作以水蒸气为工作物质的蒸汽机的燃料时,该机的高温热源为 378 K ,冷凝器即低温热源为 303 K ;(2) 若用汽油直接在内燃机内燃烧,高温热源温度可达到 2273 K ,废气即低温热源亦 为 303 K ; 试分别计算两种热机的最大效率是多少?每克汽油燃烧时所能做出的最大功为多少?T 2 T 1378 303(1)210.20T 2378W Qg48.86 0.20 k J 9.37 kJT 2 T 12273 303(2)210.87T 22273W Qg 48.86 0.87 k J 40.7 kJ652.在 300 K 时, 2 mol 的 N 2 (假设为理想气体)从 106 Pa 定温可逆膨胀到 105Pa ,试计算其 S 。

解38.3 J K53.10 g H 2 (假设为理想气体 )在 300 K,5 105 Pa时,在保持温度为 300 K 及恒定外压为66106Pa 下进行压缩,终态压力为 106Pa ( 需注意此过程为不可逆过程 ) 。

试求算此过程 的 S ,并与实际过程的热温商进行比较。

解 定温过程:108.314ln 5 160 J K -1 28.8J K 2 106Q W p 外 V 2 V 1p 2 V 2 V 1nRT 1 p21.247 104 Jp1Q1.247 104 J 300 K 41.6 J K TS nRln2 8.314 lnp 2106105JK-1S nRlnp 1p2所以 S QT4.在 293 K 时,将一方形容器用隔板从正中间分开,然后将 1 mol N 2和 1 mol He 分别 放在容器的两边, 当将中间隔板抽去以后, 两种气体自动混合。

在此过程中系统的温度 不变,与环境没有热交换,试求此混合过程的S ,并与实际过程的热温商进行比较。

大学物理习题详解 热力学第二定律

大学物理习题详解 热力学第二定律

©物理系_2012_09《大学物理AII 》作业 No.12 热力学第二定律一、判断题:(用“T ”和“F ”表示)[ T ] 1.任何可逆热机的效率均可表示为:高低T T -=1η 解:P301,根据卡诺热机的效率[ F ] 2.若要提高实际热机的效率, 可采用摩尔热容量较大的气体做为工作物质。

解:P294-295,根据热机效率的定义吸净Q A =η,显然工作物质从高温热源吸收的热量越少,对外作的功越多,其效率越高。

根据热量的定义T C MmQ ∆=,温差一定的时候,摩尔热熔C 与热量成正比。

[ F ] 3.一热力学系统经历的两个绝热过程和一个等温过程,可以构成一个循环过程 解:P308题知循环构成了一个单热源机,这违反了开尔文表述。

[ F ] 4.不可逆过程就是不能沿相反方向进行的过程。

解:P303 [ T ] 5.一定量的理想气体向真空作绝热自由膨胀,体积由1V 增至2V ,在此过程中A =0,Q =0,0=∆T ,0>∆S 。

解:P292,P313二、选择题:1.如果卡诺热机的循环曲线所包围的面积从图中的a b c d a 增大为 a b ′c ′d a ,那么循环a b c d a 与a b ′c ′d a 所作的功和热机效率变化情况是: [ D ] (A) 净功增大,效率提高(B) 净功增大,效率降低(C) 净功和效率都不变 (D) 净功增大,效率不变 解:卡诺循环的效率121T T-=η只与二热源温度有关,曲线所围面积在数值上等于净功,所以净功增大,效率不变。

2.对于循环热机,在下面节约与开拓能源的几个设想中,理论上可行的是: [ B ] (A) 改进技术,使热机的循环效率达100%(B) 利用海面与海面下的海水温差进行热机循环作功 (C) 从一个热源吸热,不断作等温膨胀,对外作功 (D) 从一个热源吸热,不断作绝热膨胀,对外作功解:根据热力学第二定律,(A)是第二类永动机,是不可能制成的;(C)是单热源机;(D)是从热源吸热怎么作绝热膨胀。

练习思考-热力学第二定律

练习思考-热力学第二定律

第二章热力学第二定律首 页难题解析学生自测题学生自测答案难题解析 [TOP]例 2-1有一物系如图所示,将隔板抽去,求平衡后∆S 。

设气体的C p 均是28.03J ∙K -1∙mol -1。

解:设混合后温度为t ℃0)20(1)10(1m ,m ,=-⨯+-⨯t C t C P pC t ︒=15VV nR T T nC S V 212m ,O ln ln2+=∆ V VnR 2ln1027315273ln)31.803.28(1+++-⨯=11.6=J ∙K -1∙mol -11212m ,H ln ln2V V nR T T nC S V +=∆V V2ln31.812027315273ln)31.803.28(1⨯+++-⨯=42.5=J ∙K -1∙mol -153.1122H O =∆+∆=∆S S S J ∙K -1∙mol -11 mol O2 10℃, V1 mol H2 20℃, V例2-225℃, 1 mol O 2从101.325Pa 绝热可逆压缩到6×101325Pa ,求Q 、W 、∆U 、∆H 、∆G 、∆S 。

已知25℃氧的规定熵为205.03 J ∙K -1∙mol -1。

(氧为双原子分子,若为理想气体,C p ,m =R 27,γ =57)解:绝热可逆过程,0=Q ,0=∆S11221()()p T p T γγ-=,,m ,m (7/2) 1.4(5/2)p V C RC Rγ=== 求得:2497.3K T =J 4140)3.4972.298(314.825)(12m ,-=-⨯⨯-=--=∆-=T T nC U W VJ5794)2.2983.497(314.8271)(12m ,=-⨯⨯⨯=-=∆T T nC H pJ 35056)2.2983.497(03.2055794-=-⨯-=∆-∆=∆T S H G例2-3在25℃、101.325 kPa 下,1 mol 过冷水蒸气变为25℃、101.325 kPa 的液态水,求此过程的∆S 及∆G 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题十一一、选择题1.你认为以下哪个循环过程是不可能实现的 [ ](A )由绝热线、等温线、等压线组成的循环; (B )由绝热线、等温线、等容线组成的循环; (C )由等容线、等压线、绝热线组成的循环; (D )由两条绝热线和一条等温线组成的循环。

答案:D解:由热力学第二定律可知,单一热源的热机是不可能实现的,故本题答案为D 。

2.甲说:由热力学第一定律可证明,任何热机的效率不能等于1。

乙说:热力学第二定律可以表述为效率等于100%的热机不可能制成。

丙说:由热力学第一定律可以证明任何可逆热机的效率都等于211T T -。

丁说:由热力学第一定律可以证明理想气体可逆卡诺热机的效率等于211T T -。

对于以上叙述,有以下几种评述,那种评述是对的 [ ](A )甲、乙、丙、丁全对; (B )甲、乙、丙、丁全错; (C )甲、乙、丁对,丙错; (D )乙、丁对,甲、丙错。

答案:D解:效率等于100%的热机并不违反热力学第一定律,由此可以判断A 、C 选择错误。

乙的说法是对的,这样就否定了B 。

丁的说法也是对的,由效率定义式211Q Q η=-,由于在可逆卡诺循环中有2211Q T Q T =,所以理想气体可逆卡诺热机的效率等于211T T -。

故本题答案为D 。

3.一定量理想气体向真空做绝热自由膨胀,体积由1V 增至2V ,此过程中气体的 [ ](A )内能不变,熵增加; (B )内能不变,熵减少; (C )内能不变,熵不变; (D )内能增加,熵增加。

答案:A解:绝热自由膨胀过程,做功为零,根据热力学第一定律21V V Q U pdV =∆+⎰,系统内能不变;但这是不可逆过程,所以熵增加,答案A 正确。

4.在功与热的转变过程中,下面的那些叙述是正确的?[ ](A )能制成一种循环动作的热机,只从一个热源吸取热量,使之完全变为有用功;(B )其他循环的热机效率不可能达到可逆卡诺机的效率,可逆卡诺机的效率最高; (C )热量不可能从低温物体传到高温物体; (D )绝热过程对外做正功,则系统的内能必减少。

答案:D解:(A )违反了开尔文表述;(B )卡诺定理指的是“工作在相同高温热源和相同低温热源之间的一切不可逆热机,其效率都小于可逆卡诺热机的效率”,不是说可逆卡诺热机的效率高于其它一切工作情况下的热机的效率;(C )热量不可能自动地从低温物体传到高温物体,而不是说热量不可能从低温物体传到高温物体;绝热功是以消耗系统的内能为代价的,故答案D 正确。

5.下面的那些叙述是正确的?[ ](A )发生热传导的两个物体温度差值越大,就对传热越有利; (B )任何系统的熵一定增加;(C )有规则运动的能量能够变为无规则运动的能量,但无规则运动的能量不能够变为有规则运动的能量;(D )以上三种说法均不正确。

答案:D解:(A )两物体A 、B 的温度分别为A T 、B T ,且A B T T >,两物体接触后,热量dQ 从A 传向B ,经历这个传热过程的熵变为11()BAdS dQ T T =-,因此两个物体温度差值越大,熵变越大,对传热越不利;(B)孤立系统的熵一定增加,而如果一个系统与外界有物质或者能量的交换,该系统的熵可以减少,比如地球这个系统,由于与太阳等存在能量交换,地球处于相对比较有序的状态,而热寂态则不会出现;(C )热机可以将热能变为机械功,这就是将无规则运动的能量变为有规则运动的能量。

故本题答案为D 。

6. 一摩尔单原子理想气体从初态(1p 、1V 、1T )准静态绝热压缩至体积为2V ,其熵[ ](A )增大; (B )减小; (C )不变; (D )不能确定。

答案:C解:准静态过程是可逆过程,又是绝热过程,0dQ S T∆==⎰,C 正确。

二、填空题1. 一热机每秒从高温热源(1600T =K )吸取热量41 3.3410Q =⨯J ,做功后向低温热源(2300T =K )放出热量42 2.0910Q =⨯J ,它的效率是 ,它 可逆机(填“是”或者“不是”),如果尽可能地提高热机的效率,每秒从高温热源吸热43.3410⨯J ,则每秒最多能做功 。

答案:37.4%;不是;41.6710J ⨯。

解:(1)42412.09101137.4%3.3410Q Q η⨯=-=-=⨯,213001150%600c T T η=-=-=, c ηη<,根据卡诺定理可知,该热机不是可逆热机。

(2)根据卡诺定理,工作在相同高温热源和相同低温热源之间的一切热机,其最大效率为213001150%600c T T η=-=-=,所以最多能做的功为441 3.341050% 1.6710J c A Q η==⨯⨯=⨯2.把质量为5kg 、比热容(单位质量物质的热容)为544J/kg 的铁棒加热到300C ︒,然后浸入一大桶27C ︒的水中。

在这冷却过程中铁的熵变为 。

答案:1760J/K -解:设想一可逆冷却过程,则熵变为2121d d 27327ln 5544ln1760J/K 273300T T T Q Mc T S Mc TTT +∆====⨯⨯=-+⎰⎰3.在冬日一房子的散热的速率为8210J/h ⨯,设室内温度为20C ︒,室外温度为20C -︒,这一散热过程产生熵的速率为 (J /(K s )⋅。

答案:30J /(s K )⋅。

解:88210210=30J/(s K)2027320273inoutQ Q S T T ⨯⨯∆=+=-+⋅+-+放吸三、计算题1.有可能利用表层海水和深层海水的温差来制成热机。

已知热带水域的表层水温约25C o ,300m 深层水温约5C o。

(1)在这两个温度之间工作的卡诺热机的效率多大?(2)如果一电站在此最大理论效率下工作时获得的机械效率为1MW ,它将以何种速率排除废热?(3)此电站获得的机械功和排除的废热均来自25C o的水冷却到5C o所放出的热量,问此电站每小时能取用多少吨25C o的表层水(设海水的比热容为4.2kJ/(kg K)⋅)?答案:(1) 6.7%η=;(2)13.9M W Q =放;(3)26.510t/h M=⨯ 。

解:(1) %7.62732527351112=++-=-=T T η(2)A A Q η=+放,1M W A =, 6.7%η=,所以 13.9M W Q =放;(3)AQ cM T η==∆吸,所以 AM c Tη=∆将 6.7%η=,1M W A =,(25273)(5273)20K T ∆=+-+=, 4.2kJ/(kg K)c =⋅代入,得21.78kg/s 6.510t/h AM c Tη===⨯∆2.试求:(1)1kg ,0C ︒的水放到100C ︒恒温热库上,最后达到平衡,求这一过程引起的水和恒温热库组成的系统的熵变,是增加还是减少?(2)如果1kg ,0C ︒的水先放到50C ︒恒温热库上使之达到平衡,然后再把它移到100C ︒恒温热库上使之平衡,求这一过程引起的整个系统的熵变,并与(1)比较(水的比热容为 4.2kJ/(kg K)c =⋅)。

答案:(1)1184J/K S ∆=,熵增加;(2)297.6J/K S ∆=,2S S ∆<∆1。

解:(1)1002730273373ln273c M dTS c M T++∆==⎰水水水水水010*******s sc M T c M S T ∆⨯-∆=-=+水水水水水()1184J/K >0s S S S ∆=∆+∆=水(2)50273100273027350273323373=ln)273323c M dTc M dTS c M TT++++∆=++⎰⎰水水水水水水水(l n1212s c M T c M T S T T ∆∆∆=--水水水水水水1(50273)(0273)50K T ∆=+-+=水,150273323T =+=K 2(100273)(50273)50K T ∆=+-+=水,2100273373T =+=K297.6J/K s S S S ∆=∆+∆=水与(1)相比较,2S S ∆<∆1。

3.1mol 理想气体从初态1p 、1V 绝热自由膨胀到终态2p 、2V ,已知:212V V =,试求:(1)气体对外做功;(2)气体内能增量;(3)气体熵的增量。

答案:(1)0A =;(2)0U ∆=;(3) 5.76S ∆=J/K 。

解:(1)理想气体对外自由膨胀的过程中不对外做功,所以0A =;(2)理想气体对外自由膨胀的过程中不对外做功,整个过程又是绝热过程,根据热力学第一定律21V V Q U pdV =∆+⎰,系统0U ∆=(3)理想气体绝热对外自由膨胀是一个不可逆过程,故不能利用可逆过程的熵增公式d Q S T∆=⎰来求。

但熵是个态函数,所以可以找到一个始、末状态一样的可逆过程来计算熵变。

因理想气体绝热对外自由膨胀后内能不变,也即温度不变,所以可设计一个准静态等温过程来算熵增,所以221,m 1112d lnln 018.31ln 5.76J/KV T V V Q S C R TT V V νν∆==+=+⨯⨯=⎰4.有2mol 的理想气体,经过可逆的等压过程,体积从0V 膨胀到03V 。

求这一过程中的熵变。

答案:,m 2ln 3p S C ∆=。

解: 由于熵是态函数,1→3的可逆等压过程的熵变等于1→2等温过程加上2→3绝热过程的总熵变,2→3绝热过程熵不变,则总熵变等于等温过程的熵,即2222,m 1111d lnln02ln2lnV T V V V Q S C R R R TT V V V νν∆==+=+=⎰由等温方程和绝热方程 1122p V p V =,3322p V p V γγ= 由于 10V V =,303V V =, 所以上两式变为1022p V p V =,1022(3)p V p V γγ=由上两式得 221lnlnV V V V =,20lnln 3ln 31p C V V Rγγ==-,代入上面熵变算式,得,m 2,m 12ln 2ln 32ln 3p p C V S R RC V R∆===0V 03V。

相关文档
最新文档