自动控制原理课后习题答案西北工业大学出版社

合集下载

《自动控制原理》-卢京潮主编-西北工业大学(清华大学)-第四章习题及答案

《自动控制原理》-卢京潮主编-西北工业大学(清华大学)-第四章习题及答案

根轨迹如图解 4-5 所示。
4-6 直升机静稳定性不好,需要加控制装置改善性能。如图 4-23 所示是加入镇定控制 回路的直升机俯仰控制系统结构图。直升机的动态特性可用传递函数
G0 (s)
=
1(0 s + 0.5) (s + 1)(s − 0.4)2
表示。
70
图 4-23 直升机俯仰控制系统结构图
解 若点 s1 在根轨迹上,则点 s1 应满足相角条 件 ∠G(s)H (s) = ±(2k + 1)π ,如图解 4-1 所示。
对于 s = −1 + j 3 ,由相角条件
∠G(s1)H (s1) =
0 − ∠(−1 + j 3 + 1) − ∠(−1 + j 3 + 2) − ∠(−1 + j 3 + 4) = 0 − π − π − π = −π
essn
=
lim
s→0
s
⋅Φ
en
(
s)

E
(s)
=
lim
s→0
s

−G0 ⋅ 1+ G0
K1(s +1)
s+9 ⋅ K1(s +1)
s+9
⋅1 s
=
lim
−10K1 ⋅ (s + 0.5)
K1 =1.9
= − 0.868
s→0 (s + 9)(s − 0.4)2 +10K1(s + 0.5)
71
4-7 单位反馈系统的开环传递函数为
(1)画出俯仰控制系统的根轨迹。
(2)当 K1 = 1.9 时,确定对阵风扰动 Td (s) = 1 s 的稳态误差。

《自动控制原理》(卢京潮,西北工业大学)第二章习题及答案

《自动控制原理》(卢京潮,西北工业大学)第二章习题及答案


G ( s) =
4 ⎤ ⎡ −1 k (t ) = L−1 [G ( s )] = L−1 ⎢ + = 4e − 2 t − e − t ⎥ s + 1 s + 2 ⎣ ⎦
- 16 -2-10 Nhomakorabea已知系统传递函数
C ( s) 2 &(0) = 0 , , 且初始条件为 c(0) = −1 ,c = 2 R ( s ) s + 3s + 2
(1) (3) 原式 =
−1 1 3 1 1 + − + + 3 2 2( s + 2) 4( s + 2) 8( s + 2) 24s 3( s + 3)
− t 2 − 2 t t − 2 t 3 − 2 t 1 −3t 1 ∴ x(t)= e + e − e + e + 4 4 8 3 24
1 s 1 1 s +1 1 1 1 2 − 2 = − ⋅ + ⋅ (4) 原式 = 2 2 s s + 2 s + 2 2 s 2 ( s + 1) + 1 2 ( s + 1) 2 + 1
化,试推导 id = f (ud ) 的线性化方程。 解 解得 将 i d = 10 −14 (e 将 i (0) = 2.19 × 10 A 代入 i d = 10 −14 (e
−3
ud
u d / 0.026
− 1)
ud 0 = 0.679V
u d / 0.026
− 1) 在( u d 0 , i0 )处展开为泰勒级数,
∴ X (s) = ∴ X ( s) =
e− s 1 e −3s 1 ( s ) − 2 (2 s + ) + 2 s 2 s 2

自动控制原理课后习题答案 西北工业大学出社

自动控制原理课后习题答案 西北工业大学出社

第五章 线性系统的频域分析与校正习题与解答5-1 试求题5-75图(a)、(b)网络的频率特性。

u rR 1u cR 2CCR 2R 1u ru c(a) (b)图5-75 R-C 网络解 (a)依图:⎪⎪⎪⎩⎪⎪⎪⎨⎧+==+=++=++=2121111212111111221)1(11)()(R R C R R T C R RR R K s T s K sCR sC R R R s U s U r c ττ ωωτωωωωω11121212121)1()()()(jT j K C R R j R R C R R j R j U j U j G r c a ++=+++==(b)依图:⎩⎨⎧+==++=+++=C R R T CR s T s sCR R sCR s U s U r c)(1111)()(2122222212ττ ωωτωωωωω2221211)(11)()()(jT j C R R j C R j j U j U j G r c b ++=+++==5-2 某系统结构图如题5-76图所示,试根据频率特性的物理意义,求下列输入信号作用时,系统的稳态输出)(t c s 和稳态误差)(t e s (1) t t r 2sin )(=(2) )452cos(2)30sin()(︒--︒+=t t t r 解 系统闭环传递函数为: 21)(+=Φs s 图5-76 系统结构图频率特性: 2244221)(ωωωωω+-++=+=Φj j j 幅频特性: 241)(ωω+=Φj相频特性: )2arctan()(ωωϕ-=系统误差传递函数: ,21)(11)(++=+=Φs s s G s e 则 )2arctan(arctan )(,41)(22ωωωϕωωω-=++=Φj j e e(1)当t t r 2sin )(=时, 2=ω,r m =1则 ,35.081)(2==Φ=ωωj ο45)22arctan()2(-=-=j ϕο4.1862arctan )2(,79.085)(2====Φ=j j e e ϕωω )452sin(35.0)2sin()2(οο-=-Φ=t t j r c m ss ϕ)4.182sin(79.0)2sin()2(ο+=-Φ=t t j r e e e m ss ϕ (2) 当 )452cos(2)30sin()(︒--︒+=t t t r 时: ⎩⎨⎧====2,21,12211m m r r ωωο5.26)21arctan()1(45.055)1(-=-===Φj j ϕ ο4.18)31arctan()1(63.0510)1(====Φj j e e ϕ )]2(452cos[)2()]1(30sin[)1()(j t j r j t j r t c m m s ϕϕ+-⋅Φ-++⋅Φ=οο)902cos(7.0)4.3sin(4.0οο--+=t t)]2(452cos[)2()]1(30sin[)1()(j t j r j t j r t e e e m e e m s ϕϕ+-⋅Φ-++⋅Φ=οο )6.262cos(58.1)4.48sin(63.0οο--+=t t5-3 若系统单位阶跃响应 )0(8.08.11)(94≥+-=--t e e t h tt试求系统频率特性。

自动控制原理课后习题及答案

自动控制原理课后习题及答案
解答:
.
2-9系统的微分方程组为
式中 、 、 、 、 均为正的常数,系统地输入量为 ,输出量为 ,试画出动态结构图,并求出传递函数 。
解答:
2-12简化图示的动态结构图,并求传递函数 。
解答:(a)
(b)
(c)
(d)
(e)
2-13简化图示动态结构图,并求传递函数 。
解答:
(a)
(b)
(c)
(d)
(e)
1-6题图1-6是仓库大门自动控制系统的示意图,试说明该系统的工作原理,并画出其方框图。
题1-6图仓库大门自动控制系统示意图
解答:
(1)仓库大门自动控制系统方框图:
(2)工作原理:控制系统的控制任务是通过开门开关控制仓库大门的开启与关闭。开门开关或关门开关合上时,对应电位器上的电压,为给定电压,即给定量。仓库大门处于开启或关闭位置与检测电位器上的电压相对应,门的位置是被控量。
(f)
第三章时域分析法
3-1已知一阶系统的传递函数
今欲采用负方馈的方法将过渡过程时间 减小为原来的0.1倍,并保证总的放大倍数不变,试选择 和 的值。
题3-1图
解答:
闭环传递函数:
由结构图知:

3-2已知系统如题3-2图所示,试分析参数b对输出阶跃过渡过程的影响。
题3-2图
解答:
系统的闭环传递函数为:
当大门所处的位置对应电位器上的电压与开门(或关门)开关合上时对应电位器上的电压相同时,电动机不动,控制绞盘处于一定的位置,大门保持在希望的位置上,如果仓库大门原来处于关门位置,当开门开关合上时,关门开关对应打开,两个电位器的电位差通过放大器放大后控制电动机转动,电动机带动绞盘转动将仓库大门提升,直到仓库大门处于希望的开门位置,此时放大器的输入为0,放大器的输出也可能为0。电动机绞盘不动,大门保持在希望的开门位置不变。反之,则关闭仓库大门。

自动控制原理完整版课后习题答案

自动控制原理完整版课后习题答案

1 请解释下列名字术语:自动控制系统、受控对象、扰动、给定值、参考输入、反馈。

解:自动控制系统:能够实现自动控制任务的系统,由控制装置与被控对象组成;受控对象:要求实现自动控制的机器、设备或生产过程扰动:扰动是一种对系统的输出产生不利影响的信号。

如果扰动产生在系统内部称为内扰;扰动产生在系统外部,则称为外扰。

外扰是系统的输入量。

给定值:受控对象的物理量在控制系统中应保持的期望值参考输入即为给定值。

反馈:将系统的输出量馈送到参考输入端,并与参考输入进行比较的过程。

2 请说明自动控制系统的基本组成部分。

解:作为一个完整的控制系统,应该由如下几个部分组成:①被控对象:所谓被控对象就是整个控制系统的控制对象;②执行部件:根据所接收到的相关信号,使得被控对象产生相应的动作;常用的执行元件有阀、电动机、液压马达等。

③给定元件:给定元件的职能就是给出与期望的被控量相对应的系统输入量(即参考量);④比较元件:把测量元件检测到的被控量的实际值与给定元件给出的参考值进行比较,求出它们之间的偏差。

常用的比较元件有差动放大器、机械差动装置和电桥等。

⑤测量反馈元件:该元部件的职能就是测量被控制的物理量,如果这个物理量是非电量,一般需要将其转换成为电量。

常用的测量元部件有测速发电机、热电偶、各种传感器等;⑥放大元件:将比较元件给出的偏差进行放大,用来推动执行元件去控制被控对象。

如电压偏差信号,可用电子管、晶体管、集成电路、晶闸管等组成的电压放大器和功率放大级加以放大。

⑦校正元件:亦称补偿元件,它是结构或参数便于调整的元件,用串联或反馈的方式连接在系统中,用以改善系统的性能。

常用的校正元件有电阻、电容组成的无源或有源网络,它们与原系统串联或与原系统构成一个内反馈系统。

3 请说出什么是反馈控制系统,开环控制系统和闭环控制系统各有什么优缺点?解:反馈控制系统即闭环控制系统,在一个控制系统,将系统的输出量通过某测量机构对其进行实时测量,并将该测量值与输入量进行比较,形成一个反馈通道,从而形成一个封闭的控制系统;开环系统优点:结构简单,缺点:控制的精度较差;闭环控制系统优点:控制精度高,缺点:结构复杂、设计分析麻烦,制造成本高。

自动控制原理课后习题答案第一章

自动控制原理课后习题答案第一章

1-1 图1-2是液位自动控制系统原理示意图。

在任意情况下,希望液面高度c 维持不变,试说明系统工作原理并画出系统方块图。

图1-2 液位自动控制系统解:被控对象:水箱;被控量:水箱的实际水位;给定量电位器设定水位r u (表征液位的希望值r c );比较元件:电位器;执行元件:电动机;控制任务:保持水箱液位高度不变。

工作原理:当电位电刷位于中点(对应r u )时,电动机静止不动,控制阀门有一定的开度,流入水量与流出水量相等,从而使液面保持给定高度r c ,一旦流入水量或流出水量发生变化时,液面高度就会偏离给定高度r c 。

当液面升高时,浮子也相应升高,通过杠杆作用,使电位器电刷由中点位置下移,从而给电动机提供一定的控制电压,驱动电动机,通过减速器带动进水阀门向减小开度的方向转动,从而减少流入的水量,使液面逐渐降低,浮子位置也相应下降,直到电位器电刷回到中点位置,电动机的控制电压为零,系统重新处于平衡状态,液面恢复给定高度r c 。

反之,若液面降低,则通过自动控制作用,增大进水阀门开度,加大流入水量,使液面升高到给定高度r c。

系统方块图如图所示:1-10 下列各式是描述系统的微分方程,其中c(t)为输出量,r (t)为输入量,试判断哪些是线性定常或时变系统,哪些是非线性系统? (1)222)()(5)(dt t r d t t r t c ++=;(2))()(8)(6)(3)(2233t r t c dt t dc dt t c d dt t c d =+++; (3)dt t dr t r t c dt t dc t )(3)()()(+=+; (4)5cos )()(+=t t r t c ω; (5)⎰∞-++=t d r dt t dr t r t c ττ)(5)(6)(3)(;(6))()(2t r t c =;(7)⎪⎩⎪⎨⎧≥<=.6),(6,0)(t t r t t c解:(1)因为c(t)的表达式中包含变量的二次项2()r t ,所以该系统为非线性系统。

自动控制原理卢京潮主编课后习题答案西北工业大学出版社

自动控制原理卢京潮主编课后习题答案西北工业大学出版社

自动控制原理卢京潮主编课后习题答案西北工业大学出版社SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#第五章 线性系统的频域分析与校正习题与解答5-1 试求题5-75图(a)、(b)网络的频率特性。

(a) (b)图5-75 R-C 网络解 (a)依图:⎪⎪⎪⎩⎪⎪⎪⎨⎧+==+=++=++=2121111212111111221)1(11)()(R R C R R T C R RR R K s T s K sC R sC R R R s U s U r c ττ (b)依图:⎩⎨⎧+==++=+++=C R R T CR s T s sCR R sC R s U s U r c)(1111)()(2122222212ττ 5-2 某系统结构图如题5-76图所示,试根据频率特性的物理意义,求下列输入信号作用时,系统的稳态输出)(t c s 和稳态误差)(t e s(1) t t r 2sin )(=(2) )452cos(2)30sin()(︒--︒+=t t t r 解 系统闭环传递函数为: 21)(+=Φs s 图5-76 系统结构图 频率特性: 2244221)(ωωωωω+-++=+=Φj j j 幅频特性: 241)(ωω+=Φj相频特性: )2arctan()(ωωϕ-=系统误差传递函数: ,21)(11)(++=+=Φs s s G s e 则 )2arctan(arctan )(,41)(22ωωωϕωωω-=++=Φj j e e(1)当t t r 2sin )(=时, 2=ω,r m =1则 ,35.081)(2==Φ=ωωj 45)22arctan()2(-=-=j ϕ (2) 当 )452cos(2)30sin()(︒--︒+=t t t r 时: ⎩⎨⎧====2,21,12211m m r r ωω5-3 若系统单位阶跃响应 试求系统频率特性。

自动控制原理课后答案

自动控制原理课后答案
第三章习题主要问题
3-3 判断使系统稳定的K的范围:放大系数可否为复数 ? 3-11(2) 过阻尼系统,求ts(用欠阻尼公式?) 3-11(1) 主导极点分析(偶极子,模比(wn)>5)
计算ts的时候,需指明Δ是5%还是2%
3-14 计算稳态误差 3-17 计算复合控制
自动控制原理习题分析第三章3-1(1)
自动控制原理习题分析第三章3-17
自动控制原理习题分析第三章3-17
自动控制原理习题分析第三章3-17
自动控制原理习题分析第三章3-17

自动控制原理习题分析第三章3-1(1)
自动控制原理习题分析第三章3-1(4)
自动控制原理习题分析第三章3-2(3)
自动控制原理习题分析第三章3-2(3)
自动控制原理习题分析第三章3-2(4)
自动控制原理习题分析第三章3-2(4)
自动控制原理习题分析第三章3-3(2)
自动控制原理习题分析第三章3-3(2)
自动控制原理习题分析第三章3-6
自动控制原理习题分析第三章3-6
自动控制原理习题分析第三章3-8
自动控制原理习题分析第三章3-8
自动控制原理习题分析第三章3-9
自动控制原理习题分析第三章3-9
自动控制原理习题分析第三章3-11(1)
自动控制原理习题分析第三章3-11(1)
自动控制原理习题分析第三章3-11(1)
自动控制原理习题分析第三章3-11(1)
自动控制原理习题分析第三章3-11(2)
自动控制原理习题分析第三章3-14
自动控制原理习题分析第三章3-14
自动控制原理习题分析第三章3-14
自动控制原理习题分析第三章3-14
自动控制原理习题分析第三章3-17
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 线性系统的频域分析与校正习题与解答5-1 试求题5-75图(a)、(b)网络的频率特性。

u rR 1u cR 2CCR 2R 1u ru c(a) (b)图5-75 R-C 网络解 (a)依图:⎪⎪⎪⎩⎪⎪⎪⎨⎧+==+=++=++=2121111212111111221)1(11)()(R R C R R T C R RR R K s T s K sCR sC R R R s U s U r c ττ ωωτωωωωω11121212121)1()()()(jT j K C R R j R R C R R j R j U j U j G r c a ++=+++==(b)依图:⎩⎨⎧+==++=+++=C R R T CR s T s sCR R sCR s U s U r c)(1111)()(2122222212ττ ωωτωωωωω2221211)(11)()()(jT j C R R j C R j j U j U j G r c b ++=+++==5-2 某系统结构图如题5-76图所示,试根据频率特性的物理意义,求下列输入信号作用时,系统的稳态输出)(t c s 和稳态误差)(t e s (1) t t r 2sin )(=(2) )452cos(2)30sin()(︒--︒+=t t t r 解 系统闭环传递函数为: 21)(+=Φs s 图5-76 系统结构图频率特性: 2244221)(ωωωωω+-++=+=Φj j j 幅频特性: 241)(ωω+=Φj相频特性: )2arctan()(ωωϕ-=系统误差传递函数: ,21)(11)(++=+=Φs s s G s e 则 )2arctan(arctan )(,41)(22ωωωϕωωω-=++=Φj j e e(1)当t t r 2sin )(=时, 2=ω,r m =1则 ,35.081)(2==Φ=ωωj ο45)22arctan()2(-=-=j ϕο4.1862arctan )2(,79.085)(2====Φ=j j e e ϕωω )452sin(35.0)2sin()2(οο-=-Φ=t t j r c m ss ϕ)4.182sin(79.0)2sin()2(ο+=-Φ=t t j r e e e m ss ϕ (2) 当 )452cos(2)30sin()(︒--︒+=t t t r 时: ⎩⎨⎧====2,21,12211m m r r ωωο5.26)21arctan()1(45.055)1(-=-===Φj j ϕ ο4.18)31arctan()1(63.0510)1(====Φj j e e ϕ )]2(452cos[)2()]1(30sin[)1()(j t j r j t j r t c m m s ϕϕ+-⋅Φ-++⋅Φ=οο)902cos(7.0)4.3sin(4.0οο--+=t t)]2(452cos[)2()]1(30sin[)1()(j t j r j t j r t e e e m e e m s ϕϕ+-⋅Φ-++⋅Φ=οο )6.262cos(58.1)4.48sin(63.0οο--+=t t5-3 若系统单位阶跃响应 )0(8.08.11)(94≥+-=--t e e t h tt试求系统频率特性。

解 ss R s s s s s s s C 1)(,)9)(4(3698.048.11)(=++=+++-=则 )9)(4(36)()()(++=Φ=s s s s R s C 频率特性为 )9)(4(36)(++=Φωωωj j j5-4 绘制下列传递函数的幅相曲线: ()()/1G s K s = ()()/22G s K s = ()()/33G s K s = 解 ()()()12G j K j K e j ==-+ωωπω=→∞00,()G j ω→∞∞=,()G j 0 ϕωπ()=-2幅频特性如图解5-4(a)。

()()()()222G j Kj Ke j ωωωπ==-ω=→∞00,()G j ω→∞∞=,()G j 0 ϕωπ()=-幅频特性如图解5-4(b)。

()()()()33332G j K j K e j ωωωπ==- 图解5-4ω=→∞00,()G j ω→∞∞=,()G j 0 ϕωπ()=-32幅频特性如图解5-4(c)。

5-5 已知系统开环传递函数)15.0)(12(10)()(2+++=s s s s s H s G试分别计算 5.0=ω 和2=ω 时开环频率特性的幅值)(ωA 和相角)(ωϕ。

解 )5.01)((21(10)()(2ωωωωωωj j j j H j G +-+=2222)5.0()1()2(110)(ωωωωω+-+=A215.0arctan 2arctan 90)(ωωωωϕ---︒-= 计算可得 ⎩⎨⎧︒-==435.153)5.0(8885.17)5.0(ϕA ⎩⎨⎧︒-==53.327)2(3835.0)2(ϕA5-6 试绘制下列传递函数的幅相曲线。

(1) G s s s ()()()=++52181(2) G s s s ()()=+1012解 (1) G j ()()()ωωω=-+511610222∠=--=-----G j tg tg tg ()ωωωωω11122810116取ω为不同值进行计算并描点画图,可以作出准确图形 三个特殊点: ① ω=0时, 00)(,5)(=∠=ωωj G j G ② ω=时, ︒-=∠=90)(,2)(ωωj G j G③ ω=∞时, 0180)(,0)(-=∠=ωωj G j G幅相特性曲线如图解5-6(1)所示。

图解5-6(1)Nyquist 图 图解5-6(2) Nyquist 图(2) G j ()ωωω=+10122∠=--G j tg ()ωω10180两个特殊点: ① ω=0时, G j G j (),()ωω=∞∠=-1800② ω=∞时, G j G j (),()ωω=∠=-0900幅相特性曲线如图解5-6(2)所示。

5-7 已知系统开环传递函数 )1()1()(12++-=s T s s T K s G ; 0,,21>T T K当1=ω时,︒-=∠180)(ωj G ,5.0)(=ωj G ;当输入为单位速度信号时,系统的稳态误差1。

试写出系统开环频率特性表达式)(ωj G 。

解 )1()1()(12+--=s T s s T K s G先绘制)1()1()(120+-=s T s s T K s G 的幅相曲线,然后顺时针转180°即可得到)(ωj G 幅相曲线。

)(0s G 的零极点分布图及幅相曲线分别如图解5-7(a)、(b)所示。

)(s G 的幅相曲线如图解5-7(c)所示。

依题意有: K s sG K s v==→)(lim 0, 11==K e ssv ,因此1=K 。

︒-=-︒--=∠180arctan 90arctan )1(12T T j G︒=-+=+901arctan arctan arctan 212121T T TT T T121=T T另有: 5.01)(1)(11)1)(1()1(22212221212112=++=++--=+--=T T T T T T j T T T jT jT j G 021221222221222=-+-=-+-T T T T T T0)2)(1(2222222232=-+=-+-T T T T T可得: 22=T ,5.0121==T ,1=K 。

所以: )5.01(21)(ωωωωj j j j G +-=5-8 已知系统开环传递函数 )1)(1(10)(2++=s s s s G 试概略绘制系统开环幅相频率特性曲线。

解 )(ωj G 的零极点分布图如图解5 -8(a)所示。

∞→=0ω变化时,有︒-∞∠=+90)0(j G ︒-∞∠=-135)1(j G ︒∞∠=+315)1(G︒-∠=∞3600)(j G分析s 平面各零极点矢量随∞→=0ω的变化趋势,可以绘出开环幅相曲线如图解5-8(b)所示。

5-9 绘制下列传递函数的渐近对数幅频特性曲线。

(1) G s s s ()()()=++22181;(2) G s s s s ()()()=++20011012;(3) G s s s s s s ()(.)(.)()=++++40050212(4) G s s s s s s s ()()()()()=+++++20316142510122(5) G s s s s s s s ()(.)()()=+++++801142522解 (1) G ss s()()()=++22181图解5-9(1) Bode 图 Nyquist 图(2) G s s s s ()()()=++20011012图解5-9(2) Bode 图 Nyquist 图(3) )1)(12.0()12(100)1)(2.0()5.0(40)(22++++=++++=s s s s s s s s s s s G图解5-9(3) Bode图 Nyquist图(4) G ss s s s ss()()()()()=+++++20316142510122)110(12545)16()13(2520)(22+⎥⎥⎦⎤⎢⎢⎣⎡++⎪⎭⎫⎝⎛++=sssssssG图解5-9(4) Bode图 Nyquist图(5) ⎥⎥⎦⎤⎢⎢⎣⎡++⎪⎭⎫ ⎝⎛++⎪⎭⎫⎝⎛+=+++++125451)1(11.01258.0)254)(1()1.0(8)(2222s s s s s s s s s s s s s G图解5-9(5) Bode 图 Nyquist 图5-10 若传递函数G s Ks G s v()()=0 式中,)(0s G 为)(s G 中,除比例和积分两种环节外的部分。

试证 ω11=K v式中,1ω为近似对数幅频特性曲线最左端直线(或其延长线)与0dB 线交点的频率,如图5-77所示。

证 依题意,G(s)近似对数频率曲线最左端直线(或其延长线)对应的传递函数为v sK 。

题意即要证明v sK的对数幅频曲线与0db 交点处的频率值ω11=K v 。

因此,令0)(lg20=vj K ω,可得Kv ω11=, 故 ωω111v vK K =∴=,,证毕。

5-11 三个最小相角系统传递函数的近似对数幅频特性曲线分别如图5-78(a)、(b)和(c)所示。

要求:(1)写出对应的传递函数;(2)概略绘制对应的对数相频特性曲线。

图 5-78 5-11题图解 (a) 依图可写出:G s K ss()()()=++ωω1211其中参数:db L K 40)(lg 20==ω,100=K则: G s s s ()()()=++100111112ωω图解5-11(a ) Bode 图 Nyquist 图(b) 依图可写出 G s K ss s()()()=++ωω12211K C ==ωωω021图解5-11(b ) Bode 图 Nyquist 图(c) G s K s ss()()()=⋅++ωω2311200111lg ,K K ωω==图解5-11(c ) Bode 图 Nyquist 图5-12 已知)(1s G 、)(2s G 和)(3s G 均为最小相角传递函数,其近似对数幅频特性曲线如图5-79所示。

相关文档
最新文档