控制点坐标转换表
80-2000坐标系的转换

从1980西安坐标系到2000国家大地坐标系的坐标变换钟业勋1,2 童新华2 王龙波1(1广西测绘局,广西南宁,530023;2广西师范学院资源与环境科学学院,广西南宁,530001)摘要:本文阐述了高斯—克吕格投影的建立原理,推导了坐标公式。
对1980西安坐标系和2000国家大地坐标系,作者给出了应用CASIO fx—4800P计算器由平面直角坐标反解地理坐标的计算程序。
应用这程序,实现了从1980西安坐标系到2000国家大地坐标系的坐标变换。
根据计算结果及其在1:25000地形图上的图解精度,因1:25000~1:50万地形图上同名点的坐标差异很小,都在图解精度0.2mm以内,所以地图改版时只需改变坐标系的名称即可。
关键词:1980西安坐标系;2000国家大地坐标系;高斯—克吕格投影;地理坐标;坐标变换。
1 引言根据国家测绘局6月18日发布的公告,我国从2008年7月1日起启用2000国家大地坐标系。
公告提供了新坐标系的技术参数,并对新旧坐标系的转换和使用作出说明;2000国家大地坐标系与现行国家大地坐标系转换,衔接的过渡期为8至10年。
现有各类测绘成果,在过渡期内可沿用现行国家大地坐标系;2008年7月1日后新生产的各类测绘成果应采用2000国家大地坐标系。
现有地理信息系统,在过渡期内应逐步转换到2000国家大地坐标系;2008年7月1日后新建的地理信息系统,应采用2000国家大地坐标系[1]。
由于1980西安坐标系已采用20多年,大量的测绘成果都是采用1980西安坐标系甚至是1954年北京坐标系,因此面临着大量的坐标转换问题。
本文以1980西安坐标系坐标转换为2000国家大地坐标系坐标为例,阐述坐标转换的原理和方法。
2 高斯—克吕格投影及其坐标公式高斯—克吕格(Gauss-Krǖger)投影概念高斯—克吕格投影是等角横切椭圆柱投影,从几何意义上看,就是假想用一个椭圆柱套在地球椭球外面,并与某一子午线相切,相切的子午线称为中央经线。
云南省2000国家大地坐标系坐标转换部分

相同历元不同框架坐标比较
相同历元不同框架点位坐标差异,下表以昆明站为例
IGS坐标
X(m)
Y(m)
Z(m) ΔX(m) ΔY(m) ΔZ(m)
ITRF2000
-1281255.473
5640746.079
2682880.117
-0.0318,-0.0024,-0.0203
ITRF2005
ITRF2000 ITRF2005
-1281255.565
5640746.060
2682880.057
IGS站坐标和速度场的解算精度
σ X(mm)
10
σY(mm) 22
σZ(mm) 12
1.0
1.0
1.0
-0.0317, 0.0035.-0.0147
σX1(mm) σY1(mm) σZ1(mm)
3.7 8.3 4.3 0.2 0.4 0.2
顾及全部7参数和椭球大小变化的转化公式又称为广义大地坐 标微分公式或广义变换椭球微分公式。
dB
- sinBcosL M+H
dL
=
-
(N
sinL + H)cosB
dH
cosBcosL
- sinBsinL M+H cosL
(N + H)cosB cosBsinL
cosB
M+H 0
sinB
T (t) T (tk ) T (t tk )
GPS C级网转换到CGCS2000 坐标系
从ITRF2000转换到以前框架的转换参数与速率(历元1997. 0)
转换参数
T1(cm) T2(cm) T3(cm)
Dppb
R1.001" R2.001" R3.001"
大地测量控制点坐标转换技术规程

近似表示地球的形状和大小,并且其表面为等位面的旋 转椭球。 3.3 参考椭球 reference ellipsoid 最符合一定区域的大地水准面,具有一定大小和定位参 数的旋转地球椭球。 3.4 国 际 地 球 参 考 系 统 Reference System,ITRS 由国际地球自转服务(IERS)给出的地球 International Terrestrial Reference Frame,ITRF 国际地球参考系统(ITRS)的实现。由国际地球自转服 务局(IERS)根据空间大地测量技术,包括甚长基线干涉测 量(VLBI) 、卫星激光测距(SLR) 、多里斯系统(DORIS) 、 全球定位系统(GPS)等,所确定的地面点的坐标所构成的 集合。 3.6 大地坐标系 geodetic coordinate system 以地球椭球中心为原点、起始子午面和赤道面为基准面 的地球坐标系。 3.7 1954 年 北 京 坐 标 系 Beijing Geodetic Coordinate System 1954 将我国大地控制网与苏联 1942 普尔科沃大地坐标系联 结后建立的我国过渡性大地坐标系。 International Terrestrial
大地测量控制点坐标转换技术规程
1 范围
本规程规定了各种坐标系控制点坐标转换到 2000 国家 大地坐标系时控制点选取、坐标转换模型、转换方法、精度 评价等方面应遵循的原则、适用范围和精度要求。 本规程适用于大地测量控制点坐标转换过程中的重合 点选取、模型选择和转换方法。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期 的引用文件,仅注日期的版本适用于本文件。凡是不注日期 的引用文件,其最新版本(包括所有的修改单)适用于本文 件。 GB/T 17159-2009 GB/T 18314-2009 GB/T 19391-2003 GB/T 22021-2008 GB/T 28588 - 2012 站网技术规范 CH/T 1004-2005 2010(第三版) 3 术语和定义 下列术语和定义适用于本文件。 3.1 控制点 control point 以一定精度测定其位置为其他测绘工作提供依据的固 定点。 3.2 地球椭球 earth ellipsoid 测绘技术设计规定 测绘学名词 大地测量术语 全球定位系统(GPS)测量规范 全球定位系统(GPS)术语及定义 国家大地测量基本技术规定 全球导航卫星系统连续运行基准
坐标系投影方式的选择及坐标转换

坐标系投影方式的选择
• 坐标系投影方式的选择 1、为保证项目资料的可延续性,一般情况下应选择原有的坐标系、高程系
及投影方式。 2、如果收集不到原有测量资料,或项目区域内没有可利用的控制点资料,
则需要建立独立坐标系或独立高程系。 选择独立坐标系投影方式的先决条件是要满足投影变形的要求,即:每公里
投影变形长度不得大于2.5cm。 3、投影变形长度计算公式很复杂,可以在《工程测量规范》中查到计算公
坐标转换
• 有转换参数的坐标转换
首先说七参,就是两个空间坐标系之间的旋转,平移和缩放,这三 步就会产生必须的七个参数,平移有三个变量Dx,Dy,DZ;旋转有 三个变量,再加上一个尺度缩放,这样就可以把一个空间坐标系转 变成需要的目标坐标系了,这就是七参的作用。如果说你要转换的 坐标系XYZ三个方向上是重合的,那么我们仅通过平移就可以实现目 标,平移只需要三个参数,如果缩放比例为一,这样就产生了三参 数,三参就是七参的特例,旋转为零,尺度缩放为一。 四参数是同 一个椭球内不同坐标系之间进行转换的参数,它四个基本项分别是: X 平移、Y 平移、旋转角和比例,从参数来看,四参数没有高程改 正,所以它适用于平面坐标之间的转换。有人会说为什么用RTK(动 态GPS)放样时能显示高程?这实质上一种高程拟合的过程,和四参 数本身没有关联。
下面我们再件(COORD GM)将平面坐标转换成经纬度坐标时误差会很大?”,出现这个 问题的原因可能是软件的一个BUG,这里我们不作讨论。还是以 上面的例子将得到的平面坐标再转换成经纬度坐标。理论上来 说:经纬度转换成平面坐标,再将此平面坐标转换成经纬度坐 标后,经纬度坐标应保持不变。
式,这里主要讲一下为满足上述要求可进行的具体实施办法。
坐标系投影方式的选择
浅谈2000国家大地坐标系向地方独立坐标系的转换

换 区域 。
3.2转 换参数 计 算 。a.利 用选 取 的重合 点 和转换 模 型计算 转
换参数 .b.剔除残差大于 3倍点位 中误差 的重合点 ;c.重新计算
坐标转换参数 ,直到满足精度要求为止 ;d.禾U用最小二乘法计算
转换 参 数 。
3.3精 度评定 。坐 标转 换精 度 可采用 外符 合 精 度评 定 ,依 据
坐 标系进 行转 换 。 在该 市 范 围内共 选取 了 8个控 制点 ,表 1为 选 取控 制点 的
2.1 2000国家大 地坐标 系的建 立
2000国家 大地 坐标 和某 市地方 独 立坐标 。
2000国家大地坐标系是全球地心坐标 系在我 国的具体体
表 1 已知 控制 点坐标 表
单位 :m
定 位技 术在 各 领域 的广 泛 应用 ,是 我 国测 绘 基 准体 系现 代 化建
设 的重要工作 ,是提高我 国空间基准 自主性和安全性 、推进北
斗 卫星 导航 系统快 速 应用 的基 础 。
2.2地方 独立 坐标 系 的建立
在城市测量和工程测量 中,若直接在 国家坐标 系中建立控
制 网 ,有 时会 使 地 面长 度 的 投 影变 形 较 大 ,难 以满 足 实 际 或工
立地 方 独 立 坐标 系 。一 方 面是 基 础数 据 采用 2000国家 大 地坐 4 实例 分析
标 系 ,另一 方 面 是 实 际工 程 采 用 地 方独 立 坐 标 系 ,所 以经 常 遇 采用 上述 方 法 ,对 某市 的 2000国家 大地 坐标 系 和地 方 独立
到两 个 坐标 系下 数据 的转 换 问题 。 2 2000国家 大地 坐标 系及 地方 独立 坐标 系 的建立
GPS经纬度的表示方法与换算

--想要认识GPS 中的经纬度,就必须先了解GPS,知道经纬度的来源: 1.GPS 系统组成GPS 是GloabalPositioning System 的简称,意为全球定位系统,主要由地面的控制站、天上飞的卫星、咱们手里拿的接收机三大块组成,我们所使用的GPS 包括手持机和车载GPS接受机。
导航机本质上都是GPS 接收机2. 接收机大大小小,千姿百态,有袖珍式、背负式、车载、船载、机载什么的。
一般常见的手持机接收L1 信号,还有双频的接收机,做精密定位用的。
3.坐标系地形图坐标系:我国的地形图采用高斯-克吕格平面直角坐标系。
在该坐标系中,横轴:赤道,用Y表示;纵轴:中央经线,用X表示;坐标原点:中央经线与赤道的交点,用O表示。
赤道以南为负,以北为正;中央经线以东为正,以西为负。
我国位于北半球,故纵坐标均为正值,但为避免中央经度线以西为坐标纵轴西移500公里。
负值的情况,将北京54坐标系:1954年我国在北京设立了大地坐标原点,采用克拉索夫斯基椭球体,依此计算出来的各大地控制点的坐标,称为北京54坐标系。
GS84坐标系:即世界通用的经纬度坐标系。
6度带、3度带、中央经线。
我国采用6度分带和3度分带:1∶2.5万及1∶5万的地形图采用6度分带投影,即经差为6度,从零度子午线开始,自西向东每个经差6度为一投影带,全球共分60个带,用1,2,3,4,5,??表示。
1∶1万的地形图采用3度分带,从东经1.5度的经线开始,每隔3度为一带,用1,2,3,??表示,全球共划分120个投影带4.经纬度的来源为了精确地表明各地在地球上的位置,人们给地球表面假设了一个坐标系,这就是经纬度线。
那么,最初的经纬度线是怎么产生又是如何测定的呢公元344 年,亚历山大渡海南侵,继而东征,随军地理学家尼尔库斯沿途搜索资料,准备绘一幅“世界地图”。
他发现沿着亚历山大东征的路线,由西向东,无论季节变换与日照长短都很相仿。
于是做出了一个重要贡献——第一次在地球上划出了一条纬线,这条线从直布罗陀海峡起,沿着托鲁斯和喜马拉雅山脉一直到太平洋。
浅谈2000国家大地坐标系向地方独立坐标系的转换

浅谈2000国家大地坐标系向地方独立坐标系的转换摘要:大约在十年前,我国的国家级和省级的基础地理信息数据已经初步通过2000国家大地坐标系,然而通过国家坐标系统,在一些离中央子午线较远或者海拔较高的地区无法达到相关要求,这就需要将地方独立坐标系建立起来。
本文对2000国家大地坐标系向地方独立坐标系的转化进行分析和研究,以供参考。
关键词:2000国家大地坐标系;地方独立坐标系;转换1 2000国家大地坐标系与地方独立坐标系的建立1.1 2000国家大地坐标系的建立2000国家大地坐标系是全球地心坐标系在我国进行实践的具体体现,其原点主要是大地和海洋的质量中心,z轴是根据相关规定协议地级方向,x轴表示的是相关规定当中定义的协议赤道和子午面的交点,y轴是依照右手坐标系而建立起来的,通过2000国家大地坐标系能够加强定位系统的精确性,广泛应用于各个领域。
1.2地方独立坐标系的建立在工程测量及城市测绘过程中如果通过国家坐标系来进行控制网的建设,往往会出现地面长度投影变形量较大等问题,无法达到工程的实际操作需求,所以一定要建立起与实际情况相适应的地方独立坐标系。
地方独立坐标系的建立,主要是为了让高程归化和投影形变的情况造成的误差缩小,通过地方独立坐标系的建设可以保证达到所需要的精度,不会由于精度无法达到要求,而对工程建设产生影响。
2 2000国家大地坐标系与地方独立坐标系转换的理论基础某市在建设的过程中选取四参数转换模型,对坐标转换参数进行控制,把2000国家大地坐标系的成果向地方独立坐标系的成果进行转化。
2.1重合点选取在坐标系选用的过程中,两个坐标系都有坐标成果控制点,在选择的过程中,主要原则是覆盖整个转换区域,要求精度较高,而且具有较高的等级,分布均匀。
2.2转换参数计算首先通过转换模型和重合点的选择,对转换参数进行计算,将残差大于三倍的误差重合点剔除,对坐标转换参数进行重新计算,直到符合精度要求为止,通过最小二乘法来对参数进行计算。
最新用EXCEL完成GPS坐标转换的简易方法

用EXCEL完成GPS坐标转换的简易方法用EXCEL完成GPS坐标转换的简易方法[摘要]对利用EXCEL电子表格进行高斯投影换算的方法进行了较详细的介绍,对如何进行GPS坐标系转换进行了分析,提出了一种简单实用的坐标改正转换方法,介绍了用EXCEL完成转换的思路。
[关键字]电子表格;GPS;坐标转换作为尖端技术GPS,能方便快捷性地测定出点位坐标,无论是操作上还是精度上,比全站仪等其他常规测量设备有明显的优越性。
随着我国各地GPS差分台站的不断建立以及美国SA政策的取消,使得单机定位的精度大大提高,有的已经达到了亚米级精度,能够满足国土资源调查、土地利用更新、遥感监测、海域使用权清查等工作的应用。
在一般情况下,我们使用的是1954年北京坐标系或1980年西安坐标系(以下分别简称54系和80系),而GPS测定的坐标是WGS-84坐标系坐标,需要进行坐标系转换对于非测量专业的工作人员来说,虽然GPS定位操作非常容易,但坐标转换则难以掌握,EXCEL是比较普及的电子表格软件,能够处理较复杂的数学运算,用它来进行GPS坐标转换、面积计算会非常轻松自如。
要进行坐标系转换,离不开高斯投影换算,下面分别介绍用EXCEL进行换算的方法和GPS坐标转换方法。
一、用EXCEL进行高斯投影换算从经纬度BL换算到高斯平面直角坐标XY(高斯投影正算),或从XY换算成BL(高斯投影反算),一般需要专用计算机软件完成,在目前流行的换算软件中,存在一个共同的不足之处,就是灵活性较差,大都需要一个点一个点地进行,不能成批量地完成,给实际工作带来许多不便。
笔者发现,用EXCEL可以很直观、方便地完成坐标换算工作,不需要编制任何软件,只需要在EXCEL 的相应单元格中输入相应的公式即可。
下面以54系为例,介绍具体的计算方法。
完成经纬度BL到平面直角坐标XY的换算,在EXCEL中大约需要占用21列,当然读者可以通过简化计算公式或考虑直观性,适当增加或减少所占列数。