函数极限习题与解析
§2多元函数的极限习题参考解答

814§2 多元函数的极限习题参考解答1. 依定义验证22(,)(2,1)lim ()7x y x xy y →++=。
解 因为()()12472222−+−++=−++y xy x y xy x()()()()()()31221112222+−+++−≤−++−+−+−+=y y y x x y y y y x x x先限制在点(2,1)的1=δ的方邻域 (){}11,12,<−<−y x y x 内讨论,于是有,,541413<+−≤+−=+y y y ()()5122+−+−=++y x y x7512<+−+−≤y x所以, 1527722−+−≤−++y x y xy x ()127−+−<y x 。
设ε为任给正数,取),14,1min(εδ=则当)1,2(),(,1,2≠<−<−y x y x δδ时,就有, 2277214x xy y δδε++−<⋅=<。
2. 依定义证明0lim22)0,0(),(=+→yx xy y x 。
证 因为)(21)(|0|2222222122y x y x y x y x xy +=++≤−+, 可见,对∀ε >0, 取εδ2=, 则当δ<−+−<22)0()0(0y x , 即),(),(δO U D y x P D∩∈时, 总有|22yx xy +−0|<ε,因此。
0lim 22)0,0(),(=+→yx xy y x3. 证明极限 242)0,0(),(limy x yx y x +→不存在。
815证:当点P (x ,y )沿y 轴趋于点(0, 0)时,00lim lim 20242)0,0(),(==+→→y y x y x y y x ; 当点P (x , y )沿y 轴趋于点(0, 0)时,00lim ) ,0(lim ),(lim 0)0,0(),(===→→→y y y x y f y x f 。
第二章极限习题及答案:极限的四则运算

自变量趋向无穷时函数的极限例 求下列极限:(1)42242115lim x x x x x --+-∞→(2)⎪⎪⎭⎫⎝⎛+--∞→1212lim 223x x x x x 分析:第(1)题中,当∞→x 时,分子、分母都趋于无穷大,属于“∞∞”型,变形的一般方法是分子、分母同除以x 的最高次幂,再应用极限的运算法则.第(2)题中,当∞→x 时,分式1223-x x 与122+x x 都趋向于∞,这种形式叫“∞-∞”型,变形的一般方法是先通分,变成“∞∞”型或“00”型,再求极限.解:(1)211151lim 2115lim 24424224--+-=--+-∞→∞→x x x x x x x x x x .212000012lim lim lim 1lim 5lim 1lim 2442-=--+-=--+-=∞→∞→∞→∞→∞→∞→x x x x x x x x xx(2))12)(12()12()12(lim 1212lim 2223223+---+=⎪⎪⎭⎫ ⎝⎛+--∞→∞→x x x x x x x x x x x x )12)(12(11lim)12)(12(lim2223xx xx x xx x x +-+=+-+=∞→∞→ 41)02)(02(01)12(lim )12(lim )11(lim 2=+-+=+-+=∞→∞→∞→xx x x x x说明:“∞∞”型的式子求极限类似于数列极限的求法.无穷减无穷型极限求解例 求极限:(1))11(lim 22x x x x x +--++-∞→(2))11(lim 22x x x x x +--+++∞→分析:含根式的函数求极限,一般要先进行变形,进行分子、分母有理化,再求极限. 解:(1)原式22112limxx x x xx +-+++=-∞→222112limxx x x x x +-+++-=-∞→.11111112lim22-=+-+++-=-∞→xx xx x(2)原式22112limxx x x xx +-+++=+∞→.11111112lim22=+-+++=+∞→xx xx x说明:当<x 时,2x x ≠,因此211111121122222→+-+++≠+-+++xx xx xx x x x.利用运算法则求极限例 计算下列极限: (1)⎪⎭⎫⎝⎛+-+++++++∞→123171411lim 2222n n n n n n ; (2)()⎥⎦⎤⎢⎣⎡-+++--∞→n n n 3112719131lim 1 . (1992年全国高考试题,文科难度0.63)解: (1)原式()11321lim 2+-=∞→n n n n()232213lim 123lim 222=+-=+-=∞→∞→nn n n n n n . (2)原式⎪⎭⎫ ⎝⎛--⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--=∞→31131131limnn[]41014131141lim =-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛--=∞→nn .说明:该题计算时,要先求和,再求所得代数式的极限,不能将只适用有限个数列的加、减、乘、除的数列极限的四则运算法则,照搬到无限个数列的加、减、乘、除,超出了法则的适用范围,下面的计算是错误的: (1)原式123lim 14lim 11lim 222+-+++++=∞→∞→∞→n n n n n n n(2)原式()4131131027********lim 271lim 91lim 31lim 1=⎪⎭⎫ ⎝⎛--=+++-=-+++-=-∞→∞→∞→∞→ n n n n n n 用二项式定理展开或逆用等比数列和公式化简求极限例 设*N p ∈,求nn p n 1111lim 1-⎪⎭⎫ ⎝⎛++∞→.分析:把111+⎪⎭⎫⎝⎛+p n 用二项式定理展开或逆用等比数列和公式即可求得.解:111221111)1()1(1111++++++++++=⎪⎭⎫ ⎝⎛+p p p p p p nC n C n C n pp p p p p p nC C n C n C nn )1()1(111111131221111++++++++++=-⎪⎭⎫ ⎝⎛+∴11111lim 111+==-⎪⎭⎫ ⎝⎛+∴++∞→p C nn p p n或:逆用等比数列求和公式:原式⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++=∞→pn n n n 1111111lim 211111+=+++=+p p个说明:要注意p 是与n 无关的正整数,111+⎪⎭⎫⎝⎛+p n 不是无限项,对某些分式求极限应先对式子进行必要的变形,使之成为便于求极限的形式,以利问题的解决,经常用到的技巧是分母、分子有理化或按二项式定理展开等等.零乘无穷型转化为无穷除无穷型例 求.)1(lim n n n n -+∞→分析:当∞→n 时,所求极限相当于∞⋅0型,需要设法化为我们熟悉的∞∞型. 解: n n n n )1(lim -+∞→.211111lim 1lim)1()1)(1(lim =++=++=++++-+=∞→∞→∞→nnn n n n n n n n n n n n说明:对于这种含有根号的∞⋅0型的极限,可采取分子有理化或分母有理化来实现.如本题是通过分子有理化,从而化为nn n++1,即为∞∞型,也可以将分子、分母同除以n的最高次幂即n ,完成极限的计算.根据极限确定字母的范围例 已知161)2(44lim 2=+++∞→n n n n m ,求实数m 的取值范围. 分析:这是一个已知极限的值求参数的范围问题,我们仍然从求极限入手来解决.解:16142161lim )2(44lim 2=⎪⎭⎫⎝⎛++=++∞→+∞→nn n n n n m m 于是142<+m ,即26,424<<-<+<-m m . 说明:在解题过程中,运用了逆向思维,由16142161lim =⎪⎭⎫⎝⎛++∞→n n m 可知,nm ⎪⎭⎫⎝⎛+42的极限必为0,而0→n q 的充要条件是1<q ,于是解不等式142<+m . 零比零型的极限例 求xx x 11lim10-+→. 分析:这是一个00型的极限,显然当0→x 时,直接从函数xx 1110-+分子、分母中约去x 有困难,但是1110-+x 当0→x 时也趋近于0,此时x 化为1)1(1010-+x ,这就启发我们通过换元来解决这一难题,即设101x y +=,则110-=y x .解:设101x y +=,则110-=y x ,于是,当0→x 时,1→y . 原式10111lim 11lim891101=++++=--=→→y y y y y y y说明:本题采用的换元法是把0→x 化为01→-y ,这是一种变量代换.灵活地运用这种代换,可以解决一些型的极限问题. 例如对于11lim 21--→x x x ,我们一般采用因式分解,然后约去1-x ,得到2)1(lim 1=+→x x .其实也可以采用这种代换,即设1-=x t ,则当1→x 时,0→t ,这样就有.2)2(lim 1)1(lim 11lim 02021=+=-+=--→→→t tt x x t t x 组合与极限的综合题例 ) (lim 1222=++∞→n n nn n C CA .0B .2C .21 D .41 分析:将组合项展开后化简再求极限.解: 1222lim ++∞→n n nn n C C.4126412lim )22)(12()1(lim )!22()!1()!1(!!)!2(lim 222=++++=+++=⎥⎦⎤⎢⎣⎡++⋅+⋅=∞→∞→∞→n n n n n n n n n n n n n n n n 故应选D .说明:本题考查组合的运算和数列极限的概念.高考填空题1.计算.________)2(lim =+∞→nn n n 2.若数列{}n a 的通项公式是)N ()1(1*∈+=n n n a n ,则.________)(lim 21=+∞→n n a n a3.计算:.________)13(lim =++∞→nn n n1.解析 22222221221lim 2lim -+--+-∞→∞→=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-+=⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+e n n n n n n n nn n n说明:利用数列极限公式e n nn =⎪⎭⎫⎝⎛+∞→11lim ,把原题的代数式稍加变形即可获解.本题主要考查灵活运用数列极限公式的能力.2.解析 .21,)1(11=∴+=a n n a n.23121)11121(lim )1(121lim 2=+=++=⎥⎦⎤⎢⎣⎡+⋅+∴∞→∞→nn n n n n说明:本题的思考障碍点是如何求1a ?——只要懂得在通项公式中令1=n ,可立得1a 的具体值,本题考查数列极限的基本知识.3.解析 nn n n )13(lim ++∞→ 21221)121(lim e n n n n n =⎥⎦⎤⎢⎣⎡++=++∞→说明:本题考查数列极限公式的应用.根据已知极限和四则运算求其它极限例 若12lim =∞→n n na ,且n n a ∞→lim 存在,则.________)1(lim =-∞→n n a nA .0B .21 C .21- D .不存在 分析:根据题设知n na 和n a 均存在极限,这是进行极限运算的前提,然后相减即可求得结论.解:,lim ,12lim 存在n n n n na na ∞→∞→=0lim 021lim2lim lim =∴==∴∞→∞→∞→∞→n n n nn nn a n na a又21lim ,12lim ==∞→∞→n n n n na na ∴21210lim lim )(lim )1(lim =-=-=-=-∞→∞→∞→∞→n n n n n n n n n na a na a a n 即.21)1(lim -=-∞→n n a n选C .说明:n n a ∞→lim 是关键,不能错误地认为0lim =∞→n n a ,0)1(lim =-∞→n n a n .两个数列{}n a 、{}n b 的极限存在是两个数列的和.差、积存在极限的充分条件.但⎭⎬⎫⎩⎨⎧n n b a 的极限不一定存在.化简表达式再求数列的极限例 求下列极限 (1)⎪⎭⎫⎝⎛+++++++++∞→112171513lim 2222n n n n n n (2)nnn 21412113191311lim ++++++++∞→ (3)⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-∞→211511411311lim n n n 分析:先运用等差数列、等比数列的前n 项公式求和,或运用其他方式化简所给表达式,再进行极限的四则运算.解:(1)原式1)12(753lim2++++++=∞→n n n 11121lim 1)2(lim 22=++=++=∞→∞→nn n n n n n (2)原式n n n n nn ⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛-=∞→∞→211311lim 34211231123lim 4301013421lim 1lim 31lim 1lim 34=--⋅=⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛-=∞→∞→∞→∞→n n n nn n (3)原式.222lim21544332lim =+=⎪⎭⎫ ⎝⎛++⋅⋅⋅=∞→∞→n n n n n n n 说明:先化简,再求极限是求极限经常用到的方法,不能认为0112lim ,,015lim ,013lim 222=++=⎪⎭⎫⎝⎛+=⎪⎭⎫ ⎝⎛+∞→∞→∞→n n n n n n n 而得到(1)的结果是0.无穷比无穷和字母讨论的数列极限例 求下列极限:(1)n n n n n 3423352lim 11⋅+⋅⋅-++∞→ (2))0(11lim>+-∞→a a a nnn 分析:第(1)题属“∞∞”型,一般方法是分子,分母同除以各式中幂的值最大的式子.第(2)题中当a 的值在不同范围内变化时,分子,分母的极限或变化趋势)不同,因此要分各种情形进行讨论.解:(1)原式432315322lim 342331522lim +⎪⎭⎫ ⎝⎛⋅-⎪⎭⎫ ⎝⎛⋅=⋅+⋅⋅-⋅=∞→∞→n nn n n nn n .41540315024lim 32lim 315lim 32lim 2-=+⨯-⨯=+⎪⎭⎫⎝⎛-⎪⎭⎫⎝⎛=∞→∞→∞→∞→n nn n nn (2)当10<<a 时,01111lim 11lim=+-=+-∞→∞→n n n n a a , 当1>a 时,.110101lim 1lim 1lim 1lim 1111lim 11lim -=+-=+⎪⎭⎫⎝⎛-⎪⎭⎫⎝⎛=+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+-∞→∞→∞→∞→∞→∞→n n n n nn n n n n n n a a a a a a说明:含参数的式子求极限,经常要进行讨论,容易出现的问题是错误地认为0lim =∞→n n a .根据极限确定等比数列首项的取值范围例 已知等比数列{}n a 的首项为1a ,公比为q ,且有211lim 1=⎪⎪⎭⎫ ⎝⎛-+∞→n n q q a ,求1a 的取值范围.分析:由已知条件及所给式子的极限存在,可知nn q ∞→lim 存在,因此可得q 的取值范围,从而确定出1a 的取值范围.解:由211lim 1=⎪⎪⎭⎫⎝⎛-+∞→n n q q a ,得nn q ∞→lim 存在. ∴1<q 且0≠q 或1=q .. 当1<q 时,有2111=+q a , ∴121-=a q ,∴112<-a 解得101<<a , 又0≠q ,因此211≠a . 当1=q 时,这时有2112lim 1=⎪⎭⎫⎝⎛-∞→a n , ∴31=a .综上可得:101<<a ,且211≠a 或31=a . 说明:在解决与数列有关的问题时,应充分注意相关知识的性质,仅从极限的角度出发来考虑q 的特点,容易将0≠q 这一条件忽视,从而导致错误.求函数在某一点处的极限例 求下列极限:(1)⎪⎪⎭⎫⎝⎛++++→22423lim 3322x x x x x (2)401335172lim 225++++→x x x x x(3)xxx 320cos 1sin lim -→(4)⎪⎭⎫⎝⎛---→9631lim 23x x x分析:第(1)题中,2=x 在函数的定义域内,可直接用极限的四则运算法则求极限;(2)、(3)两个极限分子、分母都趋近于0,属“”型,必须先对函数变形,然后施行四则运算;(4)为“∞-∞”型,也应先对函数作适当的变形,再进行极限的运算.解:(1)22lim 423lim 22423lim 332223322++++=⎪⎪⎭⎫ ⎝⎛++++→→→x x x x x x x x x x x )2(lim 2lim )4(lim )23(lim 3232222++++=→→→→x x x x x x x x 2lim lim lim 24lim lim 2lim lim 32323223222→→→→→→→++++=x x x x x x x x x x x.513581222242223322=+=+⨯+++⨯= (2).18)5(7)5(2872lim )8)(5()72)(5(lim 401335172lim 55225-=+-+-⨯=++=++++=++++→→→x x x x x x x x x x x x x (3)xx x x x x x x x x x 20220320cos cos 1cos 1lim )cos cos 1)(cos 1(cos 1lim cos 1sin lim +++=++--=-→→→ .3211111=+++= (4).6133131lim 96)3(lim 9631lim 32323=+=+=--+=⎪⎭⎫ ⎝⎛---→→→x x x x x x x x 说明:不能错误地认为,由于31lim3-→x x 不存在,96lim 23-→x x 也不存在,因此(4)式的极限不存在.(4)属于“∞-∞”型,一般要先对函数式进行变形,变为“00”型或“∞∞”型,再求极限.函数在某一点处零比零型的极限例 求下列极限:(1)3111lim x x x --→ (2)xx x x 32sin sin tan lim -→π 分析:第(1)题中,当1→x 时,分子、分母的极限都是0,不能用商的极限的运算法则,应该先对分式变形,约去一个极限为零的因式后再应用极限的运算法则求分式的极限,常用的变换方法有:①对多项式进行因式分解;②对无理式分子或分母有理化;③对三角函数式(如第(2)题,先进行三角恒等变换,再约分.解:(1)原式)1)(1)((1()1)(1)(1(lim 32333231x x x x x x x x x +++-+++-=→.23111111)1(lim )1)(1()1)(1(lim 32313231=+++=+++=+-++-=→→xx x x x x x x x x(2)原式xx x x x x x x x x cos sin cos sin sin lim sin sin cos sin lim 3232⋅-=-=→→ππ .211)11(1cos )cos 1(1lim cos sin cos 1lim222=⨯+=⋅+=⋅-=→→x x x x x ππ 说明:如果分子、分母同乘以31x +,对(1)式进行变形,思维就会受阻,正确的方法是分子、分母同乘以分子、分母的有理化因式,分母的有理化因式是)1(323x x ++.。
函数极限习题及解析

函数极限习题及解析1. 极限的定义函数极限是研究函数变化趋势的重要概念,通过求取函数在某一点附近的极限值,可以推断函数在该点的行为。
函数极限的定义如下:对于函数 f(x),当 x 趋近于 a 时,如果存在一个常数 L,使得对于任意给定的正数ε,都存在一个正数δ,满足当 0 < |x-a| < δ 时,有 |f(x)-L| < ε 成立,那么称函数 f(x) 在 x=a 处具有极限 L,记作lim(x→a) f(x) = L。
2. 基本极限公式在计算极限的过程中,常常会用到一些基本的极限公式,它们的证明可以依靠函数极限的定义以及一些基础的数学概念。
以下是一些常见的基本极限公式:公式1:lim(x→a) c = c,其中 c 为常数。
lim(x→a) c = c,其中 c 为常数。
公式2:lim(x→a) x = a。
lim(x→a) x = a。
公式3:lim(x→∞) kx = ∞,其中 k 为正常数。
lim(x→∞) kx = ∞,其中 k 为正常数。
公式4:lim(x→∞) x^n = ∞,其中 n 为正整数。
lim(x→∞) x^n = ∞,其中 n 为正整数。
公式5:lim(x→a) (f(x) ± g(x)) = lim(x→a) f(x) ± lim(x→a) g(x),其中 f(x) 和 g(x) 在 x=a 处有极限。
lim(x→a) (f(x) ± g(x)) =lim(x→a) f(x) ± lim(x→a) g(x),其中 f(x) 和 g(x) 在 x=a 处有极限。
3. 极限的题和解析题1:求函数 f(x) = (x^2 - 1) / (x - 1) 在 x = 1 处的极限。
解析:直接代入 x = 1,得到 f(x) = 0/0,这种形式的函数是无法通过直接代入求得极限的。
我们可以对该函数进行化简,得到 f(x) = x + 1。
(完整版)函数极限习题与解析

同济大学第六版高等数学)、填空题设 f(x) 2 x lglg x ,其定义域为 。
设 f(x) ln(x 1) ,其定义域为 。
设 f(x) arcsin( x 3) ,其定义域为 。
设 f (x)的定义域是 [0 , 1] ,则 f(sin x)的定义域为设 y f ( x)的定义域是 [0,2] ,则 y f (x 2 )的定义域为x 2x k lim 4 ,则 k= x 3x 3x函数 y 有间断点 ,其中 为其可去间断点。
sinxsin2x若当 x 0时 , f(x) ,且 f (x)在x 0处连续 ,则 f (0) x、函数 f(x)在 x 0处连续是 f(x)在 x 0连续的条件。
(x 3 1)(x 2 3x 2)53 2x 5 5x 3lim (1 2)kn e3,则 k= nx 2 12的间断点是x 3x 2、当 x 时, 1 是比 x 3 x 1 的无穷小。
x1、 2、 3、 4、5、6、 7、8、 9、1011121314l n im(n 21nn22n 2n n) nn、函数 y15 、当 x 0时,无穷小 1 1 x 与 x 相比较是 无穷小。
116、函数 y e x 在 x=0 处是第 类间断点。
x0若 lim f (x) 存在 ,则 a=(1 ax) x x 0x sin x20、曲线 y2 2 水平渐近线方程是 x 21、 f (x)4 xx 1 22 1的连续区间为a=、计算题1、求下列函数定义域2 ) y sin x ;23) y e x ;2、函数 f (x) 和 g(x) 是否相同?为什么?17 、设 y3x 1 x1,则 x=1 为 y 的 间断点。
18 、已知 f3, 则当 a 为3时,函数 f (x) asinxsin3x 在 x 33处连续。
sin x19、设 f (x) 2xxa,x22 、设 f (x)cosx , x00在 x 0连续 ,则常数11 x23) f (x) 1 g(x) sec2tan 2 x;3、判定函数的奇偶性221) y x2 (1 x2) ;2)2y 3x23x;3) y x(x 1)( x 1)4、求由所给函数构成的复合函数u2 sin v x2u,sin x 5、计算下列极限1)1l n im (1 12limn12 3 (n 1) ;2;n3) lim x2 5x2x4) l x im1x 2 2x 1x2 1;5) lim(1x 1)(2x12)x6) l x im2x32x 2;(x 2) 2 ;7) lim x 2x01sinx8)x21lxim1 3 x 1 x9) lim x( x2x1 x)6、计算下列极限sin wx 1) limx 0xsin 2 x lim ;x 0 sin 5 x3) lim xcot xx04) l x im(1x x)x;x 1 x 1(5) lim ( )x 1 ;xx 17、比较无穷小的阶1 6)lim (1 x)x;x0(1) x0时 , 2x x 2与 x 2 x 3 4 ;12(2) x 1时 , 1 x 与 (1 x 2) ;8、利用等价无穷小性质求极限2) lim sin(x m ) (n ,m 是正整数) ;x 0(sin x)m9、讨论函数的连续性 10、利用函数的连续性求极限B )1、设 f(x) 的定义域是 [0 ,1] ,求下列函数定义域4)lim (11)2xx1) lim ln(2cos2x)x62)lim ( x 2x xx 2x ) ;3)lim lnsin x; x 0x5)设f (x) lim(1nx n )nn,求 lim t1f(t1 11)6) lim xln( x 1) xx 1 11 、设函数 f(x) a x0 x0 应当怎样选择 a ,使得 f (x)成为在 ( ) 内的连续函数。
高等数学极限经典习题及解析

dv 1 v3 v C 1
1 x2
3
2
1 x2
1
2 C.
2v
3
3
2.求
I
arctan x
x dx .
解. I 2 arctan xd x 2 x arctan x 2 xd arctan x
2
x arctan
x
1
1
x
dx
2
x arctan
条件(充分,必要,充要).
3.设 f x 的一个原函数是 x sin x ,则 f x ______ .
4.反常积分 xexdx ______ .
x dx ,于是
At
1 2
t
f
t ,故 t
1 2
是
At
在0,1 上的唯一驻点,又 t 1 时 At 0 , t 1 时 At 0 ,故 t 1 是
2
2
2
At 在0,1 上的最小值点,证毕.
4
七.(1)求解初值问题
dx
dx
dx 2u
dx 2u
2u 1 u2
du
1 dx ,解得 ln 1 u2 x
ln
x
C1 x
1 u2
C ,即
x2 y2 Cx ,代入 x 1, y 0 C 1 ,因此 x2 y2 x .
(2)设 y y x 满足 y 3y 2 y 2ex ,且图形在 0,1 处与曲线 y x2 x 1
4.对于a,b 上函数的下列性质:(1)连续,(2)有界,(3)可导,(4)可积,下面
高等数学(函数与极限)习题及解答

练习1-1
练习1-2
练习1-3
练习1-4
练习1-5
练习1-6
练习1-7
练习1-8
练习1-9练ຫໍສະໝຸດ 1-10高等数学习题高等数学函数高等数学习题集高等数学习题详解蔡高厅高等数学习题高等数学函数公式高等数学习题答案高等数学极限高等数学极限试题高等数学求极限
本资料为word版本,可以直接编辑和打印,感谢您的下载
高等数学(函数与极限)习题及解答
地点:__________________
时间:__________________
极限练习题及解析

极限练习题及解析一、概述极限是微积分的基本概念之一,用于描述数列、函数等在某一点或无穷趋近某一点时的表现。
极限练习题在数学学习中起到了重要的训练和应用作用。
本文将介绍几个经典的极限练习题,并提供详细的解析过程。
二、经典练习题1. 问题描述:求极限$\lim_{n\to\infty}\frac{n}{n+1}$。
解析:由于分子和分母的次数相同,我们可以利用最高次项的系数进行极限求解。
根据极限的性质,我们可以忽略分子和分母中低阶的项,只保留最高次项。
因此,$\lim_{n\to\infty}\frac{n}{n+1} =\lim_{n\to\infty}\frac{1}{1+\frac{1}{n}} = \frac{1}{1+0} = 1$。
2. 问题描述:求极限$\lim_{x\to2}\frac{x^3-8}{x-2}$。
解析:这是一个分式极限问题,我们可以尝试进行因式分解。
由于$x^3-8 = (x-2)(x^2+2x+4)$,我们可以将分子进行因式分解。
然后可以约掉公因式$(x-2)$,即得到$\lim_{x\to2}\frac{x^3-8}{x-2} =\lim_{x\to2}(x^2+2x+4)$。
将$x$代入结果得到$2^2+2\times2+4 = 12$。
3. 问题描述:求极限$\lim_{x\to0}\frac{\sin x}{x}$。
解析:这是一个常见的三角函数极限问题,我们可以利用泰勒级数展开对$\sin x$进行拆解。
泰勒级数展开为$\sin x = x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+...$。
将展开式带入极限,得到$\lim_{x\to0}\frac{\sin x}{x} = \lim_{x\to0}\frac{x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+...}{x}$。
极限与连续练习题及解析

极限与连续练习题及解析在数学课上,我们经常会遇到一些有关于极限与连续的练习题。
这些题目不仅能够帮助我们巩固对极限与连续的理解,还能提高我们解决问题的能力。
在本文中,我将为大家分享一些关于极限与连续的练习题及解析。
题目一:计算极限求解以下极限:1. $$\lim_{x\to 2}\frac{x^2-4}{x-2}$$解析:将被除数进行因式分解得:$$\lim_{x\to 2}\frac{(x+2) \cdot (x-2)}{x-2}$$最后得到:$$\lim_{x\to 2}(x+2)$$代入极限的定义,得到结果为:$$4$$题目二:证明函数连续证明下列函数在指定区间上连续:1. 函数$f(x)=\sqrt{x}$在区间$[0, +\infty)$上连续。
首先,我们需要证明$f(x)=\sqrt{x}$在$[0, +\infty)$上存在。
由于$x \geq 0$,所以$\sqrt{x}$是有定义的。
接下来,我们需要证明对于任意给定的$\varepsilon > 0$,存在一个$\delta > 0$,使得当$0 < |x-a| <\delta$时,$|\sqrt{x}-\sqrt{a}|<\varepsilon$。
根据不等式$|\sqrt{x}-\sqrt{a}|<|\sqrt{x}+\sqrt{a}|$,可以得到$$|\sqrt{x}-\sqrt{a}|<|\sqrt{x}-\sqrt{a}|\cdot\frac{|\sqrt{x}+\sqrt{a}|}{|\sqrt{x}-\sqrt{a}|}$$进一步化简得:$$|\sqrt{x}-\sqrt{a}|<\frac{|\sqrt{x}^2-\sqrt{a}^2|}{|\sqrt{x}-\sqrt{a}|}$$继续化简得:$$|\sqrt{x}-\sqrt{a}|<\frac{|x-a|}{|\sqrt{x}+\sqrt{a}|}$$由于$\sqrt{x}+\sqrt{a}$在$x$趋于$a$时不等于0,所以存在一个正数$M$,使得$|\sqrt{x}-\sqrt{a}|<M|x-a|$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数与极限习题与解析 (同济大学第六版高等数学)一、填空题 1、设x x x f lg lg 2)(+-=,其定义域为 。
2、设)1ln()(+=x x f ,其定义域为 。
3、设)3arcsin()(-=x x f ,其定义域为 。
4、设)(x f 的定义域是[0,1],则)(sin x f 的定义域为 。
5、设)(x f y =的定义域是[0,2] ,则)(2x f y =的定义域为 。
6、432lim23=-+-→x kx x x ,则k= 。
7、函数xxy sin =有间断点 ,其中 为其可去间断点。
8、若当0≠x 时 ,xxx f 2sin )(= ,且0)(=x x f 在处连续 ,则=)0(f 。
9、=++++++∞→)21(lim 222nn nn n n n n 。
10、函数)(x f 在0x 处连续是)(x f 在0x 连续的 条件。
11、=++++∞→352352)23)(1(limx x x x x x 。
12、3)21(lim -∞→=+e nkn n ,则k= 。
13、函数23122+--=x x x y 的间断点是 。
14、当+∞→x 时,x1是比3-+x 15、当0→x 时,无穷小x --11与x 相比较是 无穷小。
16、函数xe y 1=在x=0处是第 类间断点。
17、设113--=x x y ,则x=1为y 的 间断点。
18、已知33=⎪⎭⎫⎝⎛πf ,则当a 为 时,函数x x a x f 3sin 31sin )(+=在3π=x 处连续。
19、设⎪⎩⎪⎨⎧>+<=0)1(02sin )(1x ax x xxx f x 若)(lim 0x f x →存在 ,则a= 。
20、曲线2sin 2-+=xxx y 水平渐近线方程是 。
21、114)(22-+-=x x x f 的连续区间为 。
22、设⎩⎨⎧>≤+=0,cos 0,)(x x x a x x f 在0=x 连续 ,则常数a= 。
二、计算题1、求下列函数定义域 (1)211xy -= ; (2)x y sin = ;(3)xe y 1= ;2、函数)(x f 和)(x g 是否相同为什么 (1)x x g x x f ln 2)(,ln )(2== ;(2)2)(,)(x x g x x f == ;(3)x x x g x f 22tan sec )(,1)(-== ;3、判定函数的奇偶性(1))1(22x x y -= ; (2)323x x y -= ;(3))1)(1(+-=x x x y ;4、求由所给函数构成的复合函数 (1)22,sin ,x v v u u y === ;(2)21,x u uy +== ;(3)x v e u u y vsin ,,2=== ;5、计算下列极限 (1))2141211(lim n n ++++∞→ ; (2)2)1(321limn n n -++++∞→ ;(3)35lim 22-+→x x x ; (4)112lim 221-+-→x x x x ;(5))12)(11(lim 2x x x -+∞→ ; (6)2232)2(2lim -+→x x x x ;(7)x x x 1sin lim 20→ ; (8)xx x x +---→131lim 21 ;(9))1(lim 2x x x x -++∞→ ;6、计算下列极限 (1)x wx x sin lim 0→ ; (2)xxx 5sin 2sin lim 0→ ;(3)x x x cot lim 0→ ; (4)xx xx )1(lim +∞→ ;(5)1)11(lim -∞→-+x x x x ; (6)x x x 10)1(lim -→ ;7、比较无穷小的阶(1)32220x x x x x --→与,时 ;(2))1(21112x x x --→与,时 ;8、利用等价无穷小性质求极限(1)30sin sin tan lim xxx x -→ ; (2)),()(sin )sin(lim 0是正整数m n x x m n x → ;9、讨论函数的连续性。
在⎩⎨⎧=>-≤-=11,31,1)(x x x x x x f10、利用函数的连续性求极限(1))2cos 2ln(lim 6x x π→; (2))(lim 22x x x x x --++∞→ ;(3)x x x sin lnlim 0→ ; (4)x x x2)11(lim +∞→ ;(5))11(lim ,)1(lim )(1--=+→∞→t f nx x f t nn 求设 ;(6))11ln(lim +-∞→x x x x ;11、设函数⎩⎨⎧≥+<=0,0,)(x x a x e x f x应当怎样选择a ,使得)()(∞+-∞,成为在x f 内的连续函数。
12、证明方程135=-x x 至少有一个根介于1和2之间。
(B )1、设)(x f 的定义域是[0 ,1] ,求下列函数定义域 (1))(xe f y = (2))(ln x f y =2、设⎩⎨⎧>-≤=⎩⎨⎧>≤=0,0,0)(0,,0)(2x x x x g x x o x x f 求)]([,)]([,)]([,)]([x f g x g f x g g x f f3、利用极限准则证明: (1)111lim =+∞→n n (2)1]1[lim 0=+→xx x ;(3)数列 ,222,22,2+++的极限存在 ;4、试比较当0→x 时 ,无穷小232-+x x 与x 的阶。
5、求极限(1))1(lim 2x x x x -++∞→ ; (2)1)1232(lim +∞→++x x x x ; (3)30sin tan lim xxx x -→ ;(4))0,0,0()3(lim 10>>>++→c b a c b a x x x x x ;6、设⎪⎩⎪⎨⎧≤+>=0,0,1sin)(2x x a x xx x f 要使),()(∞+-∞在x f 内连续, 应当怎样选择数a7、设⎪⎩⎪⎨⎧≤<-+>=-01,)1ln(0,)(11x x x e x f x 求)(x f 的间断点,并说明间断点类型。
(C )1、已知x x f ex f x -==1)]([,)(2ϕ ,且0)(≥x ϕ ,求)(x ϕ并写出它的定义域。
2、求下列极限:(1)、]ln cos )1ln([cos lim x x x -++∞→ ;(2)、xxx x x cos sin 1lim-+→ ;(3)、求x x x x 2sin 3553lim 2⋅++∞→ ;(4)、已知9)(lim =-+∞→xx ax a x ,求常数a 。
(5)、设)(x f 在闭区间],[b a 上连续 ,且b b f aa f <>)(,)( ,证明:在开区间),(b a 内至少存在一点ξ ,使ξξ=)(f 。
第一章 函数与极限 习 题 解 析(A )一、填空题 (1)]2,1( (2)),1(∞+- (3)[2 ,4](4){}z k k x k x ∈+≤≤,)12(2ππ (5)]2,2[-(6)-3 (7)0;,=∈=x z k k x π (8)2 (9)1(10)充分 (11)21 (12)23- (13)x=1 , x=2 (14)高阶 (15)同阶 (16)二 (17)可去 (18)2 (19)-ln2 (20)y=-2 (21)]2,1(]1,2[ - (22)1 二、计算题1、(1) ),1()1,1()1,(∞+---∞(2) ),0[∞+ (3)),0()0,(∞+-∞2、(1)不同,定义域不同 (2)不同,定义域、函数关系不同 (3)不同,定义域、函数关系不同3、(1)偶函数 (2)非奇非偶函数 (3)奇函数4、(1)[]22)(sin x y = (2)]1[2x y += (3)][sin 2xey = 5、(1)[ 2 ] (2)]21[ (3)-9 (4)0 (5)2 (6)∞ (7)0 (8)22- (9)21 6、(1)w (2)52 (3)1 (4)1-e (5)2e (6)1-e 7、(1)的低阶无穷小是3222x x x x -- (2)是同阶无穷小8、(1)21 (2)⎪⎩⎪⎨⎧>∞=<nm n m nm ,,1,09、不连续10、(1)0 (2)1 (3)0 (4)2e (5)0 (6)-2 11、a=1(B )1、(1)提示:由10≤≤xe 解得:]0,(∞-∈x (2)提示:由1ln 0≤≤x 解得:],1[e x ∈2、提示:分成o x ≤和0>x 两段求。
)()]([x f x f f = ,0)]([=x g g ,0)]([=x g f , )()]([x g x f g =4、(1)提示:n n 11111+<+< (2)提示:xx x x x x 1]1[)11(⋅<<- (3)提示:用数学归纳法证明:222=+<n a5、提示:x x x x x x x 1312232-+-=-+ 令t x =-12(同阶)6、(1)提示:乘以x x ++12;21(2)提示:除以x 2 ;e (3)提示:用等阶无穷小代换 ;2111. . (4)提示: x xx x c b a 1)3(++ x c b a c b a x x x x x x x x x c b a 3111111313111-+-+--+-+-⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+-+-+-=(3abc )7、提示:)0()(lim )(lim 00f x f x f x x ==+-→→ (0=a )8、1=x 是第二类间断点 ,0=x 是第一类间断点(C )1、解:因为()[]x e x f x -==1)(2ϕϕ ,故)1ln()(x x -=ϕ ,再由0)1ln(≥-x ,得:11≥-x ,即0≤x 。
所以:)1ln()(x x -=ϕ,0≤x 。
2、解:原式=)cos sin 1(cos sin 1lim 20x x x x x x x x ++-+→=xx x x x 20sin sin 21lim +⋅→ =)sin (sin lim 210x x xx x +⋅→=0 3、解:因为当∞→x 时 ,x x 2~2sin , 则x x x x 2sin 3553lim 2⋅++∞→=x x x x 23553lim 2⋅++∞→=x x x x 35106lim 22++∞→=56 4、解:因为:9=x x a x a x )(lim -+∞→=x x x a x a ⎪⎪⎪⎪⎭⎫ ⎝⎛-+∞→11lim =a a e e -=a e 2 所以92=a e ,3ln =a5、证明:令x x f x F -=)()( ,)(x F 在[]b a ,上连续 ,且0)()(>-=a a f a F ,0)()(<-=b b f b F 。