充分必要条件练习题
充分条件和必要条件练习题

充分条件与必要条件练习一1. 用符号“⇒”与“⇒”填空。
1、x=0____xy=02、xy=0____x=03、两个角相等_____两个角是对顶角。
4、两个角是对顶角____两个角相等。
2. 指出下列各组命题中,p 是q 的什么条件,q 是p 的什么条件:1、p:a ∈Q ,q:a ∈R2、p:a ∈R ,q:a ∈Q3、p:内错角相等,q:两直线平行4、p:两直线平行,q:内错角相等3. 判断下列命题的真假:1、“a>b ”是“22b a >”的充分条件2、“a>b ”是“c b c a +>+”的必要条件3、“a>b ”是“22bc ac >”的必要条件;4、“a>b ”是“22b a >”的必要条件;是有理数 是实数 、 是奇数 是偶数 是4的倍数 是6的倍数充分与必要条件练习二1. 从“⇒”、“⇒”与“⇔”中选出适当的符号填空:1、x>-1_____x>1;2、432+=x x ____43+=x x3、a+b ___ a+c=b+c4、0222=+-b ab a ____a=b2.举例说明:1、p 是q 的充分而不必要条件;2、p 是q 的必要而不充分的条件;3、p 是q 的充要条件;4、p 是q 的既不充分羽绒不必要的条件。
3.从“充分而不必要的条件”、“必要而不充分的条件”、与“充要条件”中选出适合的一种填空:1、“a=b ”是“ac=bc ”的_______________;2、“两个三角形全等”是“两个三角形相似”的______________;3、“a+5是无理数”是“a 是无理数”的_____________;4、“四边形的两条对角线相等”是“四边形是矩形”的_____________;5、“a ∈N ”是“a ∈Z ”的____________;6、“012=-x ”是“x-1=0”的_____________;7、“x<5”是”x<3”的_____________; 8、“a ≠0”是“ab ≠0”的___________;9、“同旁内角互补”是“两直线平行”的______________;10、“四边相等”是“四边形是正方形”的______________.11、 p:a 、b 是整数, q: 02=++b ax x 有且仅有整数解;p 是q 的___________;12、p:a+b=1, q: 02233=--++b a ab b a ;p 是q 的_______________.13、已知p 、q 都是r 的必要条件,s 是r 的充分条件,q 是s 的充分条件,那么,1、s 是q 的什么条件; 2、r 是q 的什么条件;3、p 是q 的什么条件。
充分条件与必要条件练习(含详解)

充分条件与必要条件练习一、选择题(本大题共30小题,共150.0分)1.已知若命题p:|x−1|≤1,命题q:1x≥1,则非p是非q的()A. 充分必要条件B. 必要不充分条件C. 充分不必要条件D. 既不充分也不必要条件2.“f(a)⋅f(b)<0”是“定义在区间[a,b]上的函数y=f(x)有零点”的()A. 充要条件B. 充分而不必要条件C. 必要而不充分条件D. 既不充分也不必要条件3.已知命题p:(x−2)(x−3a+1)<0,命题q:a<x<a2+2,若¬p是¬q的必要条件,则实数a的取值范围()A. [12,1)⋃(1,2] B. [12,2] C. [12,1] D. [1,2]4.使得a>b>0成立的一个充分不必要条件是A. 1b >1aB. e a>e bC. a b>b aD. lna>lnb>05.方程表示椭圆的必要不充分条件是()A. B.C. D.6.已知平面α,β,则α//β的一个充分条件是A. 平面α内有无数条直线与β平行B. 平面α内有两条相交的直线与β平行C. 平面α,β平行于同一条直线D. 平面α,β垂直于同一平面7.已知p:x+y≠−2,q:x,y不都是−1,则p是q的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件8.已知直线l1:ax+(a+1)y+1=0,l2:x+ay+2=0,则“a=−2”是“l1⊥l2”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分不必要条件9.若x,y∈R,则x<y的一个充分不必要条件是A. |x|<|y|B. x2<y2C. √x<√yD. x13<y1310.已知直线l,m,平面α,且m⊂α,则()A. “l⊥α”是“l⊥m”的必要条件B. “l⊥m”是“l⊥α”的必要条件C. 若l//m,则l//αD. 若l//α,则l//m≥1,q:|x−a|<2,若p是q的充分不必要条件,则a的范围为()11.已知p:1x−2A. (−∞,4]B. (1,4]C. [1,4]D. (1,4)12.“方程mx2+ny2=1表示焦点在x轴上的椭圆”的一个充分不必要条件是A. n>m>0B. m>n>0C. m>n>1D. n>m>1<0},B={x|(x−a)(x−b)<0},若“a=−2”是“A⋂B≠⌀”的充分条件,则b 13.集合A={x|x−2x+1的取值范围是()A. b<−1B. b>−1C. b≥−1D. −1<b<214.下列选项中说法正确的是()A. 命题“p∨q为真”是命题“p∧q为真”的必要条件.B. 若向量a⃗,b⃗ 满足a⃗⋅b⃗ >0,则a⃗与b⃗ 的夹角为锐角.C. 若am2≤bm2,则a≤b.D. “∃x0∈R,x02−x0≤0”的否定是“∀x∈R,x2−x≥0”15.如图,随机事件A,B(两个圆)将全事件Ω(长方形)分成了个两两互斥的4个事件,这4个事件发生的概率已在韦恩图中标识.则事件A与B独立的一个充分条件是()A. p1=p2p3B. p2=(p1+p2)⋅(p2+p4)C. p4=p2p3D. p3=(p1+p3)⋅(p1+p4)16.“x2−4x>0”是“x>4”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件17.在下列结论中,正确的有()①x 2>4是x 3<−8的必要不充分条件;②在△ABC 中,AB 2+AC 2=BC 2是△ABC 为直角三角形的充要条件;③若a ,b ∈R ,则“a 2+b 2≠0”是“a ,b 不全为0”的充要条件.A. ①②B. ②③C. ①③D. ①②③18. 设p :2x 2−3x +1≤0,q :x 2−(2a +1)x +a(a +1)≤0,若q 是p 的必要不充分条件,则实数a的取值范围是( )A. [0,12]B. (0,12)C. (−∞,0]∪[12,+∞)D. (−∞,0)∪(12,+∞) 19. “mn >0”是“x 2m −y 2n=1”表示双曲线的 A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件20. 命题p :∃x ∈[−2,1],x 2+x −m ≤0成立的充要条件是( )A. m ≥0B. m ≥−14C. −14≤m ≤2D. m ≥221. 在ΔABC 中,“A >B ”是“sinA >sinB ”成立的 ( )A. 充要条件B. 必要不充分条件C. 充分不必要条件D. 既不充分也不必要条件22. 在三角形ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,则“a =b ”是“cos A =cos B ”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件23. 设p :log 2x 2>2,q :x >2,则p 是q 成立的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件24. 设命题p :∀x ∈R ,x 2−4x +2m ≥0(其中m 为常数),则“m ≥1”是“命题p 为真命题”的什么条件( )A. 充分不必要B. 充分且必要C. 必要不充分D. 既不充分也不必要25. 下列各结论中正确的是( )A. “xy ≥0”是“x y ≥0”的充要条件B. “√x 2+9+√x 2+9”的最小值为2C. 命题“∀x >1,x 2−x >0”的否定是“∃x 0≤1,x 02−x 0≤0”D. “函数y =ax 2+bx +c 的图象过点(1,0)”是“a +b +c =0”的充要条件26. 在斜ΔABC 中,“tanAtanB <1”是“ΔABC 为钝角三角形”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件27. 对任意x ∈R ,函数f(x)=ax 3+ax 2+7x 不存在极值点的充要条件是( )A. 0≤a ≤21B. 0<a <21C. a ≤0或a ≥21D. a <0或a > 21 28. 已知数列的前n 项和S n =p ×2n +1,则为等比数列的充要条件是( ) A. 0<p <1 B. p =−1 C. p =−2 D. p >129. 定义在R 上的函数y =f(x),恒有f(x)=f(2−x)成立,且f′(x)⋅(x −1)>0,对任意的x 1<x 2,则f (x 1)<f (x 2)成立的充要条件是( ).A. x 2>x 1≥1B. x 1+x 2>2C. x 1+x 2≤2D. x 2>x 1≥12 30. 已知直线x −2y +a =0与圆O:x 2+y 2=2相交于A 、B 两点(O 为坐标原点),则“a =√5”是“OA ⃗⃗⃗⃗⃗ ⋅OB⃗⃗⃗⃗⃗⃗ =0”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件答案和解析1.C 解:p:|x −1|≤1,−1≤x −1≤1,0≤x ≤2,q:1x ≥1,0<x ≤1,∵q 是p 的充分不必要条件,根据一个命题和它的逆否命题真假性相同,∴¬p 是¬q 的充分而不必要条件. 2.D 解:由“f(a)⋅f(b)<0”不能推出“定义在区间[a,b]上的函数y =f(x)有零点”,函数f(x)必须连续,由“定义在区间[a,b]上的函数y =f(x)有零点”也不能推出“f(a)⋅f(b)<0”,f(a)和f(b)可能同号,所以“f(a)⋅f(b)<0”是“定义在区间[a,b]上的函数y =f(x)有零点”的既不充分也不必要条件, 3.B 解:当a =1时,符合题意;当a >1时,P :2<x <3a −1,则¬p :x ≤2或x ≥3a −1,¬q :x ≤a 或x ≥a 2+2,因为¬p 是¬q 的必要条件,所以1<a ≤2,当a <1时,P :3a −1<x <2,则¬p :x ≤3a −1或x ≥2,¬q :x ≤a 或x ≥a 2+2,因为¬p 是¬q 的必要条件,所以12≤a <1;综上a 的取值范围为[12,2]. 4.D 解:对于A ,1b >1a ⇒1b −1a >0⇒a−b ab >0,不一定有a >b >0,故错误.对于B ,e a >e b ⇒a >b ,不一定有a >b >0,故错误.对于C ,当a =−1,b =2,满足a b >b a ,不满足a >b >0,故错误.对于D ,由lna >lnb >0⇒a >b >1,满足a >b >0,满足充分条件,反之不成立,所以lna >lnb >0是a >b >0的充分不必要条件.5.B 解:由方程x 24+m +y 22−m =1表示椭圆, 则{4+m >02−m >04+m ≠2−m,解得m ∈(−4,−1)∪(−1,2),由(−4,−1)∪(−1,2)⫋(−4,2),所以m ∈(−4,2)是m ∈(−4,−1)∪(−1,2)的必要不充分条件,6.B 解:对于A ,α内有无数条直线与β平行,当这无数条直线互相平行时,α与β可能相交,所以A 不正确;对于B ,根据两平面平行的判定定理定理知,B 正确;对于C ,平行于同一条直线的两个平面可能相交,也可能平行,所以C 不正确;对于D ,垂直于同一平面的两个平面可能相交,也可能平行,如长方体的相邻两个侧面都垂直于底面,但它们是相交的,所以D 不正确.7.A 解:¬p :x +y =−2,¬q:x ,y 都是−1,则当x ,y 都是−1时,满足x +y =−2,反之当x =1,y =−3时,满足x +y =−2,但x ,y 都是−1不成立,即¬q 是¬p 充分不必要条件,则根据逆否命题的等价性知p 是q 的充分不必要条件,8.A 解:因为直线l 1:ax +(a +1)y +1=0,l 2:x +ay +2=0, 当“a =−2”时,直线l 1:−2x −y +1=0,l 2:x −2y +2=0,满足k 1⋅k 2=−1,∴“l 1⊥l 2”.如果l 1⊥l 2,则a +(a +1)a =0,解得a =−2或a =0,不一定推得a =−2,∴“a =−2”是“l 1⊥l 2”充分不必要条件.9.C 解:由|x|<|y|,x 2<y 2未必能推出x <y ,故排除A ,B ;由√x <√y 可推出x <y ,反之,未必成立,故C 正确;由x 13<y 13是x <y 的充要条件,故排除D . 10.B 解:∴“”是“”的必要条件,故A 错误,B 正确;当l//m,m ⊂α时,l ⊂α或l//α,故C 错误;若l//α,m ⊂α,则l//m 或l 与m 异面,故D 错误,11.B 解:由1x−2≥1,得{x −3⩽0x −2>0,即2<x ≤3,由|x −a|<2得a −2<x <a +2, 若p 是q 的充分不必要条件,则{a −2⩽2a +2>3,即1<a ≤4, 12.D 解:方程mx 2+ny 2=1表示焦点在x 轴上的椭圆,所以n >m >0 ,所以n >m >1是“方程mx 2+ny 2=1表示焦点在x 轴上的椭圆”的一个充分不必要条件. 13.B 解:A ={x|−1<x <2},当a =−2时方程(x −a)(x −b)=0的两个跟分别为−2和b ,因为−2<−1,所以若a =−2是A ∩B ≠⌀的充分条件,则b >−1.14.A 解:A.命题“p ∨q 为真”可知或q 为真,命题“p ∧q 为真”则p 和q 都是真命题,因此命题“p ∨q 为真”是命题“p ∧q 为真”的必要不充分条件的必要不充分条件,故A 正确;B .若向量a ⃗ ,b ⃗ 满足a ⃗ ·b ⃗ >0,则a ⃗ 与b ⃗ 的夹角为锐角或0,因此B 不正确;C .当m =0时,满足am 2≤bm 2,但是a ≤b 不一定成立,因此不正确;D .根据命题的否定可得“∃x 0∈R ,x 02−x 0≤0”的否定是“∀x ∈R ,x 2−x >0”,因此D 不正确.15.B 解:若A ,B 独立,则P(AB)=P(A)P(B),即p 1=(p 1+p 2)(p 1+p 3)=(p 1+p 2)(1−p 2−p 4),化简得p 2=(p 1+p 2)(p 2+p 4),16.B 解:解一元二次不等式x 2−4x >0得:x <0或x >4,又“x <0或x >4”是“x >4”的必要不充分条件,即“x 2−4x >0”是“x >4”的必要不充分条件,17.C 解:对于结论①,由x 3<−8⇒x <−2⇒x 2>4,但是x 2>4⇒x >2或x <−2⇒x 3>8或x 3<−8,不一定有x 3<−8,故①正确;对于结论②,当B =90∘或C =90∘时不能推出AB 2+AC 2=BC 2,故②错;对于结论③,由a 2+b 2≠0⇒a ,b 不全为0,反之,由a ,b 不全为0⇒a 2+b 2≠0,故③正确.18.A 解:p :2x 2−3x +1≤0,解得:12≤x ≤1,q :x 2−(2a +1)x +a(a +1)≤0,解得:a ≤x ≤a +1.若q 是p 的必要不充分条件,则{a ≤121≤a +1,解得:0≤a ≤12. 19.C 解:若方程x 2m −y 2n =1表示双曲线 ,则 mn >0.故“mn <0”是“方程x 2m −y 2n =1表示双曲线”的充要条件,20.B 解:∵∃x ∈[−2,1],x 2+x −m ⩽0成立是真命题,∴等价于m ⩾(x 2+x )min ,x ∈[−2,1]恒成立, ∵函数y =x 2+x =(x +12)2−14,当x =−12∈[−2,1]时,函数y 有最小值−14,∴m ≥−14,故选B . 21.A 解:1°由题意,在△ABC 中,“A >B ”,由于A +B <π,必有B <π−A若A ,B 都是锐角,显然有“sinA >sinB ”成立,若A ,B 之一为锐角,必是B 为锐角,此时有π−A 不是钝角,由于A +B <π,必有B <π−A ≤π2,此时有sin(π−A)=sinA >sinB综上,△ABC 中,“A >B ”是“sinA >sinB ”成立的充分条件2°研究sinA >sinB ,若A 不是锐角,显然可得出A >B ,若A 是锐角,亦可得出A >B , 综上在△ABC 中,“A >B ”是“sinA >sinB ”成立的必要条件综合1°,2°知,在△ABC 中,“A >B ”是“sinA >sinB ”成立的充要条件, 22.C 解:若a =b ,则A =B ,∴cos A =cos B ,即充分性成立,若cos A =cos B ,结合余弦函数在(0,π)上的单调性有A =B ,从而a =b ,即必要性成立, 综上可得:“a =b ”是“cos A =cos B ”的充要条件.23.B 解:由log 2x 2>2得x 2>4,即x >2或x <−2,即p 是q 成立的必要不充分条件, 24.C 解:命题p :∀x ∈R ,x 2−4x +2m ≥0(其中m 为常数),由△=16−8m ≤0,解得m ≥2. 因为{m|m ≥2}⫋{m|m ≥1},则“m≥1”是“命题p为真命题”的必要不充分条件.25.D解:对于A,xy≥0可知,y=0时,则不等式两边不能同时除以y2,所以不是是充分条件,A错误;对于B,由均值不等式可知,√x2+9+√x2+9≥2,当且仅当√x2+9=√x2+9,解得x2=−8,无解,所以等号不成立,所以取不到最小值,B错误;对于C,因为全称命题的否定是特称命题,所以命题“∀x>1,x2−x>0”的否定是“∃x0>1,使得x02−x0⩽0”,所以C错误.对于D,对于二次函数而言,将(1,0)代入,得a+b+c=0,充分性得证;反之,a+b+c=0说明x=1是方程ax2+bx+c=0的根,即(1,0)是二次函数y=ax2+bx+c经过的点,必要性得证,故D正确.26.C解:解法一:(1)若C为钝角,则A,B为锐角,∴tanC=−tan(A+B)=−tanA+tanB1−tanAtanB<0,解得tanAtanB<1.若A或B为钝角,则tanAtanB<1成立.(2)若tanAtanB<1成立,假设A或B为钝角,则△ABC为钝角三角形.假设A,都B为锐角,tanC=−tan(A+B)=−tanA+tanB1−tanAtanB<0,解得C为钝角,则△ABC为钝角三角形.综上可得:在△ABC中,“tanAtanB<1”是“△ABC为钝角三角形”的充要条件.解法二:tanAtanB<1⇔1−sinAsinBcosAcosB >0⇔cos(A+B)cosAcosB>0⇔cosAcosBcosC<0⇔△ABC为钝角三角形.∴在△ABC中,“tanAtanB<1”是“△ABC为钝角三角形”的充要条件.27.A解:∵函数f(x)=ax3+ax2+7x(x∈R),∴f′(x)=3ax2+2ax+7,∵函数f(x)=ax3+ax2+7x(x∈R)不存在极值点,∴①a=0时,f′(x)=7>0恒成立;②a≠0时,Δ=4a2−84a≤0,解得:0<a≤21,∴函数f(x)=ax3+ax2+7x(x∈R)不存在极值点的充要条件是0≤a≤21,28.B解:∵S n=p×2n+1,∴当n=1时,a1=S1=2p+1,当n≥2时,a n=S n−S n−1=p×2n+1−p×2n−1−1=p×2n−1.∵{a n}为等比数列,∴2p+1=p×20,∴p=−1,反过来,当p=−1,S n=−2n+1,a1=S1=−1,当n≥2时,a n=S n−S n−1=(−1)×2n+1−(−1)×2n−1−1=(−1)×2n−1,又a1符合a n的表达式,∴a n=(−1)×2n−1,∴{a n}是首项为−1,公比为2的等比数列,故{a n}为等比数列的充要条件为p=−1.29.B解:由f(x)=f(2−x),得函数f(x)关于x=1对称,由f′(x)⋅(x −1)>0得,当x >1时,f′(x)>0,此时函数f(x)为增函数,当x <1时,f′(x)<0,此时函数f(x)为减函数,因为x 1<x 2,若x 1≥1时,函数f(x)在x >1上为增函数,满足对任意的x 1<x 2,f (x 1)<f (x 2),此时x 1+x 2>2; 若x 1<1,∵函数f(x)关于x =1对称,则f (x 1)=f (2−x 1),则2−x 1>1,由f (x 1)<f (x 2)得f (x 1)=f (2−x 1)<f (x 2),此时2−x 1<x 2,即x 1+x 2>2; 即对任意的x 1<x 2,f (x 1)<f (x 2)得x 1+x 2>2;反之也成立,所以对任意的x 1<x 2,则f (x 1)<f (x 2)成立的充要条件为“x 1+x 2>2”.30.A 解:设A(x 1,y 1),B(x 2,y 2).联立{x −2y +a =0x 2+y 2=2,化为:5y 2−4ay +a 2−2=0, 直线x −2y +a =0与圆O :x 2+y 2=2相交于A ,B 两点(O 为坐标原点),∴△=16a 2−20(a 2−2)>0,解得:a 2<10.∴y 1+y 2=4a 5,y 1y 2=a 2−25,OA ⃗⃗⃗⃗⃗ ⋅OB⃗⃗⃗⃗⃗⃗ =0⇔x 1x 2+y 1y 2=0, ∴(2y 1−a)(2y 2−a)+y 1y 2=0,∴5y 1y 2−2a(y 1+y 2)+a 2=0,∴5×a 2−25−2a ×4a 5+a 2=0,解得a =±√5.则“a =√5”是“OA⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗⃗ =0”的充分不必要条件. 故选:A .。
专题04 充分条件与必要条件(练)(解析版).pdf

《2020-2021学年高一数学同步讲练测(新教材人教A 版必修第一册)》专题04充分条件与必要条件(练)1.a ,b 中至少有一个不为零的充要条件是( )A .ab =0B .ab>0C .a 2+b 2=0D .a 2+b 2>0【参考答案】D 【解析】,ab =0是a ,b 中至少有一个不为零的非充分非必要条件;A ab>0是a ,b 中至少有一个不为零的充分非必要条件;,B ,a 2+b 2=0是a ,b 中至少有一个不为零的非充分非必要条件;C ,a 2+b 2>0,则a ,b 不同时为零;a ,b 中至少有一个不为零,则a 2+b 2>0.所以a 2+b 2>0是a ,b 中至少有一个不D 为零的充要条件.故选:D2.a >b 的一个充分不必要条件是( )A .a 2>b 2B .|a |>|b |C .D .a -b >111a b <【参考答案】D 【解析】,,,则ABC 错误;22a b a b >⇒>/11b a a b <⇒/>||||a b a b>⇒>/a -b >1⇒a -b >0而a -b >0⇏a -b >1,则D正确;故选:D3.一元二次函数的图像的顶点在原点的必要不充分条件是( )2y ax bx c =++A .B .C .D .0,0b c ==0a b c ++=0b c +=0bc =【参考答案】D 【解析】若一元二次函数的图像的顶点在原点,则,且,所以顶点在2y ax bx c =++02b a -=0c =原点的充要条件是故A 是充要条件,B 、C 既不充分也不必要,D 是必要条件,非充分条件.0,0,b c ==故选:D.4.【黑龙江省海林市朝鲜族中学人教版高中数学同步练习】设集合,,则“”是“{}1,2M ={}2N a =1a =-”的( )N M ⊆A .充分不必要条件B .必要不充分条件.C .充分必要条件D .既不充分又不必要条件【参考答案】A 【解析】解:当时,,满足,故充分性成立;1a =-{}1N =N M ⊆当时,或,所以不一定满足,故必要性不成立.N M ⊆{}1N ={}2N =a 1a =-故选:A.5.【浙江省湖州市2019-2020学年高二上学期期中】已知,那么“”是“”的()a R ∈1a >21a >A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【参考答案】A 【解析】当时,成立,1a >21a >取,此时成立,但是不成立,2a =-21a >1a >“”是“”的充分不必要条件,1a >21a >故选:A.6.【必修第一册 逆袭之路】若,则“且”是“且”的( ),a b ∈R 1a >1b >1ab >2a b +≥A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件【参考答案】A 【解析】因为且,所以根据同向正数不等式相乘得,根据同向不等式相加得,即成1a >1b >1ab >2a b +>2a b +≥立,因此充分性成立;当时满足且,但不满足且,即必要性不成立;1,2a b ==1ab >2a b +≥1a >1b >从而“且”是“且”的充分不必要条件,1a >1b >1ab >2a b +≥故选:A7.【必修第一册 逆袭之路】设,则“”是“”的( )x ∈R 250x x -<|1|1x -<A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【参考答案】B 【解析】化简不等式,可知 推不出;05x <<11x -<由能推出,11x -<05x <<故“”是“”的必要不充分条件,250x x -<|1|1x -<故选B .8.若“”是“”的必要不充分条件,则实数的最大值为_______.21x >x m <m 【参考答案】1-【解析】由得,21x >-11x x <>或“”是“”的必要不充分条件,21x >x m <,(,)(,1)(1,)m ∴-∞⊆-∞-⋃+∞.1m ∴≤-故参考答案为.1-9.“方程没有实数根”的充要条件是________.220x x a --=【参考答案】1a <-【解析】解析因为方程没有实数根,所以有,解得,因此“方程没220x x a --=440a ∆=+<1a <-220x x a --=有实数根”的必要条件是.反之,若,则,方程无实根,从而充分性成立.故“方1a <-1a <-∆<0220x x a --=程没有实数根”的充要条件是“”.220x x a --=1a <-故参考答案为:1a <-10.已知a 、b 是实数,则“a >1,且b >1”是“a +b >2,且ab >1”的____条件.【参考答案】充分不必要【解析】解:a 、b 是实数,则“a >1,且b >1”⇒“a +b >2,且ab >1”正确,当a =10,b =0.2时,a +b >2,且ab >1,所以a >1,且b >1不成立,即前者是推出后者,后者推不出前者,所以a 、b 是实数,则“a >1,且b >1”是“a +b >2,且ab >1”的充分而不必要条件.故参考答案为:充分而不必要.11.设集合A ={x |x (x ﹣1)<0},B ={x |0<x <3},那么“m ∈A ”是“m ∈B ”的____条件(填“充分不必要”、“必要不充分”、“充要”或“既不充分又不必要”).【参考答案】充分不必要【解析】解:由于A ={x |0<x <1},则A ⊊B ,由m ∈B 不能推出m ∈A ,如x =2时,故必要性不成立.反之,根据A ⊊B ,“m ∈A ”⇒“m ∈B ”.所以“m ∈A ”是“m ∈B ”的充分不必要条件.故参考答案为:充分不必要12.“a >1且b >1”是“ab >1”成立的____条件.(填充分不必要,必要不充分,充要条件或既不充分也不必要.【参考答案】充分不必要【解析】解:若a >1且b >1时,ab >1成立.若a =﹣2,b =﹣2,满足ab >1,但a >1且b >1不成立,∴“a >1且b >1”是“ab >1”成立的充分不必要条件.故参考答案为:充分不必要.13.试判断“”是“”的充分条件还是必要条件?并给出证明.:1p x =32:10q x x x --+=【参考答案】充分条件,证明见解析【解析】是充分条件,但不是必要条件,证明如下由()()()()2322111110x x x x x x x x --+=---=-+=得或1x =1x =-或,或不能.:1:1p x q x =⇒=1x =-:1q x =1x =-:1p x ⇒=所以是充分条件,但不是必要条件.14.已知是实数,求证:成立的充分条件是,该条件是否为必要条件?试证,a b 44221a b b --=221a b -=明你的结论.【参考答案】必要条件,证明见解析.【解析】由,即44221a b b --=442210a b b ---=由()()()()244242222221111a b b a b a b a b -++=-+=++--则由()()222222442111021a b a b a b a b b -=⇒++--=⇒--=所以成立的充分条件是44221a b b --=221a b -=另一方面如果()()442222221110a b b a b a b --=⇒++--=因为,2210a b ++≠故,()()2222221101a b a b a b ++--=⇒-=所以成立的必要条件是.44221a b b --=221a b -=15.不等式x 2﹣3x +2>0的解集记为p ,关于x 的不等式x 2+(a ﹣1)x ﹣a >0的解集记为q ,若p 是q 的充分不必要条件,求实数a 的取值范围.【参考答案】﹣2<a ≤﹣1【解析】解:由不等式x 2﹣3x +2>0得,x >2或x <1;不等式x 2+(a ﹣1)x ﹣a >0等价为(x ﹣1)(x +a )>0,①当﹣a ≤1,即a ≥﹣1时,不等式的解是x >1或x <﹣a ,∵p 是q 的充分不必要条件,∴﹣a ≥1,即a =﹣1,②若﹣a >1,即a <﹣1时,不等式的解是x >﹣a 或x <1,∵p 是q 的充分不必要条件,∴﹣a <2,即﹣2<a <﹣1,综上﹣2<a ≤﹣1.1.【必修第一册(上) 重难点知识清单】已知a ,b ∈R,则“0≤a ≤1且0≤b ≤1”是“0≤ab ≤1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【参考答案】A 【解析】若“0≤a ≤1且0≤b ≤1”,则“0≤ab ≤1”.当a =-1,b =-1时,满足0≤ab ≤1,但不满足0≤a ≤1且0≤b ≤1,∴“0≤a ≤1且0≤b ≤1”是“0≤ab ≤1”成立的充分不必要条件.故选A.2.【必修第一册(上) 重难点知识清单】“不等式在上恒成立”的充要条件是( )A .B .C .D .【参考答案】A 【解析】∵“不等式x 2﹣x +m >0在R 上恒成立”,∴△=(﹣1)2﹣4m <0,解得m ,又∵m ⇒△=1﹣4m <0,所以m是“不等式x 2﹣x +m >0在R 上恒成立”的充要条件,故选:A .3.【浙江省杭州二中检测】“”的一个充分但不必要的条件是( )260x x --<A .B .23x -<<03x <<C .D .32x -<<33x -<<【参考答案】B 【解析】由解得,260x x --<23x -<<要找“”的一个充分但不必要的条件,260x x --<即是找的一个子集即可,{}23x x -<<易得,B 选项满足题意.故选B4.【必修第一册 逆袭之路】设且,则是的( ),a b ∈R 0ab ≠1ab >1a b >A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要【参考答案】D 【解析】若“ab >1”当a =﹣2,b =﹣1时,不能得到“”,1a b >若“”,例如当a =1,b =﹣1时,不能得到“ab >1“,1a b >故“ab >1”是“”的既不充分也不必要条件,1a b >故选:D .5.【河南省6月联考】关于的不等式成立的一个充分不必要条件是,则的取x ()()30x a x -->11x -<<a 值范围是( )A .B .C .D .1a ≤-0a <2a ≥1a ≥【参考答案】D 【解析】由题可知是不等式的解集的一个真子集.()1,1-()()30x a x -->当时,不等式的解集为,此时 ;3a =()()30x a x -->{}3x x ≠()1,1-{}3x x ≠当时,不等式的解集为,3a >()()30x a x -->()(),3,a -∞⋃+∞,合乎题意;()1,1- (),3-∞当时,不等式的解集为,3a <()()30x a x -->()(),3,a -∞⋃+∞由题意可得,此时.()1,1-(),a -∞13a ≤<综上所述,.1a ≥故选:D.6.【河南省开封市2020届高三第三次模拟】设a ,b ∈R ,则“a >b ”是“a |a |>b |b |”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件【参考答案】C 【解析】由a >b ,①当a >b ≥0时,不等式a |a |>b |b |等价为a •a >b •b ,此时成立.②当0>a >b 时,不等式a |a |>b |b |等价为﹣a •a >﹣b •b ,即a 2<b 2,此时成立.③当a ≥0>b 时,不等式a |a |>b |b |等价为a •a >﹣b •b ,即a 2>﹣b 2,此时成立,即充分性成立;由a |a |>b |b |,①当a >0,b >0时,a |a |>b |b |去掉绝对值得,(a ﹣b )(a +b )>0,因为a +b >0,所以a ﹣b >0,即a >b .②当a >0,b <0时,a >b .③当a <0,b <0时,a |a |>b |b |去掉绝对值得,(a ﹣b )(a +b )<0,因为a +b <0,所以a ﹣b >0,即a >b .即必要性成立,综上可得“a >b ”是“a |a |>b |b |”的充要条件,故选:C .7.【必修第一册 过关斩将】设,则“”是“”的( )R x ∈11||22x -<31x <A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【参考答案】A 【解析】绝对值不等式,1122x -<⇔111222x -<-<⇔01x <<由.31x <⇔1x <据此可知是的充分而不必要条件.1122x -<31x <本题选择A 选项.8.【必修第一册 过关斩将】设集合,,那么“或”是“{|2}M x x =>{|3}P x x =<x M ∈x P ∈x P M ∈⋂”的________条件.(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”)【参考答案】必要不充分【解析】解:条件是或等价于;结论是.:p x M ∈x P ∈x P M ∈⋃:q x P M ∈⋂依题意得是的真子集,所以“”能推出“”,反之不成立,P M ⋂P M ⋃x P M ∈⋂x P M ∈⋃即结论条件p ,必要性成立;条件结论q ,充分性不成立.q ⇒p ⇒综上,“或”是“”的必要不充分条件.x M ∈x P ∈x P M ∈⋂故参考答案为:必要不充分9.【必修第一册 逆袭之路】设,则“”是“”的______条件选填“充分不必要”,“必要不充a R ∈1a >1a >.(分”,“充要”,“既不充分也不必要”之一)【参考答案】充分不必要条件【解析】解:解绝对值不等式“”,得或,1a >1a >1a <-又“”是“或”的充分不必要条件,1a >1a >1a <-即“”是“”的充分不必要条件,1a >1a >故参考答案为充分不必要条件.10.【必修第一册 过关斩将】已知,若是p 的一个必要条件,则使:13p x -<<1(0)a x a a -<-<>恒成立的实数b 的取值范围是________.a b >【参考答案】{|2}b b <【解析】∵,111a x a a x a -<-<⇔-<<+∴,所以解得{|13}{|11}x x x a x a -<<⊆-<<+11,13,a a -≤-⎧⎨+≥⎩2a ≥又使恒成立,因此,故实数b 的取值范围是.a b >2b <{|2}b b <故参考答案为:.{|2}b b <11.【必修第一册 过关斩将】若M 是N 的充分不必要条件,N 是P 的充要条件,Q 是P 的必要不充分条件,则M 是Q 的________条件.【参考答案】充分不必要【解析】命题的充分必要性具有传递性.根据题意得,但,,且,因此M N P Q ⇒⇔⇒Q P ⇒N P ⇔N M ⇒,但,故M 是Q 的充分不必要条件.M Q ⇒Q M ⇒故参考答案为:充分不必要12.【必修第一册 过关斩将】若实数a ,b 满足,,且,则称a 与b 互补记0a ≥0b ≥0ab =,那么“”是“a 与b 互补”的________条件.(填“充分不必要”“必要不充(,)a b a b ϕ=--(,)0a b ϕ=分”“充要”或“既不充分也不必要”)【参考答案】充要【解析】解析若,,平方得,当时,所以;(,)0a b ϕ=a b =+0ab =0a =b =0b ≥当时,所以,故a 与b 互补;0b =a =0a ≥若a 与b 互补,易得.(,)0a b ϕ=故“”是“a 与b 互补”的充要条件(,)0a b ϕ=故参考答案为:充要条件13.【必修第一册(上) 重难点知识清单】已知,.{}2320P x x x =-+≤{}11S x m x m =-≤≤+(1)是否存在实数,使是的充要条件?若存在,求出的取值范围,若不存在,请说明理由;m x P ∈x S ∈m (2)是否存在实数,使是的必要条件?若存在,求出的取值范围,若不存在,请说明理由.m x P ∈x S ∈m 【参考答案】(1)不存在实数,使是的充要条件m x P ∈x S ∈(2)当实数时,是的必要条件0m ≤x P ∈x S ∈【解析】(1).{}{}232012P x x x x x =-+≤=≤≤要使是的充要条件,则,即 此方程组无解,x P ∈x S ∈P S =11,12,m m -=⎧⎨+=⎩则不存在实数,使是的充要条件;m x P ∈x S ∈(2)要使是的必要条件,则 ,x P ∈x S ∈S ⊆P 当时,,解得;S =∅11m m ->+0m <当时,,解得S ≠∅11m m -≤+0m ≥要使 ,则有,解得,所以,S ⊆P 11,1+2m m -≥⎧⎨≤⎩0m ≤0m =综上可得,当实数时,是的必要条件.0m ≤x P ∈x S ∈14.已知两个关于的一元二次方程和,求两方程的根都是x 2440mx x -+=2244450x mx m m -+--=整数的充要条件.【参考答案】1m =【解析】∵是一元二次方程,∴.2440mx x -+=0m ≠又另一方程为,且两方程都要有实根,2244450x mx m m -+--=∴()()212224160,1644450,m m m m ⎧∆=--≥⎪⎨∆=---≥⎪⎩解得.5,14m ⎡⎤∈-⎢⎥⎣⎦∵两方程的根都是整数,∴其根的和与积也为整数,即24,4,445,Z m m Z m m Z ⎧∈⎪⎪∈⎨⎪--∈⎪⎩∴为的约数.m 4又∵,5,14m ⎡⎤∈-⎢⎥⎣⎦∴或.1m =-1当时,第一个方程可化为,其根不是整数;1m =-当时,两方程的根均为整数,∴两方程的根均为整数的充要条件是.1m =1m =15.设集合,,若“”是“”的充分不必要条件,试求满足条{}2|320A x x x =-+={}|1B x ax ==x B ∈x A ∈件的实数组成的集合.a 【参考答案】10,1,2⎧⎫⎨⎬⎩⎭【解析】∵,{}{}2|3201,2A x x x =-+==由于“”是“”的充分不必要条件.∴ .x B ∈x A ∈B A 当时,得;B =∅0a =当时,由题意得或.B ≠∅{}1B ={}2B =当时,得;当时,得.{}1B =1a ={}2B =12a =综上所述,实数组成的集合是.a 10,1,2⎧⎫⎨⎬⎩⎭。
高一数学充分条件与必要条件练习题

高一数学充分条件与必要条件练习题题型一:判断充分,必要条件【例1】 在空间中,“两条直线没有公共点”是“这两条直线平行”的( )A .充分不必要条件.B .必要不充分条件.C .充要条件.D .既不充分也不必要条件.【例2】 对任意实数a 、b 、c ,在下列命题中,真命题是( )A .“ac bc >”是“a b >”的必要条件B .“ac bc =”是“a b =”的必要条件C .“ac bc >”是“a b >”的充分条件D .“ac bc =”是“a b =”的充分条件【例3】 若集合2{|540}A x x x =-+<,{|||1}B x x a =-<,则“(23),a ∈”是“B A ⊆”的( )A . 充分但不必要条件B . 必要但不充分条件C . 充要条件D . 既不充分又不必要条件【例4】 若“a b c d ⇒>≥”和“a b e f <⇒≤”都是真命题,其逆命题都是假命题,则“c d ≤”是“e f ≤”的( )A .必要非充分条件B .充分非必要条件C .充分必要条件D .既非充分也非必要条件【例5】 已知,,,a b c d 为实数,且c d >.则“a b >”是“a c b d ->-”的( )A . 充分而不必要条件B . 必要而不充分条件C .充要条件D . 既不充分也不必要条件【例6】 “18a =”是“对任意的正数x ,21ax x +≥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件典例分析【例7】 0a <是方程2210ax x ++=至少有一个负数根的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件【例8】 “函数()()f x x ∈R 存在反函数”是“函数()f x 在R 上为增函数”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【例9】 已知命题p :40k -<<;命题q :函数21y kx kx =--的值恒为负.则命题p 是命题q 成立的( )A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分也不必要条件 【例10】 “12m =”是“直线(2)310m x my +++=与直线(2)(2)30m x m y -++-=相互垂直”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .非充分非必要条件【例11】 “1a =”是“函数()||f x x a =-在区间[1),+∞上为增函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【例12】 设()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( )A .充要条件B .充分而不必要的条件C .必要而不充分的条件D .既不充分也不必要的条件【例13】 “a b >”是“log log m m a n b n >”(01)≤m n <<成立的 ( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件【例14】 “a b =”是“直线2y x =+与圆22()()2x a y b -+-=相切”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .非充分非必要条件【例15】 对于非零向量a ,b ,“0+=a b ”是“∥a b ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【例16】 “αβ≠”是“cos cos αβ≠”的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【例17】 平面内两定点A 、B 及动点P ,命题甲是:“||||PA PB +是定值”,命题乙是:“点P 的轨迹是以A 、B 为焦点的椭圆”,那么( ) A .甲是乙成立的充分不必要条件B .甲是乙成立的必要不充分条件C .甲是乙成立的充要条件D .甲是乙成立的非充分非必要条件【例18】 若:,1A a R a ∈<, :B x 的二次方程2(1)20x a x a +++-=的一个根大于零,另一根小于零,则A 是B 的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【例19】 若R k ∈,则“3k >”是“方程22133x y k k -=-+表示双曲线”的( )A .充分不必要条件B . 必要不充分条件C . 充要条件D .既不充分也不必要条件【例20】 “2π3θ=”是“πtan 2cos 2θθ⎛⎫=+ ⎪⎝⎭”的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【例21】 甲:A B ,是互斥事件;乙:A B ,是对立事件,那么下列说法正确的是( )A .甲是乙的充分不必要条件B .甲是乙的必要不充分条件C .甲是乙的充要条件D .甲是乙的既不充分也不必要条件【例22】 用充分不必要条件、必要不充分条件、充要条件和既不充分也不必要条件填空.⑴5x <是10x <的____________;10x <是5x <的____________;⑵两个三角形的面积相等是两个三角形全等的__________; ⑶x A ∈是x A B ∈的____________;⑷A B ⊆是A B B =的___________;⑸A :12m =,B :直线(2)310m x my +++=与直线(2)(2)30m x m y -++-=相互垂直,则A 是B 的 条件.⑹A :|2|2x -<,B :2450x x --<,则A 是B 成立的 条件;⑺A :a ∈R ,||1a <,B :x 的二次方程2(1)20x a x a +++-=的一个根大于零,另一根小于零,则A 是B 的____________.【例23】 ⑴在ABC ∆中,A B >是sin sin A B >的___________.⑵对于实数x y ,,8x y +≠是2x ≠或6y ≠的___________. ⑶在ABC ∆中,sin sin A B >是tan tan A B >的____________.⑷已知x y ∈R ,,22(1)(2)0x y -+-=是(1)(2)0x y --=的____________. ⑸||||||x y x y +=+是0xy ≥的__________.【例24】 用“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”填空.⑴若a b ∈R ,,则0ab ≠是0a ≠的______条件; ⑵若a b ∈R ,,则220a b +≠是0a ≠的________条件;⑶若A B ,均是非空集合,则A B φ≠是A B ⊆的___________条件;⑷已知a b ,均为非零向量,则0a b ⋅>是a 与b 的夹角为锐角的__________条件; ⑸已知αβ,是不同的两个平面,直线a α⊂,直线b β⊂,则a 与b 没有公共点是αβ∥的__________条件;⑹不等式|1||2|x x m -++>的解集为R 是(52)()log m f x x -=为减函数的_________条件; ⑺在ABC ∆中,“0AB AC ⋅>”是“ABC ∆为锐角三角形”的__________条件; ⑻“2a =”是“函数()||f x x a =-在区间[2)+∞,上为增函数”的_________条件;⑼若集合2{1}A m =,,{24}B =,,则“2m =”是“{4}A B =”的__________条件;⑽等比数列{}n a 中,“13a a <”是“57a a <”的__________条件;⑾11||22k ->是“函数22log (2)y x kx k =-+的值域为R ”的___________条件;⑿“ππ42α<<”是“tan ()log f x x α=在(0)+∞,内是增函数”的___________条件;⒀若a b c ∈R ,,,则“0a >且240b ac -<”是“对任意x ∈R ,有20ax bx c ++>”的________条件;⒁“3m =”是“直线(3)20m x my ++-=与直线650mx y -+=互相垂直”的_________条件;⒂“b =a b c ,,三个数成等比数列”的__________条件;⒃两个向量相等是这两个向量共线的__________条件;⒄设函数2()|log |f x x =,则“01m <<”是“()f x 在区间(21)(0)m m m +>,上不是单调函数”的__________ 条件;【例25】 若x y ∈R ,,判断下面命题的真假⑴“2log (42)3xy x y +-=”是“2268250x y x y +-++=”成立的必要条件;⑵222x y +<是||||x y +<||||x y +的必要条件.题型二:充分,必要条件的求解【例26】 设a ,b 是两条直线,α,β是两个平面,则a b ⊥的一个充分条件是( )A .a α⊥,b β∥,αβ⊥B .a α⊥,b β⊥,αβ∥C .a α⊂,b β⊥,αβ∥D .a α⊂,b β∥,αβ⊥【例27】 设a b ,表示直线,αβ,表示平面,则αβ∥的充分条件是( )A .a b a b αβ⊥⊥∥,,B .a b a b αβ⊂⊂,,∥C .a b a b αββα⊂⊂,,∥,∥D .a b a b βα⊥⊥⊥,,【例28】 设m n ,是平面α内的两条不同直线,1l ,2l 是平面β内的两条相交直线,则αβ∥的一个充分而不必要条件是( )A .m β∥且1l α∥B .1m l ∥且2n l ∥C .m β∥且n β∥D .m β∥且2n l ∥【例29】 平面α∥平面β的一个充分条件是( )A.存在一条直线α,a α∥,a β∥ B.存在一条直线a ,a α⊂,a β∥C.存在两条平行直线a ,b ,a α⊂,b β⊂,a β∥,b α∥ D.存在两条异面直线a ,b ,a α⊂,a β∥,b α∥【例30】 直线12l l ,互相平行的一个充分条件是( )A .12l l ,都平行于同一个平面B .12l l ,与同一个平面所成的角相等C .1l 平行于2l 所在的平面D .12l l ,都垂直于同一个平面【例31】 给出以下四个条件:①0ab >;②0a >或0b >;③2a b +>;④0a >且0b >.其中可以作为“若a b ∈R ,,则0a b +>”的一个充分而不必要条件的是 .【例32】 设集合2{|60}A x x x =+-=,{|10}B x mx =+=,则B 是A 的真子集的一个充分不必要的条件是( )A .1123m ⎧⎫∈-⎨⎬⎩⎭,B .0m ≠C .11023m ⎧⎫∈-⎨⎬⎩⎭,,D .103m ⎧⎫∈⎨⎬⎩⎭,【例33】 若不等式1x m -<成立的充分不必要条件是23x <<,则实数m 的取值范围是________;【例34】 集合1|01x A x x -⎧⎫=<⎨⎬+⎩⎭,{|}B x x b a =-<,若“1a =”是“A B ≠∅”的充分条件,则b 的取值范围可以是( ) A .20≤b -< B .02≤b < C .31b -<<-D .12≤b -<【例35】 下列选项中,p 是q 的必要不充分条件的是( )A .:p a c b d +>+, :q a b >且c d >B .:11p a b >>, ():x q f x a b =-(0a >,且1a ≠)的图像不过第二象限C .:1p x =, 2:q x x =D .:1p a >,():log =a q f x x (0>a ,且1≠a )在()0+∞,上为增函数【例36】 已知条件p :|1|2x +>,条件q :x a >,且p ⌝是q ⌝的充分不必要条件,则a 的取值范围可以是( )A .1a ≥B .1a ≤C .1a ≥-D .3a -≤【例37】 给出以下四个条件:①0ab >;②0a >或0b >;③2a b +>;④0a >且0b >.其中可以作为“若,a b ∈R ,则0a b +>”的一个充分而不必要条件的是 .【例38】 已知不等式||1x m -<成立的充分不必要条件是1132x <<,则m 的取值范围是 ( ) A.41{|}32m m -≤≤ B.1{|}2m m <C. 14{|}23m m -≤≤D. 4{|}3m m ≥【例39】 (1)(2)0x x -+<的一个必要不充分条件是 .【例40】 1xy>的一个充分不必要条件是( )A .x y >B .0x y >>C .x y <D .0y x <<【例41】 可以作为“若a b ∈R ,,则0a b +>”的一个充分而不必要条件的是( )A .0ab >B .0a >或0b >C .0a >且0b >D .1ab >【例42】 直线1y kx =+的倾斜角为钝角的一个必要非充分条件是( )A .0k <B .1k <-C .1k <D .2k >-【例43】 已知命题p :1123x --≤;q :22210(0)x x m m -+->≤,若p ⌝是q ⌝的必要非充分条件,求实数m 的取值范围.【例44】 已知命题1:123x p --≤;22:210(0)q x x m m -+->≤,若p ⌝是q ⌝的充分非必要条件,求实数m 的取值范围.【例45】 设αβ,是方程20x ax b -+=的两个实根,试分析21a b >>,是两根αβ,均大于1的什么条件?【例46】 求证:关于x 的方程220x ax b ++=有实数根,且两根均小于2的一个充分条件是2a ≥且||4b ≤.【例47】 设命题1|34:|≤-x p ;命题0)1()12(:2≤+++-a a x a x q ,若p ⌝是q ⌝的必要不充分条件,求实数a 的取值范围.题型三:充要条件【例48】 已知,a b 是实数,则“0a >且0b >”是“0a b +>且0ab >”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【例49】 在ABC ∆中,条件甲:A B <,条件乙:22cos cos A B >,则甲是乙的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件【例50】 已知a ∈R 且0a ≠,则“11a<”是 “a >1”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件【例51】 设,a b ∈R ,则不等式a b >与11a b>都成立的充要条件是( ) A .0ab > B .00,a b >< C .0ab < D .0ab ≠【例52】 已知αβ,表示两个不同的平面,m 为平面α内的一条直线,则“αβ⊥”是“m β⊥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【例53】 若a 与b c -都是非零向量,则“a b a c ⋅=⋅”是“()a b c ⊥-”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【例54】 设(32()log f x x x =++,则对任意实数a 、b ,0≥a b +是()()0≥f a f b +的( ).A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件【例55】 对任意实数a ,b ,c ,给出下列命题:①“a b =”是“ac bc =”充要条件;②“5a +是无理数”是“a 是无理数”的充要条件; ③“a b >”是“22a b >”的充分条件;④“5a <”是“3a <”的必要条件.其中真命题的个数是( )A .1B .2C .3D .4【例56】 已知a 、b ∈R ,则a b >与11a b>同时成立的充要条件是 .【例57】 函数()||f x x x a b =++是奇函数的充要条件是( )A .0ab =B .0a b +=C .a b =D .220a b +=【例58】 给出下列命题:①实数0a =是直线21ax y -=与223ax y -=平行的充要条件;②若0,,a b ab ∈=R 是a b a b +=+成立的充要条件;③已知,x y ∈R ,“若0xy =,则0x =或0y =”的逆否命题是“若0x ≠或0y ≠,则0xy ≠”;④“若a 和b 都是偶数,则a b +是偶数”的否命题是假命题 .其中正确命题的序号是_______.【例59】 设集合(){}R R U x y x y =∈∈,,,(){}20A x y x y m =-+>,,(){}0B x y x y n =+-,≤,那么点()(23)U P A C B ∈,的充要条件是( )A .15m n >-<,B .15m n <-<,C .15m n >->,D .1,5m n <->【例60】 设()()sin f x x ωϕ=+,其中0ω>,则()f x 是偶函数的充要条件是( )A .()01f =B .()00f =C .()01f '=D .()00f '=【例61】 下列各小题中,p 是q 的充分必要条件的是( )①:2p m <-或6m >;2:3q y x mx m =+++有两个不同的零点;②()():1f x p f x -=;():q y f x =是偶函数③:cos cos p αβ=;:tan tan q αβ=. ④:p A B A =;:U Uq B A ⊆.A .①②B .②③C .③④D . ①④【例62】 已知数列{}n a 的通项1113423n a n n n =++++++,为了使不等式22(1)11log (1)log 20n t t a t t ->--对任意*n ∈N 恒成立的充要条件 .【例63】 已知关于x 的一元二次方程(m ∈Z ):①2440mx x -+=;②2244450x mx m m -+--=. 求方程①和②都有整数解的充要条件.【例64】 设a b c ,,为ABC ∆的三边,求证:方程2220x ax b ++=与2220x cx b +-=有公共根的充要条件为222a b c =+.【例65】 已知方程22(21)0x k x k +-+=,求使方程有两个大于1的实数根的充要条件。
高一数学充分条件与必要条件练习题及答案详解

例1 已知p:x1,x2是方程x2+5x-6=0的两根,q:x1+x2=-5,那么p 是q的[ ] A.充分但没必要要条件B.必要但不充分条件C.充要条件D.既不充分也没必要要条件分析利用韦达定理转换.解∵x1,x2是方程x2+5x-6=0的两根,∴x1,x2的值别离为1,-6,∴x1+x2=1-6=-5.因此选A.说明:判定命题为假命题能够通过举反例.例2 p是q的充要条件的是[ ] A.p:3x+2>5,q:-2x-3>-5B.p:a>2,b<2,q:a>bC.p:四边形的两条对角线相互垂直平分,q:四边形是正方形D.p:a≠0,q:关于x的方程ax=1有惟一解分析逐个验证命题是不是等价.解对A.p:x>1,q:x<1,因此,p是q的既不充分也没必要要条件;对B.p q但q p,p是q的充分非必要条件;对C.p q且q p,p是q的必要非充分条件;D p q q p p q p q D⇒⇒⇔对.且,即,是的充要条件.选.说明:当a=0时,ax=0有无数个解.例3 若A是B成立的充分条件,D是C成立的必要条件,C是B成立的充要条件,那么D是A成立的[ ] A.充分条件B.必要条件C.充要条件D.既不充分也没必要要条件分析通过B、C作为桥梁联系A、D.解∵A是B的充分条件,∴A B①∵D是C成立的必要条件,∴C D②⇔∵是成立的充要条件,∴③C B C B由①③得A C④由②④得A D.∴D 是A 成立的必要条件.选B . 说明:要注意利用推出符号的传递性.例4 设命题甲为:0<x <5,命题乙为|x -2|<3,那么甲是乙的[ ]A .充分没必要要条件B .必要不充分条件C .充要条件D .既不充分也没必要要条件 分析 先解不等式再判定.解 解不等式|x -2|<3得-1<x <5.∵0<x <5-1<x <5,但-1<x <50<x <5 ∴甲是乙的充分没必要要条件,选A .说明:一样情形下,若是条件甲为x ∈A ,条件乙为x ∈B .当且仅当时,甲为乙的充分条件;当且仅当时,甲为乙的必要条件;A B A B ⊆⊇当且仅当A =B 时,甲为乙的充要条件. 例5 设A 、B 、C 三个集合,为使A(B ∪C),条件A B 是[ ]A .充分条件B .必要条件C .充要条件D .既不充分也没必要要条件 分析 能够结合图形分析.请同窗们自己画图.∴A(B ∪C).可是,当B =N ,C =R ,A =Z 时, 显然A(B ∪C),但AB 不成立, 综上所述:“A B ”“A(B ∪C)”,而“A (B ∪C)”“AB ”.即“AB ”是“A (B ∪C)”的充分条件(没必要要).选A .说明:画图分析时要画一样形式的图,特殊形式的图会掩盖真实情形.例6 给出以下各组条件: (1)p :ab =0,q :a 2+b 2=0;(2)p :xy ≥0,q :|x|+|y|=|x +y|;(3)p :m >0,q :方程x 2-x -m =0有实根; (4)p :|x -1|>2,q :x <-1. 其中p 是q 的充要条件的有[ ]A .1组B .2组C .3组D .4组分析 利用方程理论和不等式性质.解 (1)p 是q 的必要条件 (2)p 是q 充要条件 (3)p 是q 的充分条件(4)p 是q 的必要条件.选A .说明:ab =0指其中至少有一个为零,而a 2+b 2=0指两个都为零.例>>是>>的条件.7x 3x 3x x x 12112⎧⎨⎩+⎧⎨⎩x 269分析 将前后两个不等式组别离作等价变形,观看二者之间的关系.解>且>+>且>,但当取=,=时,>>成立,而>>不成立=与>矛盾,所以填“充分不必要”.x 3x 3x x 6x x 9x 10x 2(x 2x 3)1212121222⇒+⎧⎨⎩⎧⎨⎩x x x x x x 1212126933 说明:>>->->x 3x 3 x 30x 301212⎧⎨⎩⇔⎧⎨⎩⇔⎧⎨⎩⇔⎧⎨⎩(x 3)(x 3)0(x 3)(x 3)0x x 6x x 3(x x )901212121212-+->-->+>-++>这一等价变形方法有时会用得上.例8 已知真命题“a ≥b c >d ”和“a <be ≤f ”,那么“c ≤d ”是“e ≤f ”的________条件.分析 ∵a ≥b c >d(原命题), ∴c ≤d a <b(逆否命题). 而a <b e ≤f ,∴c ≤d e ≤f 即c ≤d 是e ≤f 的充分条件. 答 填写“充分”.说明:充分利用原命题与其逆否命题的等价性是常见的思想方式.例9 ax 2+2x +1=0至少有一个负实根的充要条件是[ ]A .0<a ≤1B .a <1C .a ≤1D .0<a ≤1或a <0分析 此题假设采纳一般方式推导较为复杂,可通过选项提供的信息,用排除法解之.当a =1时,方程有负根x =-1,当a =0时,x =-.故排除、、选.12A B D C 解常规方法:当=时,=-. a 0x 12当a ≠0时1a 0ax 2x 10021a 0a 12.>,则++=至少有一个负实根<-<<≤.⇔---⇔-⇔24422aa2a 0ax 2x 100221a 21a 1a 02.<,则++=至少有一个负实根<>->-><.⇔-+-⇔⇔⇔2442aa综上所述a ≤1.即ax 2+2x +1=0至少有一个负实根的充要条件是a ≤1.说明:特殊值法、排除法都是解选择题的好方式.例10 已知p 、q 都是r 的必要条件,s 是r 的充分条件,q 是s 的充分条件,那么s ,r ,p 别离是q 的什么条件?分析 画出关系图1-21,观看求解.解 s 是q 的充要条件;(s r q ,q s) r 是q 的充要条件;(r q ,q s r) p 是q 的必要条件;(q s r p)说明:图能够画的随意一些,关键要表现各个条件、命题之间的逻辑关系. 例11 关于x 的不等式|x |x 3(a 1)x 2(3a 1)0AB A B 1a 3a 12-≤与-+++≤的解集依次为与,问“”是“≤≤或=-”的充要条件吗?()()a a +-⊆121222分析 化简A 和B ,结合数轴,构造不等式(组),求出a . 解 A ={x|2a ≤x ≤a 2+1},B ={x|(x -2)[x -(3a +1)]≤0}当≤+即≥时,23a 1a 13B ={x|2≤x ≤3a +1}.A B 2a 2a +13a +11a 323a 1a 2⊆⇔⎧⎨⎩⇔≥≤≤≤当>+即<时,13B ={x|3a +1≤x ≤2}A B 2a 3a +1a +12a 1A B a 11a 3A B 1a 3a 12⊆⇔⎧⎨⎩⇔⊆⇔⊆≥≤=-.综上所述:=-或≤≤.∴“”是“≤≤或=-”的充要条件.说明:集合的包括关系、命题的真假往往与解不等式紧密相关.在解题时要理清思路,表达准确,推理无误.例>,>是<的必要条件还是充分条件,还是充12 x y xy 011x y要条件?分析 将充要条件和不等式同解变形相联系.解.当<时,可得-<即< 1001111x y x y y xxy-则-><或-<>,即<<或>>,y x 0xy 0y x 0xy 0 x y xy 0x 0⎧⎨⎩⎧⎨⎩⎧⎨⎩⎧⎨⎩y xy故<不能推得>且>有可能得到<<,即>且>并非<的必要条件.11011x y x y xy x yx y xy 0()x y xy 0⎧⎨⎩2x y xy 0x y x 0y 0x yx 0y 0x y xy 0.当>且>则分成两种情况讨论:>>>或><<不论哪一种情况均可化为<.∴>且>是<的充分条件.⎧⎨⎪⎩⎪⎧⎨⎪⎩⎪1111x yx y说明:分类讨论要做到不重不漏.例13 设α,β是方程x 2-ax +b =0的两个实根,试分析a >2且b >1是两根α,β均大于1的什么条件?分析 把充要条件和方程中根与系数的关系问题相联系,解题时需要搞清楚条件与结论分别指什么.然后再验证是还是还是.p q p q q p p q ⇒⇒⇔解据韦达定理得:=α+β,=αβ,判定的条件是:>>结论是:α>β>还要注意条件中,,需要满足大前提Δ=-≥ a b p q (p a b a 4b 0)2a b 2111⎧⎨⎩⎧⎨⎩(1)1a 2b 1由α>β>得=α+β>,=αβ>,1⎧⎨⎩∴q p.上述讨论可知:a>2,b>1是α>1,β>1的必要但不充分条件.说明:此题中的讨论内容在二次方程的根的散布理论中常被利用.例14 (1991年全国高考题)设甲、乙、丙是三个命题,若是甲是乙的必要条件,丙是乙的充分条件,但不是乙的必要条件,那么[ ] A.丙是甲的充分条件,但不是甲的必要条件B.丙是甲的必要条件,但不是甲的充分条件C.丙是甲的充要条件D.丙不是甲的充分条件,也不是甲的必要条件分析1:由丙乙甲且乙丙,即丙是甲的充分没必要要条件.分析2:画图观看之.答:选A.说明:抽象命题之间的逻辑关系通常靠画图观看比较方便。
充分条件与必要条件练习题

充分条件与必要条件练习题与答案(试卷满分100分,考试时间45分钟)一、选择题(每小题5分,共75分)1.命题“若a >-3,则a >-6”以及它的逆命题、否命题、逆否命题中,假命题的个数为( )A .1B .2C .3D .42.已知命题p :“正数a 的平方不等于0”,命题q :“若a 不是正数,则它的平方等于0”,则q 是p 的( )A .逆命题B .否命题C .逆否命题D .否定3.已知函数f (x ),x ∈R ,则“f (x )的最大值为1”是“f (x )≤1恒成立”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.若命题A 的逆命题为B ,命题A 的否命题为C ,则B 是C 的( )A .逆命题B .否命题C .逆否命题D .都不对5.设x ∈R ,i 是虚数单位,则“x =3”是“复数z =(x 2-9)+(x +3)i 为纯虚数”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 6.已知下列三个命题:①若一个球的半径缩小到原来的12,则其体积缩小到原来的18;②若两组数据的平均数相等,则它们的标准差也相等; ③直线x +y +1=0与圆x 2+y 2=12相切.其中真命题的序号为( ) A .①②③ B .①② C .①③D .②③7.设α,β为两个平面,则α∥β的充要条件是( )A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面8.A ,B ,C 三个学生参加了一次考试,A ,B 的得分均为70分,C 的得分为65分.已知命题p :若及格分低于70分,则A ,B ,C 都没有及格.则下列四个命题中为p 的逆否命题的是( )A .若及格分不低于70分,则A ,B ,C 都及格 B .若A ,B ,C 都及格,则及格分不低于70分 C .若A ,B ,C 至少有一人及格,则及格分不低于70分D .若A ,B ,C 至少有一人及格,则及格分高于70分 9.使a >0,b >0成立的一个必要不充分条件是( )A .a +b >0B .a -b >0C .ab >1D.a b>110.王安石在《游褒禅山记》中写道“世之奇伟、瑰怪,非常之观,常在于险远,而人之所罕至焉,故非有志者不能至也”,请问“有志”是到达“奇伟、瑰怪,非常之观”的( )A .充要条件B .既不充分也不必要条件C .充分不必要条件D .必要不充分条件11.条件p :|x +1|>2,条件q :x ≥2,则綈p 是綈q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件12.原命题:“a ,b 为两个实数,若a +b ≥2,则a ,b 中至少有一个不小于1”,下列说法错误的是( )A .逆命题为:a ,b 为两个实数,若a ,b 中至少有一个不小于1,则a +b ≥2,为假命题B .否命题为:a ,b 为两个实数,若a +b <2,则a ,b 都小于1,为假命题C .逆否命题为:a ,b 为两个实数,若a ,b 都小于1,则a +b <2,为真命题D .a ,b 为两个实数,“a +b ≥2”是“a ,b 中至少有一个不小于1”的必要不充分条件 13.设平面向量a ,b ,c 均为非零向量,则“a ·(b -c)=0”是“b =c ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件14.圆x 2+y 2=1与直线y =kx -3有公共点的充分不必要条件是( )A .k ≤-22或k ≥2 2B .k ≤-2 2C .k ≥2D .k ≤-22或k >215.已知平面区域Ω1:x 2+y 2≤9,Ω2:⎩⎪⎨⎪⎧2x -y +2≥0,x +y ≤0,y +2≥0,则点P (x ,y )∈Ω1是P (x ,y )∈Ω2的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件二、填空题(每小题5分,共25分)16.在原命题“若A ∪B ≠B ,则A ∩B ≠A ”与它的逆命题、否命题、逆否命题中,真命题的个数为________.17.若“x >3”是“x >m ”的必要不充分条件,则m 的取值范围是________.18.设α,β为两个不同平面,直线m ⊂α,则“α∥β”是“m ∥β”的________条件(填“充分不19.已知p :实数m 满足3a <m <4a (a >0),q :方程x 2m -1+y 22-m=1表示焦点在y 轴上的椭圆,若p 是q 的充分条件,则a 的取值范围是________.20.能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是________.参考答案1.B2.B3.A4.C5.C6.C7.B8.C9.A 10.D 11.A 12.D 13.B 14.B 15.B 16. 4 17. (3,+∞)18. 充分不必要 19. ⎣⎢⎡⎦⎥⎤13,3820. f (x )=sin x (答案不唯一)。
充分条件和必要条件练习题76985

充分条件和必要条件练习题1.设x R ∈,则“”是“2210x x +->”的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2.若a R ∈,则“0a =”是“cos sin a a >”的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件3.设x R ∈,且0x ≠, ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4.已知a R ∈,则“2a >”是“22a a >”的( )A .充分非必条件B .必要不充分条件C .充要条件D .既非充分也非必要条件5.设x R ∈,则“”是“220x x +->”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .即不充分也不必要条件6.若a ,b 为实数,则“0<a b <1”是“b <) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件7.“0>>b a ”是“22b a >”的什么条件?( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件8.“1<x <2”是“x<2”成立的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件9.12x <<“”是”“2<x 成立的( ) A 充分不必要条件 B 必要不充分条件 C 充要条件 D 既不充分也不必要条件10.A,B 是任意角,“A=B ”是“sinA=sinB ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件11.设a R ∈,则“1a <”是“11a>”( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件12.“20x >”是“0x >”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件13.x=y ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件14.””是““00>≠x x 的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件15.命题5:>x p ,命题3:>x q ,则p 是q 的 ( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件16.“1x =”是“2210x x -+=”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件17.若R a ∈,则“2a =”是“()()240a a -+=”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件一、填空题18.已知条件p :13x ≤≤,条件q :2560x x -+<,则p 是q 的 条件.A .充分必要条件B .充分不必要条件C .必要不充分条件D .既非充分也非必要条件参考答案1.A【解析】”是“2210x x +->”的充分不必要条件,故选A .考点:充要条件.2.B【解析】即充分条件成立,但当ααsin cos >故必要条件不成立,综合选B.考点:1.正余弦函数的单调性;2.充分条件和必要条件的定义.3.A【解析】,得1x <-,由,解得01x <<或0x <,所以“A. 考点:充要条件的应用.4.A【解析】试题分析:因为当“2a >” 成立时,()2220,a a a a -=->∴ “22a a >” 成立. 即“2a >”⇒“22a a >” 为真命题;而当“22a a >” 成立时, ()2220a a a a -=->, 即2a >或0,2a a <∴>不一定成立, 即“22a a >”⇒“2a >”的充分非必要条件,故选A. 考点:1、充分条件与必要条件;2、不等式的性质.【方法点睛】本题主要考查不等式的性质及充分条件与必要条件,属于中档题.判断充要条件应注意:首先弄清条件p 和结论q 分别是什么,然后直接依据定义、定理、性质尝试,p q q p ⇒⇒.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题.5.A【解析】试题分析:由得31<<x ,由220x x +->得1>x 或2-<x ,即是“220x x +->”的充分不必要条件,故选:A .考点:充分条件与必要条件的判断.6.D【解析】 时,p 不能推出q ,当0,0b a <>时,q 不能推出p ,故是既不充分也不必要条件.考点:充要条件.7.A【解析】试题分析:当0>>b a 时,能推出22b a >,反过来,当22b a >不能推出0>>b a ,所以是充分不必要条件,故选A.考点:充分必要条件8.A【解析】试题分析:若“12x <<”,则“2x <”成立,反之不成立,所以“12x <<”是“2x <”的成立充分不必要条件.故选A.考点:充分条件和必要条件的判断.9.A【解析】试题分析:当12x <<时可得2x <成立,反之不成立,所以12x <<“”是”“2<x 成立的充分不必要条件考点:充分条件与必要条件10.A【解析】试题分析:由B A =可得B A sin sin =,由B A sin sin =不一定有B A =,如:0=A ,π=B ,所以B A =是B A sin sin =的充分不必要条件.故选A.考点:充分条件、必要条件.11.B.【解析】 试题分析:111110001a a a a a->⇔->⇔>⇔<<,故是必要不充分条件,故选B . 考点:1.解不等式;2.充分必要条件.12.B .【解析】 试题分析:因为由20x >解得:0x >或0x <,∴“0x >或0x <”是“0x >”的必要而不充分条件.考点:充分必要条件.13.B【解析】或x y =-,所以是“x y =”的必要不充分条件.故B 正确.考点:充分必要条件.14.B【解析】 试题分析:00x x >⇒≠“”“”,反之不成立,因此选B .考点:充要关系15.B【解析】试题分析:若5x >成立则3x >成立,反之当3x >成立时5x >不一定成立,因此p 是q 的充分不必要条件考点:充分条件与必要条件16.A【解析】试题分析:当1x =时,2210x x -+=;同时当2210x x -+=时,可得1x =;可得“1x =”是“2210x x -+=”的充要条件.考点:充分、必要条件的判断.【易错点晴】本题主要考查的是一元二次不等式、对数不等式和集合的交集、并集和补集运算,属于容易题.解不等式时一定要注意对数的真数大于0和2x 的系数大于0,否则很容易出现错误.17.B【解析】 试题分析:若“2a =”,则“()()240a a -+=”;反之 “()()240a a -+=”,则2,a =或4a =-.故“2a =”是“()()240a a -+=”的充分不必要条件.考点:充分、必要条件的判断.18.C【解析】 试题分析:解不等式2560x x -+<得23x <<,由p :13x ≤≤可知p 是q 的必要不充分条件条件考点:充分条件与必要条件。
(完整版)充分条件和必要条件练习题

充分条件和必要条件练习题1.设x R ∈,则“”是“2210x x +->”的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2.若a R ∈,则“0a =”是“cos sin a a >”的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件3.设x R ∈,且0x ≠, ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4.已知a R ∈,则“2a >”是“22a a >”的( )A .充分非必条件B .必要不充分条件C .充要条件D .既非充分也非必要条件5.设x R ∈,则“”是“220x x +->”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .即不充分也不必要条件6.若a ,b 为实数,则“0<a b <1”是“b <) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件7.“0>>b a ”是“22b a >”的什么条件?( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件8.“1<x <2”是“x<2”成立的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件9.12x <<“”是”“2<x 成立的( ) A 充分不必要条件 B 必要不充分条件 C 充要条件 D 既不充分也不必要条件10.A,B 是任意角,“A=B ”是“sinA=sinB ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件11.设a R ∈,则“1a <”是“11a>”( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件12.“20x >”是“0x >”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件13.x=y ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件14.””是““00>≠x x 的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件15.命题5:>x p ,命题3:>x q ,则p 是q 的 ( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件16.“1x =”是“2210x x -+=”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件17.若R a ∈,则“2a =”是“()()240a a -+=”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件一、填空题18.已知条件p :13x ≤≤,条件q :2560x x -+<,则p 是q 的 条件.A .充分必要条件B .充分不必要条件C .必要不充分条件D .既非充分也非必要条件参考答案1.A【解析】”是“2210x x +->”的充分不必要条件,故选A .考点:充要条件.2.B【解析】即充分条件成立,但当ααsin cos >故必要条件不成立,综合选B.考点:1.正余弦函数的单调性;2.充分条件和必要条件的定义.3.A【解析】,得1x <-,由,解得01x <<或0x <,所以“A. 考点:充要条件的应用.4.A【解析】试题分析:因为当“2a >” 成立时,()2220,a a a a -=->∴ “22a a >” 成立. 即“2a >”⇒“22a a >” 为真命题;而当“22a a >” 成立时, ()2220a a a a -=->, 即2a >或0,2a a <∴>不一定成立, 即“22a a >”⇒“2a >”的充分非必要条件,故选A. 考点:1、充分条件与必要条件;2、不等式的性质.【方法点睛】本题主要考查不等式的性质及充分条件与必要条件,属于中档题.判断充要条件应注意:首先弄清条件p 和结论q 分别是什么,然后直接依据定义、定理、性质尝试,p q q p ⇒⇒.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题.5.A【解析】试题分析:由得31<<x ,由220x x +->得1>x 或2-<x ,即是“220x x +->”的充分不必要条件,故选:A .考点:充分条件与必要条件的判断.6.D【解析】 时,p 不能推出q ,当0,0b a <>时,q 不能推出p ,故是既不充分也不必要条件.考点:充要条件.7.A【解析】试题分析:当0>>b a 时,能推出22b a >,反过来,当22b a >不能推出0>>b a ,所以是充分不必要条件,故选A.考点:充分必要条件8.A【解析】试题分析:若“12x <<”,则“2x <”成立,反之不成立,所以“12x <<”是“2x <”的成立充分不必要条件.故选A.考点:充分条件和必要条件的判断.9.A【解析】试题分析:当12x <<时可得2x <成立,反之不成立,所以12x <<“”是”“2<x 成立的充分不必要条件考点:充分条件与必要条件10.A【解析】试题分析:由B A =可得B A sin sin =,由B A sin sin =不一定有B A =,如:0=A ,π=B ,所以B A =是B A sin sin =的充分不必要条件.故选A.考点:充分条件、必要条件.11.B.【解析】 试题分析:111110001a a a a a->⇔->⇔>⇔<<,故是必要不充分条件,故选B . 考点:1.解不等式;2.充分必要条件.12.B .【解析】 试题分析:因为由20x >解得:0x >或0x <,∴“0x >或0x <”是“0x >”的必要而不充分条件.考点:充分必要条件.13.B【解析】或x y =-,所以是“x y =”的必要不充分条件.故B 正确.考点:充分必要条件.14.B【解析】 试题分析:00x x >⇒≠“”“”,反之不成立,因此选B .考点:充要关系15.B【解析】试题分析:若5x >成立则3x >成立,反之当3x >成立时5x >不一定成立,因此p 是q 的充分不必要条件考点:充分条件与必要条件16.A【解析】试题分析:当1x =时,2210x x -+=;同时当2210x x -+=时,可得1x =;可得“1x =”是“2210x x -+=”的充要条件.考点:充分、必要条件的判断.【易错点晴】本题主要考查的是一元二次不等式、对数不等式和集合的交集、并集和补集运算,属于容易题.解不等式时一定要注意对数的真数大于0和2x 的系数大于0,否则很容易出现错误.17.B【解析】 试题分析:若“2a =”,则“()()240a a -+=”;反之 “()()240a a -+=”,则2,a =或4a =-.故“2a =”是“()()240a a -+=”的充分不必要条件.考点:充分、必要条件的判断.18.C【解析】 试题分析:解不等式2560x x -+<得23x <<,由p :13x ≤≤可知p 是q 的必要不充分条件条件考点:充分条件与必要条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8.设 则“ ”是“f(x)=cos(x+ )为偶函数”的( )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件
9.设 ,则“ <0”是“ ”的( )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件
10.设命题甲: ,命题乙: ,那么甲是乙的( )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件
19.已知 ,则“a>2”是“a2>2a”的( )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件
20.已知p:关于x的不等式 有解,q:: 为减函数,则p是q成立的( )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件
21.设p|4x-3| 1,q: ,若非p是非q的必要不充分条件,则实数a的取值范围是( )
A. B. C. D.
22.设 ,则“ ”是“ ”的( )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件
班级:__________姓名:__________
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件
11.已知α1,α2,α3是三个相互平行的平面,平面α1,α2之间的距离为d1,平面α2,α3之前的距离为d2,直线l与α1,α2,α3分别相交于P1,P2,P3.那么“P1P2=P2P3”是“d1=d2”的()
A.充分而不必要条件B.必要而不充分条件
14.设 是等比数列,则“a1<a2<a3”是“数列 是递增数列”的( )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件
15.对于函数y=f(x), “y= 的图像关于y轴对称”是“y=f(x)是奇函数”的()
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件
6.给定两个命题p,q.若¬p是q的必要而不充分条件,则p是¬q的()
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件
7.设点P(x,y),则“x=2且y=-1”是“点P在直线 上”的
A.充分而不必要条件B.必要而不充分条件( )
命题、充要条件相关练习
1.命题“所有能被2整除的数都是偶数”的否定是()
A.所有不能被2整除的整数都是偶数B.所有能被2整除的整数都不是偶数
C.存在一个不能被2整除的整数是偶数D.存在一个能被2整除的整数不是偶数
2.设 ,是向量,命题“若 ≠ ,则| =| |的逆命题是()
A.若 ≠ ,则| =| |B.若 = ,则| ≠| |
C.若 ≠ ,则| | |D.若 =| |,则 ≠
3.命题:“若 ,则tan =1”的逆否命题是( )
A.若 ,则tan B.若 则tan
C.若tan 则 D.若tan 则
4.设 ,则“ ”是直线 和直线 平行的( )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件
5.“ ”是“直线 与直线 相互垂直”的( )
充要条件D.既不充分也不必要条件
12.设平面 与平面 相交于直线m,直线a在平面 内,直线b在平面 内,且 ,则“ ”是“ ”的( )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件
13.设 都是非零向量,下列四个条件中,使 成立的充分条件是()
A. B. C. D. 且
题号
1
2
3
4
5
6
7
8
9
10
答案
题号
11
12
13
14
15
16
17
18
19
20
答案
题号
21
22
答案
23.已知命题p:关于x的方程 至多有一个解,命题q: ,m>0,若 的必要不充分条件,求实数m的取值范围。
16.若a ,则“a=2”是“(a-1)*(a-2)=0”的( )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件
17.“ ”是“ ”成立的( )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件
18.设集合 ,B= ,C= ,则“ ”是“ ”的( )