【高考数学】高中数学选择题专练
精品 高中数学复习选择题提高题

高考数学复习选择题提高第一部分·代数一、选择题:1、若}{0b y ax |)y ,x (=-+ }{φ==++01ay x |)y ,x (,则______。
A. a = 1且b ≠ - 1 B. a = 1且b ≠ 1 C. a = ±1且b ≠ ±1 D. a = 1且b ≠ - 1或 a = - 1且b ≠12、对于集合M 、N ,若N M ⊂,则下列集合表示空集的是______。
A. N MB. N MC. N MD. N M3、同时满足下列条件的非空集合S 的个数为______。
i )S }{5,4,3,2,1⊆;ii )若S a ∈,则S a 6∈-。
A. 4B. 5C. 7D. 314、已知全集I=}{R y ,R x |)y ,x (∈∈,M=⎭⎬⎫⎩⎨⎧=--32x 4y |)y ,x (,N={}2x 3y |)y ,x (-=,则N M 是______。
A. ⎭⎬⎫⎩⎨⎧=--32x 4y |)y ,x ( B. ⎭⎬⎫⎩⎨⎧≠--32x 4y |)y ,x ( C. φD. {})4,2(5、设2x 11)x (f -=和)x 6x 2(log )x (g 221-+=的定义域依次为M 、N ,I=R ,则N M =______。
A. ⎥⎦⎤⎢⎣⎡-32,21B. ()1,1-C. ⎪⎭⎫ ⎝⎛-32,21D. ⎪⎭⎫⎢⎣⎡⎥⎦⎤ ⎝⎛--1,3221,16、已知2x 1y --=的反函数是2x 1y --=,则原函数的定义域是______。
A. ()0,1-B. []1,1-C. []0,1-D. []1,07、设函数)x (f 的定义域是()+∞∞-,,且)y (f )x (f )y x (f -=+,则)x (f 是_____。
A. 奇函数B. 奇且偶函数C. 偶函数D. 非奇非偶函数8、已知x log )x (f 2a =,若)3(f )2(f >,则a 的取值范围是______。
高中数学选择性必修一 高考训练 练习习题 课时作业(十)

课时作业(十) 用空间向量研究夹角问题[练基础]1.已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面夹角为( )A .45°B .135°C .45°或135°D .90°2.设直线l 与平面α相交,且l 的方向向量为a ,α的法向量为n ,若〈a ,n 〉=2π3,则l 与α所成的角为( )A .2π3B .π3C .π6D .5π63.如图,在正方体ABCD A 1B 1C 1D 1中,点E 是上底面A 1B 1C 1D 1的中心,则异面直线AE 与BD 1所成角的余弦值为( )A .24 B .23 C .104 D .634.正方体ABCD A 1B 1C 1D 1中,BB 1与平面ACD 1所成角的余弦值为( ) A .23 B .33 C .23 D .635.(多选)若直线a 的方向向量为a ,平面α,β的法向量分别为n ,m ,则下列命题为真命题的是( )A .若a ⊥n ,则直线a ∥平面αB .若a ∥n ,则直线a ⊥平面αC .若cos 〈a ,n 〉=12 ,则直线a 与平面α所成角的大小为π6D .若cos 〈m ,n 〉=12 ,则平面α,β的夹角为π3 6.如图,在正方体ABCD A 1B 1C 1D 1中,M 是C 1C 的中点,O 是底面ABCD 的中心,P 是A 1B 1上的任意点,则直线BM 与OP 夹角的大小为________.7.已知二面角α l β为锐角,平面α的法向量为n 1=(3 ,0,-1),平面β的法向量为n 2=(-32 ,1,12),则cos 〈n 1,n 2〉=________,二面角α l β的大小为________. 8.如图,三棱锥P ABC 中,底面△ABC 为直角三角形,AB =BC =2,D 为AC 的中点,PD =DB ,PD ⊥DB ,PB ⊥CD .(1)求证:PD ⊥平面BCD ;(2)求P A 与平面PBC 所成角的正弦值.[提能力]9.在长方体ABCD A 1B 1C 1D 1中,AB =AD =2,AA 1=1,O 是AC 的中点,点P 在线段A 1C 1上,若直线OP 与平面ACD 1所成的角为θ,则cos θ的取值范围是( )A .[23 ,33 ] B .[23 ,63 ] C .[34 ,33 ] D .[33 ,73] 10.(多选)如图,在四棱锥P ABCD 中,P A ⊥底面ABCD ,AB ⊥AD ,AD ∥BC ,点E 为P A 的中点,AB =BC =1,AD =2,P A =2 ,则( )A .BE → ·CP → =3B .异面直线BE 与CD 所成角的余弦值为33C .点B 到平面PCD 的距离为12D .BC 与平面PCD 所成的角为π611.如图,在正方体ABCD A 1B 1C 1D 1中,E ,F 分别为棱BB 1,C 1D 1的中点,则异面直线EF 与BD 1所成角的余弦值为________;直线AE 与平面AB 1C 所成角的正弦值为________.12.如图,在三棱柱ABC A 1B 1C 1中,侧面ACC 1A 1为矩形,且侧面ACC 1A 1⊥侧面ABB 1A 1,AB =AC =2,AA 1=B 1C =22 .(1)证明:A 1B 1⊥平面AB 1C ;(2)若点D 为棱B 1C 1的中点,求平面AB 1C 与平面AA 1D 所成的锐二面角的余弦值.[培优生]13.如图,在矩形ABCD 中,AB =1,AD =3 ,将△ABD 沿BD 所在的直线进行翻折,得到空间四边形A 1BCD .给出下面三个结论:①在翻折过程中,存在某个位置,使得A 1C ⊥BD ;②在翻折过程中,三棱锥A 1BCD 的体积不大于14; ③在翻折过程中,存在某个位置,使得异面直线A 1D 与BC 所成角为45°.其中所有正确结论的序号是________.。
高考数学试卷选择题

甲醇现货采购合同书范本甲方(买方):名称:_____________________地址:_____________________联系人:___________________电话:_____________________### 乙方(卖方):名称:_____________________地址:_____________________联系人:___________________电话:_____________________### 鉴于:甲乙双方本着平等自愿、诚实信用的原则,经协商一致,就甲方购买乙方甲醇现货事宜达成如下合同:## 第一条产品描述1. 产品名称:甲醇2. 规格型号:________________3. 质量标准:符合国家标准GB/T338-20114. 包装方式:散装/桶装## 第二条采购数量及价格1. 采购数量:________________吨2. 单价:________________元/吨3. 总金额:________________元## 第三条交货时间及地点1. 交货时间:________________年____月____日前2. 交货地点:________________## 第四条运输方式及费用承担1. 运输方式:________________(如:公路、铁路、水运等)2. 费用承担:由乙方负责运输至甲方指定地点,运输费用由乙方承担。
## 第五条质量验收1. 甲方在收到货物后____天内进行质量验收。
2. 如发现货物质量不符合合同约定,甲方有权要求乙方更换或退货。
## 第六条付款方式及期限1. 付款方式:银行转账/电汇/承兑汇票等。
2. 付款期限:甲方在验收合格后____天内支付全部货款。
## 第七条违约责任1. 如乙方未能按时交货,每逾期一天,应向甲方支付未交货部分货款____%的违约金。
2. 如甲方未能按时付款,每逾期一天,应向乙方支付未付款部分货款____%的滞纳金。
高三数学选择题练习试题集

高三数学选择题练习试题答案及解析1.已知集合A={y|y=()x2+1,x∈R},则满足A∩B=B的集合B可以是()A.{0,}B.{x|-1≤x≤1}C.{x|0<x<}D.{x|x>0}【答案】C【解析】由题意得A={x|0<x≤},B⊆A,所以选C项.=2,则2.若ABC三个内角A、B、C的对边分别为a,b,c,且a=1,B=45o,SABCsinA=( ).(A) (B) (C) (D)【答案】A【解析】,根据余弦定理:,代入数字,,再根据正弦定理:.故选A.【考点】正余弦定理解三角形3.已知函数的部分图象如图所示,则( ) A.B.C.D.【答案】D【解析】由题意得:,又,,所以.【考点】三角函数图像与性质4.已知集合A={y|y=lg(x-3)},B={a|a2-a+3>0},则“x>4”是“A B”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】∵x>4lg(x-3)>0即A为正数集合又∵△=(-1)2-4×1×3=-11<0∴B=R所以A B,即“x>4”是“A B”的充分条件反之,若A B,则x>3,即必要性不成立所以“x>4”是“A B”的充分不必要条件5.已知为虚数单位,在复平面内复数对应点的坐标为A.B.C.D.【答案】A【解析】由已知得,,故复数对应点的坐标为.【考点】1、复数的运算;2、复数的几何意义.6.若复数是纯虚数,则实数的值为( )A.或B.C.D.或【答案】C【解析】因为复数是纯虚数,所以且,因此注意不要忽视虚部不为零这一隐含条件.【考点】纯虚数7.如图所示,M是正方体ABCD A1B1C1D1的棱DD1的中点,给出下列四个命题:①过M点有且只有一条直线与直线AB,B1C1都相交;②过M点有且只有一条直线与直线AB,B1C1都垂直;③过M点有且只有一个平面与直线AB,B1C1都相交;④过M点有且只有一个平面与直线AB,B1C1都平行.其中真命题是()A.②③④B.①③④C.①②④D.①②③【答案】C【解析】在AB上任取一点P,则平面PMC1与AB,B1C1都相交,这样的平面有无数个,故③是假命题,结合选项可知应选C.8.如图,△ABC中,∠C =90°,且AC=BC=4,点M满足,则=( )A.2B.3C.4D.6【答案】C【解析】由于△ABC中,∠C =90°,且AC=BC=4,点M满足,又因为,.所以.所以.故选C.【考点】1.向量的加减法运算.2.向量的数量积.9.已知全集.集合,,则()A.B.C.D.【答案】D【解析】由得:.所以.【考点】1、集合的基本运算;2、对数不等式.10.已知直线平行,则实数的值为().A.B.C.或D.【答案】A【解析】直线平行,则,解得.【考点】两直线位置关系.11.将函数的图像向左平移个单位,再将所得图像上各点的横坐标缩短为原来的倍,纵坐标不变,得到函数的图像,已知函数是周期为的偶函数,则,的值分别为()A.4,B.4,C.2,D.2,【答案】B.【解析】函数,,又因是偶函数,所以,则.【考点】三角函数的平移变换.12.已知集合则()A.B.C.D.【答案】D.【解析】故选D.【考点】1.集合的基本运算;2.一元二次不等式的解法;3.函数的定义域.13.已知抛物线C:与点M(-2,2),过C的焦点且斜率为k的直线与C交于A,B两点,若,则k=()A.B.C.D.2【答案】D【解析】由题意知抛物线C的焦点坐标为(2,0),则直线AB的方程为,将其代入,得.设,则,.①由∵,∴.∴,即. ④由①②③④解得k=2.故选D.【考点】直线与抛物线的位置关系14.已知几何体M的正视图是一个面积为2的半圆,俯视图是正三角形,那么这个几何体的表面积和体积为A.6和B.6+4和C.6+4和D.4(+)和【答案】C【解析】根据题意,由于几何体M的正视图是一个面积为2的半圆,俯视图是正三角形,那么这个几何体是由一个三棱锥和一个半球体的组合体,球的半径为2,三棱锥的高为2,底面是正三角形,边长为4,则可知其表面积和体积为6+4和,故选C.【考点】三视图的运用点评:解决的关键是利用已知的三视图来分析得到简单几何体,结合几何体的体积和表面积公式求解,属于基础题。
高中数学--历年高考真题精选7(附答案)

高中数学--历年高考真题精选题号 一 二 三 总分 得分一 、选择题(本大题共10小题,每小题4分,共40分)1.给定两个命题p ,q ,若⌝p 是q 的必要而不充分条件,则p 是⌝q 的( ).A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件2.已知二次函数的图象如图所示,则它与轴所围图形的面积为A .B .C .D .3.在5(1)x +-6(1)x +的展开式中,含3x 的项的系数是(A) -5(B) 5(C) -10 (D) 104.为了迎接2010年广州亚运会,某大楼安装5个彩灯,他们闪亮的顺序不固定,每个彩灯彩灯闪亮只能是红橙黄绿蓝中的一种颜色,且这5个彩灯商量的颜色各不相同,记得这5个彩灯有序地闪亮一次为一个闪烁,而相邻两个闪烁的时间间隔均为5妙。
在每一个闪烁中,那么需要的时间至少是 A .1205秒B .1200秒C .1195秒D .1190秒 5.由直线12x =,x =2,曲线1y x =及x 轴所围图形的面积为( ) A .154B .174 C .1ln 22D .2ln 26. ( 2x -3 )5的展开式中x 2项的系数为(A )-2160(B )-1080 (C )1080(D )21607.某地政府召集5家企业的负责人开会,其中甲企业有2人到会,其余4家企业各有1人到会,会上有3人发言,则这3人来自3家不同企业的可能情况的种数为【 】A .14B .16C .20D .488.下列函数中,满足“()()()f x y f x f y +=”的单调递增函数是( )(A )()12f x x = (B )()3f x x = (C )()12xf x ⎛⎫= ⎪⎝⎭(D )()3x f x =9.i 是虚数单位,()=-+113i i i (A) 1- (B) 1 (C) i - (D) i10.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有A.6种B.12种C.24种D.30种二 、填空题(本大题共8小题,每小题3分,共24分) 11.已知圆C 的圆心是直线1,(1x t y t=⎧⎨=+⎩为参数)与x 轴的交点,且圆C 与直线x+y+3=0相切,则圆C 的方程为12.明天上午李明要参加奥运志愿者活动,为了准时起床,他用甲、乙两个闹钟叫醒自己,假设甲闹钟准时响的概率是0.80,乙闹钟准时响的概率是0.90,则两个闹钟至少有一准时响的概率是 . 13.若函数f(x)=a x -x-a(a>0且a ≠1)有两个零点,则实数a 的取值范围是 .14.若变量x,y 满足约束条件 ,4,,y x x y y k ≤⎧⎪+≤⎨⎪≥⎩且 2z x y =+的最小值为-6,则k =_______.15.(几何证明选讲选做题)如图3,AB 是圆O 的直径,点C 在圆O 上,延长BC 到D 是BC=CD ,过C 作圆O 的切线交AD 于E 。
高中数学选择性必修一 高考训练 练习习题 课时作业(三)

课时作业(三) 空间向量基本定理[练基础]1.下列说法正确的是( )A .任何三个不共线的向量可构成空间向量的一个基底B .空间的基底有且仅有一个C .两两垂直的三个非零向量可构成空间的一个基底D .直线的方向向量有且仅有一个2.设向量{a ,b ,c }是空间一个基底,则一定可以与向量p =a +b ,q =a -b 构成空间的另一个基底的向量是( )A .aB .bC .cD .a 或b3.如图,在三棱柱ABC A 1B 1C 1中,M 为A 1C 1的中点,若AB → =a ,BC →=b ,AA 1⃗⃗⃗⃗⃗⃗⃗ =c ,则BM →可表示为( )A .-12 a -12 b +cB .12 a +12 b +cC .-12 a +12 b +cD .12 a -12 b +c4.如图,在四面体OABC 中,OA → =a ,OB → =b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,则OE →可用向量a ,b ,c 表示为( )A .12 a +12 b +12 cB .12 a +14 b +14 cC .14 a +12 b +14 cD .14 a +14 b +12c5.(多选)若向量{a ,b ,c }构成空间的一个基底,则下列向量共面的是( ) A .a +b ,a -b ,a +2b B .a -b ,a +c ,b +c C .a -b ,c ,a +b +cD .a -2b ,b +c ,a +c -b6.在平行六面体ABCD A 1B 1C 1D 1中,设AB → =a ,AD →=b ,AA 1⃗⃗⃗⃗⃗⃗⃗ =c ,用a 、b 、c 作为基底向量表示D 1B ⃗⃗⃗⃗⃗⃗⃗ =________.7.已知空间的一个基底{a ,b ,c },m =a -b +c ,n =x a +y b +c ,若m 与n 平行,则x =______,y =________.8.如图,在单位正方体ABCD A 1B 1C 1D 1中,点E ,F 分别是棱B 1C 1,CC 1的中点.设AB →=i ,AD → =j ,AA 1⃗⃗⃗⃗⃗⃗⃗ =k ,试用向量i ,j ,k 表示AE → 和AF → .[提能力]9.如图,平行六面体ABCD A ′B ′C ′D ′,其中AB =4,AD =3,AA ′=3,∠BAD =90°,∠BAA ′=60°,∠DAA ′=60°,则AC ′的长为( )A .55B .65C .85D .9510.(多选)如图,一个结晶体的形状为平行六面体ABCD A 1B 1C 1D 1,其中,以顶点A 为端点的三条棱长均为6,且它们彼此的夹角都是60°,下列说法中正确的是( )A .AC 1=66B .AC 1⊥DBC .向量B 1C ⃗⃗⃗⃗⃗⃗⃗ 与AA 1⃗⃗⃗⃗⃗⃗⃗ 的夹角是60°D .BD 1与AC 所成角的余弦值为6311.如图所示,三棱柱ABC A 1B 1C 1中,M ,N 分别是A 1B 和B 1C 1上的点,且BM =3A 1M ,C 1N =2B 1N .设MN → =xAA 1+yAB → +zAC →(x ,y ,z ∈R ),则x +y +z 的值为________.12.如图,在直三棱柱ABC A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D ,E 分别为AB ,BB ′的中点.(1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角的余弦值.[培优生]13.在四面体O ABC 中,G 是底面△ABC 的重心,且OG → =xOA → +yOB → +zOC →,则log 3|xyz |等于( )A .-3B .-1C .1D .3。
{高中试卷}高考数学选择题常考考点专练[仅供参考]
![{高中试卷}高考数学选择题常考考点专练[仅供参考]](https://img.taocdn.com/s3/m/86345155e53a580216fcfefb.png)
20XX年高中测试高中试题试卷科目:年级:考点:监考老师:日期:高考数学选择题常考考点专练161、若{a n }是等比数列,a 4a 7=-512, a 3+a 8=124, 且公比q 是整数,则a 10等于( )。
(A )256 (B )-256 (C )512 (D )-512 2、已知数列{2n -11},那么有最小值的S n 是( )。
(A )S 1 (B )S 5 (C )S 6 (D )S 113、如果x n =(1-21)(1-31)(1-41)……(1-n1),则∞→n lim x n 等于( )。
(A )0 (B )1 (C )21(D )不确定4、数列的通项公式是a n =(1-2x)n ,若∞→n lim a n 存在,则x 的取值范围是( )。
(A )[0,21] (B )[0, -21] (C )[0, 1] (D )[0,- 1] 5、不等式x 2-x +1>0的解集是( )。
(A ){x| x<231i-或x>231i +} (B )R (C )ο/(D )以上都不对6、已知方程x 2+(k +2i)x +2+ki =0至少有一个实根,那么实数k 的取值范围是( )。
(A )k ≥22或k ≤-22(B )-22≤k ≤22 (C )k =±22 (D )k =227、已知集合P ={x| (x -1)(x -4)≥0},Q ={n| (n +1)(n -5)≤0, n ∈N}与集合S ,且S ∩P ={1, 4},S ∩Q =S ,那么集合S 的元素的个数是( )。
(A )2个(B )2个或4个(C )2个或3个或4个(D )无穷多个 8、有四位司机,四位售票员分配到四辆公共汽车上,使每辆车分别有一位司机和一名售票员,则可能的分配方案数是( )。
(A )88A (B )48A (C )4444A A ⋅(D )44A9、有4个学生和3名教师排成一行照相,规定两端不排教师,那么排法的种数是( )。
高考数学小题专项训练20套(有答案)

2 3x 2 , (x 2) 2 3.设函数 f (x ) x 4 x 2 在 x=2 处连续,则 a= a (x 2)
(
)
1 1 D. 4 3 1 2 3 2n 1 2n 4. l i m( ) 的值为 n n 1 n 1 n 1 n 1 n 1 1 A. –1 B.0 C. D.1 2 5.函数 f 是 (x) si n2 (x ) si n2 (x )
0 0
) (B)[300,600] (C)[600,900] (D)[300,900]
-1-
(8)若 f (sin x ) 2 cos 2 x ,则 f (cos x ) =( (A)2-sin2x (B)2+sin2x
) (D)2+cos2x
(C)2-cos2x
(9)直角坐标 xOy 平面上,平行直线 x=n(n=0,1,2,……,5)与平行直线 y=n(n =0,1,2,……,5)组成的图形中,矩形共有( ) (A)25 个 (B)36 个 (C)100 个 (D)225 个 (10)已知直线 l:x―y―1=0,l1:2x―y―2=0.若直线 l2 与 l1 关于 l 对称,则 l2 的方程是 ( ) (A)x―2y+1=0 (B)x―2y―1=0 (C)x+y―1=0 (D)x+2y―1=0 二. 填空题: ( 11 ) 已 知 向 量 集 合
3 ; (13)0.7; 2
1 ; 4
(15)3.
-2-
高考选择题和填空题专项训练(2)
一、选择题: 1.复数 (
1 i 10 ) 的值是 ( 1 i
)A.-1
B.1
C.-32
D.32
2.tan15°+cot15°的值是(
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.已知 O 是锐角△ABC 的外接圆圆心,A=60°,
=2m· ,则 m 的值为( )
A.
B.
答案 A
C.1
D.
解析 对任意锐角三角形,题干中的等式都成立,则对等边三角形,题干中的等式也应成立.如图, 当△ABC 为正三角形时,则∠BAC=∠ABC=∠ACB=60°.取 BC 的中点 D,连接 AD,
4.若(1+mx)6=a0+a1x+a2x2+…+a6x6,且 a1+a2+a3+…+a6=63,则实数 m 的值为( )
A.1
B.-1
C.-3
D.1 或-3
答案 D
解析 令 x=0,则 a0=1;令 x=1,故(1+m)6=a0+a1+a2+…+a6.∵a1+a2+…+a6=63,∴(1+m)6=64=26.
.
答案 2
解 析 由 题 意 可 得 f(x)=4cos2 ·sin x-2sin x-|ln(x+1)|=2sin x·
-|ln(x+1)|=sin
由题意可知
,
则有
=2m· .∴
)=2m× .
2
∴ ·2
.∴m= .故选 A.
7.设函数 f(x)=
则满足 f(f(a))=2f(a)的 a 的取值范围是( )
A.
B.[0,1]
C.
D.[1,+∞)
答案 C 解析 当 a=2 时,f(a)=f(2)=22=4>1,f(f(a))=2f(a),
∴a=2 满足题意,排除 A,B 选项;当 a= 时,f(a)=f =3× -1=1,f(f(a))=2f(a),∴a= 满足题意,
A.3+2
B.8
C.4
D.4
答案 A
解析 因为 f(x)=loga(x-1)+1(a>0,且 a≠1)恒过定点 M(2,1),所以 M(2,1)在直线
=1 上,可得
=1,m+n=(m+n)
=3+
≥3+2 ,m+n 的最小值为 3+2 ,故选 A.
3
10.(2017 河南郑州一中质检一,理 11)已知直线 l 与双曲线 -y2=1 相切于点 P,l 与双曲线两条
渐近线交于 M,N 两点,则
的值为( )
A.3
B.4
C.5
D.0
答案 A
解析 取点 P(2,0),则 M(2,1),N(2,-1),
∴
=4-1=3,故选 A.
二、填空题 11.设 a>b>1,则 logab,logba,logabb 的大小关系是 答案 logabb<logab<logba
〚导学号 16804151〛 .(用“<”连接)
解析 考虑到两个数的大小关系是确定的,不妨令 a=4,b=2,则 logab= ,logba=2,logabb= ,显然
<2,∴logabb<logab<logba.
12.不论 k 为何实数,直线 y=kx+1 与圆 x2+y2-2ax+a2-2a-4=0 恒有交点,则实数 a 的取值范围是.答案 Nhomakorabea1≤a≤3
∴m=1 或 m=-3.
5.已知定义在 R 上的函数 f(x)满足:对任意实数 x,都有 f(1+x)=f(1-x),且 f(x)在(-∞,1]上单调递增.
若 x1<x2,且 x1+x2=3,则 f(x1)与 f(x2)的大小关系是( )
A.f(x1)<f(x2)
B.f(x1)=f(x2)
C.f(x1)>f(x2)
解析 由题知 2a+4>0,则 a>-2.注意到直线 y=kx+1 恒过定点(0,1),所以题设条件等价于点(0,1)
在圆内或圆上,则有 02+12-2a·0+a2-2a-4≤0,即 a2-2a-3≤0,解得-1≤a≤3.综上,-1≤a≤3.
13.函数 f(x)=4cos2 cos
-2sin x-|ln(x+1)|的零点个数为
∴g(x)单调递增,∵f(1)=0,∴g(1)=0,
∴f(x)>0 等价于 g(x)>0=g(1),∴x>1.
∴f(x)>0 的解集是(1,+∞).
9.(2017 辽宁鞍山一模,理 9)已知 f(x)=loga(x-1)+1(a>0,且 a≠1)恒过定点 M,且点 M 在直线
=1(m>0,n>0)上,则 m+n 的最小值为( )
能值的集合为( )
A.{1}
B.
C.
D.
答案 B 解析 ∵ 是一个与 n 无关的常数,∴结合选项令 =1,
则数列{an}是一个常数列,满足题意;
1
令
,设等差数列的公差为 d,则 an= a2n= (an+nd),
∴an=nd,即 a1+(n-1)d=nd,化简,得 a1=d,也满足题意; =0,则 an=0,a2n=0,不满足题意.故选 B.
排除 D 选项,故答案为 C.
8.已知 f(x)是定义在 R 上的可导函数,f(x)+f'(x)>0,且 f(1)=0,则不等式 f(x)>0 的解集是( )
A.(0,+∞)
B.(0,1)
C.(1,+∞)
D.(-∞,0)
答案 C
解析 设 g(x)=exf(x)(x∈R),则 g'(x)=ex[f(x)+f'(x)]>0,
A.q=r<p C.p=r<q 答案 C 解析
B.q=r>p D.p=r>q
f(x)=ln x 是 增 函 数 , 根 据 条 件 不 妨 取 a=1,b=e, 则
p=f( )=ln
,q=f >f( )= ,r= ·[f(1)+f(e)]= .在这种特例情况下满足 p=r<q,所以选
C. 3.(2016 河北衡水中学一模,理 3)在等差数列{an}中, 是一个与 n 无关的常数,则该常数的可
D.不能确定
答案 C
解析 由 f(1+x)=f(1-x)知,函数 y=f(x)的图象关于直线 x=1 对称.又 f(x)在(-∞,1]上单调递增,所以
f(x)在[1,+∞)上单调递减.设点 A(x1,0),B(x2,0),因为 x1<x2,且 x1+x2=3,则点 A 在点 B 的左侧,且
AB 的中点坐标为 ,所以结合图象可知,f(x1)>f(x2).
【高三数学】(文科)选择题考前专练
一、选择题 1.方程 ax2+2x+1=0 至少有一个负根的充要条件是( )
A.0<a≤1 C.a≤1 答案 C
B.a<1 D.0<a≤1 或 a<0
解析 当 a=0 时,x=- ,符合题意,排除 A,D;当 a=1 时,x=-1,符合题意,排除 B.故选 C.
2.设 f(x)=ln x,0<a<b,若 p=f( ),q=f ,r= [f(a)+f(b)],则下列关系式中正确的是( )