高二数学平面向量及其应用练习试题 百度文库

高二数学平面向量及其应用练习试题 百度文库
高二数学平面向量及其应用练习试题 百度文库

一、多选题

1.下列说法中错误的为( )

A .已知(1,2)a =,(1,1)b =,且a 与a b λ+的夹角为锐角,则实数λ的取值范围是

5,3??-+∞ ???

B .向量1(2,3)e =-,213,24e ??

=-

???

不能作为平面内所有向量的一组基底 C .若//a b ,则a 在b 方向上的投影为||a

D .非零向量a 和b 满足||||||a b a b ==-,则a 与a b +的夹角为60° 2.若a →,b →,c →

是任意的非零向量,则下列叙述正确的是( ) A .若a b →→

=,则a b →→

= B .若a c b c →→→→?=?,则a b →→

= C .若//a b →→,//b c →→,则//a c →→

D .若a b a b →

+=-,则a b →→

⊥ 3.已知非零平面向量a ,b ,c ,则( )

A .存在唯一的实数对,m n ,使c ma nb =+

B .若0?=?=a b a c ,则//b c

C .若////a b c ,则a b c a b c =++++

D .若0a b ?=,则a b a b +=- 4.下列说法中正确的是( )

A .对于向量,,a b c ,有()()

a b c a b c ??=??

B .向量()11,2e =-,()25,7e =能作为所在平面内的一组基底

C .设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0m n ?<”的充分而不必要条件

D .在ABC 中,设D 是BC 边上一点,且满足2CD DB =,CD AB AC λμ=+,则

0λμ+=

5.已知向量a =(2,1),b =(1,﹣1),c =(m ﹣2,﹣n ),其中m ,n 均为正数,且(a b -)∥c ,下列说法正确的是( ) A .a 与b 的夹角为钝角

B .向量a 在b

C .2m +n =4

D .mn 的最大值为2

6.在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,不解三角形,确定下列判断错误的是( )

A .

B =60°,c =4,b =5,有两解 B .B =60°,c =4,b =3.9,有一解

C .B =60°,c =4,b =3,有一解

D .B =60°,c =4,b =2,无解

7.在RtABC 中,BD 为斜边AC 上的高,下列结论中正确的是( )

A .2

AB AB AC B .2

BC CB AC C .2AC

AB BD

D .2

BD

BA BD

BC BD

8.设向量a ,b 满足1a b ==,且25b a -=,则以下结论正确的是( ) A .a b ⊥

B .2a b +=

C .2a b -=

D .,60a b =?

9.已知M 为ABC 的重心,D 为BC 的中点,则下列等式成立的是( ) A .11

22AD AB AC =+ B .0MA MB MC ++= C .2133

BM BA BD =

+ D .12

33

CM CA CD =

+

10.在△ABC 中,AB =AC ,BC =4,D 为BC 的中点,则以下结论正确的是( ) A .BD AD AB -= B .1

()2

AD AB AC =

+ C .8BA BC ?=

D .AB AC AB AC +=-

11.有下列说法,其中错误的说法为( ). A .若a ∥b ,b ∥c ,则a ∥c

B .若PA PB PB P

C PC PA ?=?=?,则P 是三角形ABC 的垂心 C .两个非零向量a ,b ,若a b a b -=+,则a 与b 共线且反向

D .若a ∥b ,则存在唯一实数λ使得a b λ=

12.已知平行四边形的三个顶点的坐标分别是(3,7),(4,6),(1,2)A B C -.则第四个顶点的坐标为( )

A .(0,1)-

B .(6,15)

C .(2,3)-

D .(2,3)

13.已知实数m ,n 和向量a ,b ,下列说法中正确的是( ) A .()

m a b ma mb -=- B .()m n a ma na -=-

C .若ma mb =,则a b =

D .若()0ma na a =≠,则m n =

14.如图,46?的方格纸(小正方形的边长为1)中有一个向量OA (以图中的格点O 为起点,格点A 为终点),则( )

A .分别以图中的格点为起点和终点的向量中,与OA 是相反向量的共有11个

B .满足10OA OB -=B 共有3个

C .存在格点B ,C ,使得OA OB OC =+

D .满足1OA OB ?=的格点B 共有4个 15.下列说法中错误的是( )

A .向量A

B 与CD 是共线向量,则A ,B ,

C ,

D 四点必在一条直线上 B .零向量与零向量共线 C .若,a b b c ==,则a c =

D .温度含零上温度和零下温度,所以温度是向量

二、平面向量及其应用选择题

16.在ABC ?中,若cos cos a A b B =,则ABC 的形状一定是( ) A .等腰直角三角形 B .直角三角形 C .等腰三角形

D .等腰或直角三角形

17.已知两不共线的向量()cos ,sin a αα=,()cos ,sin b ββ=,则下列说法一定正确的是( )

A .a 与b 的夹角为αβ-

B .a b ?的最大值为1

C .2a b +≤

D .()()

a b a b +⊥-

18.O 为ABC ?内一点内角A 、B 、C 所对的边分别为a 、b 、c ,已知

0a OA b OB c OC ?+?+?=,且tan tan tan 0A OA B OB C OC ?+?+?=,若3a =边BC 所对的ABC ?外接圆的劣弧长为( ) A .

23

π B .

43

π C .

6

π D .

3

π

19.在ABC 中,a ,b ,c 分别是角A ,B ,C

所对的边,若

lg lg lg sin a c B -==-,且0,2B π??

∈ ???

,则ABC 的形状是( )

A .等边三角形

B .锐角三角形

C .等腰直角三角形

D .钝角三角形

20.三角形ABC 所在平面内一点P 满足PA PB PB PC PC PA ?=?=?,那么点P 是三角形ABC 的( ) A .重心

B .垂心

C .外心

D .内心

21.已知在四边形ABCD 中, 2, 4,53AB a b BC a b CD a b =--=+=+,则四边形

ABCD 的形状是( )

A .矩形

B .梯形

C .平行四边形

D .以上都不对

22.在三角形ABC 中,若三个内角,,A B C 的对边分别是,,a b c ,1a =

,c =45B =?,则sin C 的值等于( )

A .

441

B .

45

C .

425

D

41

23.在ABC 中,若()()

0CA CB CA CB +?-=,则ABC 为( ) A .正三角形

B .直角三角形

C .等腰三角形

D .无法确定

24.已知非零向量AB 与AC 满足

0AB AC BC AB AC ?? ?+?= ?

??

且1

2AB AC AB AC ?=,则ABC 的形状是( ) A .三边均不相等的三角形 B .等腰直角三角形 C .等边三角形

D .以上均有可能

25.在△ABC 中,AB =a ,BC =b ,且a b ?>0,则△ABC 是( ) A .锐角三角形

B .直角三角形

C .等腰直角三角形

D .钝角三角形

26.设ABC ?中BC 边上的中线为AD ,点O 满足2AO OD =,则OC =( )

A .12

33AB AC -+ B .

21

33

AB AC - C .1233

AB AC -

D .21

33

AB AC -

+ 27.在ABC ?中||||AB AC AB AC +=-,3,4,AB AC ==则BC 在CA 方向上的投影为

( ). A .4

B .3

C .-4

D .5

28.在ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,若

()2

2S a b c +=+,则cos A 等于( )

A .

4

5

B .45

-

C .

1517

D .1517

-

29.已知M (3,-2),N (-5,-1),且1

2

MP MN =,则P 点的坐标为( ) A .(-8,1) B .31,2?

?-- ??

?

C .31,2?? ???

D .(8,-1)

30.如图,为测得河对岸塔AB 的高,先在河岸上选一点C ,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10m 到位置D ,测得

45BDC ∠=?,则塔AB 的高是(单位:m )( )

A .2

B .106

C .103

D .10

31.在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若

()()(23)a b c a c b ac +++-=+,则cos sin A C +的取值范围为

A .33

)2

B .3

(

3)2 C .3(3]2

D .3

(3)2

32.设(),1A a ,()2,1B -,()4,5C 为坐标平面上三点,O 为坐标原点,若OA 与OB 在

OC 方向上的投影相同,则a =( )

A .12

-

B .

12

C .-2

D .2

33.在矩形ABCD 中,3,3,2AB BC BE EC ===,点F 在边CD 上,若

AB AF 3→→=,则AE BF

→→的值为( ) A .0

B 83

C .-4

D .4

34.如图,在ABC 中,14AD AB →

→=,12

AE AC →→

=,BE 和CD 相交于点F ,则向量

AF →

等于( )

A .1277A

B A

C →→+

B .1377AB A

C →→

+

C .121414

AB AC →→

+ D .131414

AB AC →→

+ 35.著名数学家欧拉提出了如下定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.此直线被称为三角形的欧拉线,该定理则被称为欧拉线定理.设点O ,H 分别是△ABC 的外心、垂心,且M 为BC 中点,则 ( )

A .33A

B A

C HM MO +=+ B .33AB AC HM MO +=- C .24AB AC HM MO +=+

D .24AB AC HM MO +=-

【参考答案】***试卷处理标记,请不要删除

一、多选题 1.ACD 【分析】

由向量的数量积?向量的投影?基本定理与向量的夹角等基本知识,逐个判断即可求解. 【详解】

对于A ,∵,,与的夹角为锐角, ∴ ,

且(时与的夹角为0), 所以且,故A 错误; 对于B 解析:ACD 【分析】

由向量的数量积?向量的投影?基本定理与向量的夹角等基本知识,逐个判断即可求解. 【详解】

对于A ,∵(1,2)a =,(1,1)b =,a 与a b λ+的夹角为锐角, ∴()(1,2)(1,2)a a b λλλ?+=?++

142350λλλ=+++=+>,

且0λ≠(0λ=时a 与a b λ+的夹角为0), 所以5

3

λ>-

且0λ≠,故A 错误; 对于B ,向量12(2,3)4e e =-=,即共线,故不能作为平面内所有向量的一组基底,B 正确;

对于C ,若//a b ,则a 在b 方向上的正射影的数量为||a ±,故C 错误; 对于D ,因为|||a a b =-∣,两边平方得||2b a b =?, 则2

2

3()||||2

a a

b a a b a ?+=+?=

, 222||()||2||3||a b a b a a b b a +=+=+?+=,

故2

3||()32cos ,||||3||a a a b a a b a a b a a ?+<+>===

+?∣, 而向量的夹角范围为[]0,180??, 得a 与a b λ+的夹角为30°,故D 项错误. 故错误的选项为ACD 故选:ACD 【点睛】

本题考查平面向量基本定理及向量的数量积,向量的夹角等知识,对知识广度及准确度要求比较高,中档题.

2.ACD 【分析】

根据平面向量的定义、数量积定义、共线向量定义进行判断. 【详解】

对应,若,则向量长度相等,方向相同,故,故正确; 对于,当且时,,但,可以不相等,故错误; 对应,若,,则方向相同

解析:ACD 【分析】

根据平面向量的定义、数量积定义、共线向量定义进行判断. 【详解】

对应A ,若a b =,则向量,a b 长度相等,方向相同,故||||a b =,故A 正确; 对于B ,当a c ⊥且b c ⊥时,··0a c b c ==,但a ,b 可以不相等,故B 错误; 对应C ,若//a b ,//b c ,则,a b 方向相同或相反,,b c 方向相同或相反, 故,a c 的方向相同或相反,故//a c ,故C 正确;

对应D ,若||||a b a b +=-,则22222?2?a a b b a a b b ++=-+,

∴0a b =,∴a b ⊥,故D 正确.

故选:ACD 【点睛】

本题考查平面向量的有关定义,性质,数量积与向量间的关系,属于中档题.

3.BD 【分析】

假设与共线,与,都不共线,即可判断A 错;根据向量垂直的数量积表示,可判断B 正确;向量共线可以是反向共线,故C 错;根据向量数量积法则,可判断D 正确. 【详解】

A 选项,若与共线,与,都

解析:BD 【分析】

假设a 与b 共线,c 与a ,b 都不共线,即可判断A 错;根据向量垂直的数量积表示,可判断B 正确;向量共线可以是反向共线,故C 错;根据向量数量积法则,可判断D 正确. 【详解】

A 选项,若a 与b 共线,c 与a ,b 都不共线,则ma nb +与c 不可能共线,故A 错;

B 选项,因为a ,b ,c 是非零平面向量,若0?=?=a b a c ,则a b ⊥,a c ⊥,所以

//b c ,即B 正确;

C 选项,因为向量共线可以是反向共线,所以由////a b c 不能推出

a b c a b c =++++;如a 与b 同向,c 与a 反向,且a b c +>,则a b c a b c =+-++,故C 错;

D 选项,若0a b ?=,则(

)

2

2

2

2

2

2a b a b

a b a b a b

+=+=++?=

+,

(

)

2

2

2

2

2

2a b a b

a b a b a b -=

-=+-?=

+,所以a b a b +=-,即D 正确.

故选:BD. 【点睛】

本题主要考查共线向量的有关判定,以及向量数量积的相关计算,属于基础题型.

4.BCD 【分析】

.向量数量积不满足结合律进行判断 .判断两个向量是否共线即可 .结合向量数量积与夹角关系进行判断 .根据向量线性运算进行判断

【详解】

解:.向量数量积不满足结合律,故错误, .,

解析:BCD 【分析】

A .向量数量积不满足结合律进行判断

B .判断两个向量是否共线即可

C .结合向量数量积与夹角关系进行判断

D .根据向量线性运算进行判断 【详解】

解:A .向量数量积不满足结合律,故A 错误,

B .

12

57

-≠,∴向量1(1,2)e =-,2(5,7)e =不共线,能作为所在平面内的一组基底,故B 正确,

C .存在负数λ,使得m n λ=,则m 与n 反向共线,夹角为180?,此时0m n <成立,

当0m n <成立时,则m 与n 夹角满足90180θ?

D .由23CD CB =得22

33CD AB AC =-,

则23λ=,23

μ=-,则22

033λμ+=-=,故D 正确

故正确的是BCD , 故选:BCD . 【点睛】

本题主要考查向量的有关概念和运算,结合向量数量积,以及向量运算性质是解决本题的关键,属于中档题.

5.CD 【分析】

对于A ,利用平面向量的数量积运算判断; 对于B ,利用平面向量的投影定义判断;对于C ,利用()∥判断;对于D ,利用C 的结论,2m+n=4,结合基本不等式判断. 【详解】 对于A ,向量(

解析:CD 【分析】

对于A ,利用平面向量的数量积运算判断; 对于B ,利用平面向量的投影定义判断;对于C ,利用(a b -)∥c 判断;对于D ,利用C 的结论,2m +n =4,结合基本不等式判断. 【详解】

对于A ,向量a =(2,1),b =(1,﹣1),则2110a b ?=-=>,则,a b 的夹角为锐角,错误;

对于B ,向量a =(2,1),b =(1,﹣1),则向量a 在b 方向上的投影为2

2

a b b

?=

,错误;

对于C ,向量a =(2,1),b =(1,﹣1),则a b -= (1,2),若(a b -)∥c ,则(﹣n )=2(m ﹣2),变形可得2m +n =4,正确;

对于D ,由C 的结论,2m +n =4,而m ,n 均为正数,则有mn 12=

(2m ?n )12

≤ (

22m n +)2

=2,即mn 的最大值为2,正确; 故选:CD. 【点睛】

本题主要考查平面向量的数量积运算以及基本不等式的应用,属于基础题.

6.ABC 【分析】

根据判断三角形解的个数的结论:若为锐角,当时,三角形有唯一解;当时,三角形有两解;当时,三角形无解:当时,三角形有唯一解.逐个判断即可得解. 【详解】

对于,因为为锐角且,所以三角

解析:ABC 【分析】

根据判断三角形解的个数的结论:若B 为锐角,当c b <时,三角形有唯一解;当

sin c B b c <<时,三角形有两解;当sin c B b >时,三角形无解:当sin c B b =时,三角形有唯一解.逐个判断即可得解. 【详解】

对于A ,因为B 为锐角且45c b =<=,所以三角形ABC 有唯一解,故A 错误;

对于B ,因为B 为锐角且sin 4 3.92

c B b c =?==<,所以三角形ABC 有两解,故B 错误;

对于C ,因为B 为锐角且 sin 43c B b ==>=,所以三角形ABC 无解,故C 错误;

对于D ,因为B 为锐角且sin 42c B b ==>=,所以三角形ABC 无解,故D 正确. 故选:ABC.

【点睛】

本题考查了判断三角形解的个数的方法,属于基础题.

7.AD 【分析】

根据向量的数量积关系判断各个选项的正误. 【详解】

对于A ,,故A 正确; 对于B ,,故B 错误; 对于C ,,故C 错误; 对于D ,, ,故D 正确. 故选:AD. 【点睛】 本题考查三角形

解析:AD 【分析】

根据向量的数量积关系判断各个选项的正误. 【详解】 对于A ,2

cos AB AB AC AB AC A AB AC

AB AC

,故A 正确;

对于B ,

2

cos cos CB CB AC CB AC C CB AC C CB AC

CB AC

故B 错误; 对于C ,

2

cos cos BD AB BD AB BD ABD AB BD ABD AB BD

BD

AB

,故C 错误; 对于D ,2

cos BD BA BD

BA BD ABD BA BD BD BA

,

2

cos BD BC BD

BC BD CBD BC BD

BD BC

,故D 正确.

故选:AD. 【点睛】

本题考查三角形中的向量的数量积问题,属于基础题.

8.AC 【分析】

由已知条件结合向量数量积的性质对各个选项进行检验即可. 【详解】

,且,平方得,即,可得,故A 正确; ,可得,故B 错误; ,可得,故C 正确; 由可得,故D 错误; 故选:AC 【点睛】

解析:AC 【分析】

由已知条件结合向量数量积的性质对各个选项进行检验即可. 【详解】

1a b ==,且25b a -=,平方得22445b a a b +-?=,即0a b ?=,可得a b ⊥,故A

正确;

()2

22

22a b a b a b +=++?=,可得2a b +=,故B 错误; ()

2

2

2

22a b a b a b -=+-?=,可得2a b -=,故C 正确;

由0a b ?=可得,90a b =?,故D 错误; 故选:AC 【点睛】

本题考查向量数量积的性质以及向量的模的求法,属于基础题.

9.ABD 【分析】

根据向量的加减法运算法则依次讨论即可的答案. 【详解】

解:如图,根据题意得为三等分点靠近点的点.

对于A 选项,根据向量加法的平行四边形法则易得,故A 正确; 对于B 选项,,由于为三

解析:ABD 【分析】

根据向量的加减法运算法则依次讨论即可的答案. 【详解】

解:如图,根据题意得M 为AD 三等分点靠近D 点的点.

对于A 选项,根据向量加法的平行四边形法则易得11

22

AD AB AC =

+,故A 正确; 对于B 选项,2MB MC MD +=,由于M 为AD 三等分点靠近D 点的点,

2MA MD =-,所以0MA MB MC ++=,故正确;

对于C 选项,()

2212

=3333

BM BA AD BA BD BA BA BD =+=+-+,故C 错误; 对于D 选项,()

2212

3333

CM CA AD CA CD CA CA CD =+=+-=+,故D 正确. 故选:ABD

【点睛】

本题考查向量加法与减法的运算法则,是基础题.

10.BC 【分析】

根据向量的加法和减法运算,以及向量的数量积运算可选项. 【详解】

对于A 选项:,故A 错;

对于 B 选项:因为D 为BC 的中点,,故B 正确; 对于C 选项:,故正确; 对于D 选项:,而,故

解析:BC 【分析】

根据向量的加法和减法运算,以及向量的数量积运算可选项. 【详解】

对于A 选项:BD AD BD DA BA -=+=,故A 错; 对于 B 选项:因为D 为BC 的中点,

()

111

++++()222

AD AB BD AB BC AB BA AC AB AC ====+,故B 正确;

对于C 选项:cos 248BD BA BC BA BC B BA BC BA

?=??∠=??

=?=,故正确;

对于D 选项:2,AB AC AD AB AC CB +=-=,而2AD CB ≠,故D 不正确. 故选:BC. 【点睛】

本题考查向量的线性运算和向量的数量积运算,属于基础题.

11.AD 【分析】

分别对所给选项进行逐一判断即可. 【详解】

对于选项A ,当时,与不一定共线,故A 错误; 对于选项B ,由,得,所以,,

同理,,故是三角形的垂心,所以B 正确; 对于选项C ,两个非零向量

解析:AD 【分析】

分别对所给选项进行逐一判断即可. 【详解】

对于选项A ,当0b =时,a 与c 不一定共线,故A 错误;

对于选项B ,由PA PB PB PC ?=?,得0PB CA ?=,所以PB CA ⊥,PB CA ⊥, 同理PA CB ⊥,PC BA ⊥,故P 是三角形ABC 的垂心,所以B 正确;

对于选项C ,两个非零向量a ,b ,若a b a b -=+,则a 与b 共线且反向,故C 正确;

对于选项D ,当0b =,0a ≠时,显然有a ∥b ,但此时λ不存在,故D 错误. 故选:AD 【点睛】

本题考查与向量有关的命题的真假的判断,考查学生对基本概念、定理的掌握,是一道容易题.

12.ABC 【分析】

设平行四边形的四个顶点分别是,分类讨论点在平行四边形的位置有:,,,将向量用坐标表示,即可求解. 【详解】 第四个顶点为, 当时,,

解得,此时第四个顶点的坐标为; 当时,, 解得

【分析】

设平行四边形的四个顶点分别是(3,7),(4,6),(1,2),(,)A B C D x y -,分类讨论D 点在平行四边形的位置有:AD BC =,AD CB =,AB CD =,将向量用坐标表示,即可求解. 【详解】

第四个顶点为(,)D x y ,

当AD BC =时,(3,7)(3,8)x y --=--,

解得0,1x y ==-,此时第四个顶点的坐标为(0,1)-; 当AD CB =时,(3,7)(3,8)x y --=,

解得6,15x y ==,此时第四个顶点的坐标为(6,15); 当AB CD =时,(1,1)(1,2)x y -=-+,

解得2,3x y ==-,此时第四个项点的坐标为(2,3)-. ∴第四个顶点的坐标为(0,1)-或(6,15)或(2,3)-. 故选:ABC . 【点睛】

本题考查利用向量关系求平行四边形顶点坐标,考查分类讨论思想,属于中档题.

13.ABD 【分析】

根据向量数乘运算判断AB 选项的正确性,通过的特殊情况判断C 选项的正确性,根据向量运算判断D 选项的正确性. 【详解】

根据向量数乘的运算可知A 和B 正确;C 中,当时,,但与不一定相等,

解析:ABD 【分析】

根据向量数乘运算判断AB 选项的正确性,通过m 的特殊情况判断C 选项的正确性,根据向量运算判断D 选项的正确性. 【详解】

根据向量数乘的运算可知A 和B 正确;C 中,当0m =时,0ma mb ==,但a 与b 不一定相等,故C 不正确;D 中,由ma na =,得()0m n a -=,因为0a ≠,所以m n =,故D 正确. 故选:ABD 【点睛】

本小题主要考查向量数乘运算,属于基础题.

14.BCD 【分析】

根据向量的定义及运算逐个分析选项,确定结果.

解:分别以图中的格点为起点和终点的向量中,与是相反向量的共有 18个,故错,

以为原点建立平面直角坐标系,, 设,若, 所以

解析:BCD 【分析】

根据向量的定义及运算逐个分析选项,确定结果. 【详解】

解:分别以图中的格点为起点和终点的向量中,与OA 是相反向量的共有 18个,故A 错, 以O 为原点建立平面直角坐标系,()1,2A , 设(,)B m n ,若10OA OB -=,

所以22(1)(2)10m n -+-=,(33m -,22n -,且m Z ∈,)n Z ∈, 得(0,1)B -,(2,1)-,(2,1)-共三个,故B 正确. 当(1,0)B ,(0,2)C 时,使得OA OB OC =+,故C 正确.

若1OA OB ?=,则21m n +=,(33m -,22n -,且m Z ∈,)n Z ∈, 得(1,0)B ,(3,1)-,(1,1)-,(3,2)-共4个,故D 正确. 故选:BCD .

【点睛】

本题考查向量的定义,坐标运算,属于中档题.

15.AD 【分析】

利用零向量,平行向量和共线向量的定义,判断各个选项是否正确,从而得出结论. 【详解】

向量与是共线向量,则A ,B ,C ,D 四点不一定在一条直线上,故A 错误; 零向量与任一向量共线,故B

解析:AD 【分析】

利用零向量,平行向量和共线向量的定义,判断各个选项是否正确,从而得出结论. 【详解】

向量AB 与CD 是共线向量,则A ,B ,C ,D 四点不一定在一条直线上,故A 错误; 零向量与任一向量共线,故B 正确; 若,a b b c ==,则a c =,故C 正确; 温度是数量,只有正负,没有方向,故D 错误. 故选:AD 【点睛】

本题考查零向量、单位向量的定义,平行向量和共线向量的定义,属于基础题.

二、平面向量及其应用选择题

16.D 【分析】

首先利用正弦定理求得sin 2sin 2A B =,进一步利用三角函数的诱导公式求出结果. 【详解】

解:已知:cos cos a A b B =,利用正弦定理:

2sin sin sin a b c

R A B C

===, 解得:sin cos sin cos A A B B =,即sin 2sin 2A B =,

所以:22A B =或21802A B =?-,解得:A B =或90A B +=? 所以:ABC 的形状一定是等腰或直角三角形 故选:D . 【点评】

本题考查的知识要点:正弦定理的应用,三角函数的诱导公式的应用,属于中档题. 17.D 【分析】

由向量夹角的范围可判断A 选项的正误;计算出a b ?,利用余弦函数的值域以及已知条件可判断B 选项的正误;利用平面向量模的三角不等式可判断C 选项的正误;计算

()()a b a b +?-的值可判断D 选项的正误.综合可得出结论.

【详解】

()cos ,sin a αα=,()cos ,sin b ββ=,则2cos 1a α==,同理可得

1b =,

a 与

b 不共线,则()sin cos cos sin sin 0αβαβαβ-=-≠,则()k k Z αβπ-≠∈.

对于A 选项,由题意知,a 与b 的夹角的范围为()0,π,而()R αβ-∈且

()k k Z αβπ-≠∈,A 选项错误;

对于B 选项,设向量a 与b 的夹角为θ,则0θπ<<,所以,

()cos cos 1,1a b a b θθ?=?=∈-,B 选项错误;

对于C 选项,由于a 与b 不共线,由向量模的三角不等式可得2a b a b +<+=,C 选项错误; 对于D 选项,(

)()

2

2

220a b a b a b a b +?-=-=-=,所以,()()

a b a b +⊥-,D

选项正确. 故选:D. 【点睛】

本题考查平面向量有关命题真假的判断,涉及平面向量的夹角、数量积与模的计算、向量垂直关系的处理,考查运算求解能力与推理能力,属于中等题. 18.A 【分析】 根据题意得出

tan tan tan A B C

a b c

==,利用正弦定理边化角思想和切化弦思想得出A B C ==,从而可得知ABC ?为等边三角形,进而可求得BC 所对的ABC ?外接圆的劣弧

长. 【详解】

0a OA b OB c OC ?+?+?=,a b

OC OA OB c c

∴=--,

同理可得tan tan tan tan A B OC OA OB C C =--,tan tan tan tan a A c C

b B

c C ?-=-??∴??-=-??,

tan tan tan A B C

a b c

==, 由正弦定理得

tan tan tan sin sin sin A B C A B C ==,所以,111

cos cos cos A B C

==, cos cos cos A B C ∴==,

由于余弦函数cos y x =在区间()0,π

上单调递减,所以,3

A B C π

===

, 设ABC ?的外接圆半径为R ,则22

sin a

R A

=

==,1R ∴=, 所以,边BC 所对的ABC ?外接圆的劣弧长为222133

R A ππ?=?=.

故选:A. 【点睛】

本题考查弧长的计算,涉及正弦定理边角互化思想、切化弦思想以及正弦定理的应用,考查计算能力,属于中等题. 19.C 【分析】

化简条件可得sin 2

a B c ==

,由正弦定理化边为角,整理cos 0C =,即可求解. 【详解】

lg lg lg sin a c B -==-,

sin a B c ∴==0,2B π??∈ ???,

4

B π

∴=

.

由正弦定理,得

sin sin a A c C ==

3

sin cos sin 422C A C C C π???

∴==-=+? ?????

, 化简得cos 0C =.

()0,C π∈, 2

C π

∴=

, 则4

A B C π

π=--=

∴ABC 是等腰直角三角形. 故选:C. 【点睛】

本题主要考查了正弦定理,三角恒等变换,属于中档题. 20.B 【分析】

先化简得0,0,0PA CB PB CA PC AB ?=?=?=,即得点P 为三角形ABC 的垂心. 【详解】

由于三角形ABC 所在平面内一点P 满足PA PB PB PC PC PA ?=?=?, 则()()()

0,0,0PA PB PC PB PA PC PC PB PA ?-=?-=?-= 即有0,0,0PA CB PB CA PC AB ?=?=?=, 即有,,PA CB PB CA PC AB ⊥⊥⊥,

则点P 为三角形ABC 的垂心. 故选:B. 【点睛】

本题主要考查向量的运算和向量垂直的数量积,意在考查学生对这些知识的理解掌握水平. 21.B 【分析】

计算得到BC A CD B -=,得到BCDM ,ABCM 为平行四边形,得到答案. 【详解】

2, 4,53AB a b BC a b CD a b =--=+=+,则53BC AB BC B a b CD A -=+=+=.

设BC BA BM +=,故BCDM ,ABCM 为平行四边形,故ABCD 为梯形. 故选:B .

【点睛】

本题考查了根据向量判断四边形形状,意在考查学生的综合应用能力. 22.B 【分析】

在三角形ABC 中,根据1a =,42c =45B =?,利用余弦定理求得边b ,再利用正弦

定理

sin sin b c

B C =求解. 【详解】

在三角形ABC 中, 1a =,42c =45B =?, 由余弦定理得:2222cos b a c ac B =+-,

2

1322142252

=+-??=, 所以5b =, 由正弦定理得:

sin sin b c

B C

=, 所以

2

42sin 42sin 55

c B

C b

=

==, 故选:B 【点睛】

相关主题
相关文档
最新文档