人教版数学九年级上册第二十一章达标测试卷及答案

合集下载

人教版数学九年级上册第二十一章 一元二次方程达标测试卷(含答案)

人教版数学九年级上册第二十一章 一元二次方程达标测试卷(含答案)

一元二次方程自我评估(本试卷满分120分)一、选择题(本大题共10小题,每小题3分,共30分)1. 下列方程中,一定是一元二次方程的是( )A. 2x 2-x 3+1=0B.(x +1)(x ﹣1)=x 2﹣xC. 5x 2﹣4=0D. ax 2+bx +c =0 2. 用公式法解一元二次方程3x 2=2x ﹣3时,首先要确定a ,b ,c 的值,下列叙述正确的是( )A. a =3,b =2,c =3B. a =﹣3,b =2,c =3C. a =3,b =2,c =﹣3D. a =3,b =﹣2,c =33. 若x =1是一元二次方程x 2+ax +2b =0的一个根,则3a +6b 的值为( )A. −3B. −2C. −1D. 64. 如图是用配方法解方程21x 2﹣x ﹣2=0的四个步骤,出现错误的是( ) A. ① B. ② C. ③ D. ④第4题图5. 若关于x 的一元二次方程(k ﹣1)x 2+4x +1=0有两个不等的实数根,则k 的取值范围是( )A. k <5B. k <5且k ≠1C. k ≤5且k ≠1D. k >56. 若代数式3x 2﹣2x +1与﹣x 2+5x ﹣3的值互为相反数,则x 的值为( )A. ﹣21或﹣2B. 21或2C.﹣2或21D.﹣21或2 7. 虎年春晚,舞蹈诗剧《只此青绿》以北宋名画《千里江山图》为灵感创作,将中华传统之美娓娓道来.一幅如图所示的长80 cm ,高90 cm 的《千里江山图》仿品的四周加上宽度相同的边框,装裱成挂图.若仿品的面积占整个挂图面积的80%,所加边框的宽度为x cm ,则列出的方程是( )A.(90+x )(80+x )=90×80×80%B.(90+2x )(80+2x )×80%=90×80C.(90﹣2x )(80﹣2x )=90×80×80%D.(90+x )(80+x )×80%=90×80第7题图8. 已知x 1,x 2是方程x 2+3x ﹣1=0的两个根,则以x 1-1和x 2-1为根的一元二次方程是( )A. x 2+5x ﹣3=0B. x 2-5x ﹣3=0C. x 2-5x +3=0D. x 2+5x +3=09. 已知等腰三角形的三边长分别为a ,b ,4,且a ,b 是关于x 的一元二次方程x 2﹣12x +m +2=0的两根,则m 的值是( )A. 34B. 30C. 30或34D. 30或3610. 将关于x 的一元二次方程x 2﹣px +q =0变形为x 2=px ﹣q ,就可以将x 2表示为关于x 的一次多项式,从而达到“降次”的目的,又如x 3=x •x 2=x (px ﹣q )=…,我们将这种方法称为“降次法”,通过这种方法可以化简次数较高的代数式.根据“降次法”,已知x 2﹣x ﹣1=0,且x >0,则x 4﹣2x 3+3x 的值为( )A. 1﹣5B. 3﹣5C. 1+5D. 3+5二、填空题(本大题共6小题,每小题4分,共24分)11. 若关于x 的方程(k ﹣1)x |k |+1+6x ﹣7=0是一元二次方程,则k 的值为 .12. 一元二次方程x 2+x =0的两个实数根中,较大的根是_____________.13. 已知方程x 2﹣6x +q =0可以配方成(x ﹣p )2=7的形式,则p +q = .14. 下表是2022年10月的日历表,在此表上可以用一个方框圈出2×2个位置相邻的数(如图所示),若圈出的四个数中,最小数与最大数的乘积为65,则这个最小的数为_______________.第14题图 第16题图 15. 已知6a 2﹣100a +7=0,7b 2﹣100b +6=0,且ab ≠1,则ba 的值为_______________. 16. 如图,A ,B ,C ,D 为矩形的四个顶点,AB =16 cm ,AD =8 cm ,动点P ,Q 分别从点A ,C 同时出发,点P 以3 cm/s 的速度向点B 移动,到达点B 后停止;点Q 以2 cm/s 的速度向D 移动.当P ,Q 两点从出发开始到_______________s 时,点P 和点Q 的距离是10 cm.三、解答题(本大题共8小题,共66分)17.(每小题3分,共9分)解下列方程:(1)x 2﹣6x ﹣3=0(配方法); (2)(x ﹣3)(2x ﹣1)=1(公式法); (3)2x (x ﹣3)=9﹣3x (因式分解法).18.(5分)已知关于x 的方程x 2﹣3x +1=0的一个根是x =a ,求代数式3a 2+2(1﹣4a )﹣a 的值.19.(6分)某生态果园2019年冬桃产量为80吨,2021年冬桃产量为115.2吨,若该生态果园冬桃产量的年平均增长率相同.(1)求该生态果园冬桃产量的年平均增长率;(2)若下一年冬桃产量的年增长率不变,请预估2022年该生态果园的冬桃产量.20.(8分)已知关于x 的一元二次方程x 2﹣(m ﹣3)x ﹣m =0.(1)求证:方程有两个不等的实数根;(2)如果方程的两实根为x 1,x 2,且x 12+x 22﹣x 1x 2=13,求m 的值.21.(8分)以描绘浙江山水的名画《富春山居图》为主题的创意音舞诗画《忆江南》登上央视春晚,一句“但远山长,云山乱,晓山青”再次带火了浙江富春山的旅游业.若富春山某景点的纪念品价格为85元,平均每天可销售100个,获得的销售利润为1000元,根据销售经验知道,当售价每上涨1元时,销售量减少5个.(1)该纪念品每件的成本价为______元;(2)若该景点每天想通过此纪念品获得1080元的利润,且尽可能让游客获得实惠,问该纪念品价格应定为多少元?22.(8分)解方程(x -1)4-8(x -1)2+15=0.解:设t=(x -1)2,则t 2-8t+15=0,解得t=3或t=5.当t=3时,有(x -1)2=3,解得当t=5时,有(x -1)2=5,解得所以原方程的根为x=1x=1认真阅读例题的解法,体会解法中蕴含的数学思想,解方程(2x+1)4-7(2x+1)2-8=0.23. (10分)设a ,b ,c 是△ABC 的三边长,关于x 的方程x 2++2c ﹣a =0有两个相等的实数根,关于x 的方程3cx +2b =2a 的根为0.(1)求证:△ABC 为等边三角形;(2)若a ,b 为方程x 2+mx ﹣3m =0的两根,求m 的值.24.(12分)如图,已知A (a ,0),B (0,b )分别是x 轴,y 轴正半轴上的点,且满足8 a +|4-b |=0,点P 从点O 开始在线段OA 上向点A 以每秒2个单位长度的速度运动;点Q 从点B 开始在线段BO 上向点O 以每秒1个单位长度的速度运动.如果P ,Q 同时出发,运动时间为t 秒.(1)求a ,b 的值;(2)Rt △AOB 斜边上的高h=___________;(3)当△POQ 的面积是△AOB 面积的163时,求t 的值; (4)连接AQ ,试探究:△APQ 能否成为等腰三角形?若能,求出t 的值;若不能,请说明理由.第24题图题报第①期 一元二次方程自我评估参考答案10. C 解析:因为x 2-x -1=0,所以x 2-x=1,x 2=1+x.所以x 4﹣2x 3+3x=x 4-x 3-x 3+3x=x 2(x 2-x )-x (x 2-3)=x 2-x (1+x -3)=1+x -x 2+2x=1-1+2x=2x.因为方程x 2-x -1=0,且x >0,解得x 1,x 2=1+.15. 67 解析:因为7b 2﹣100b +6=0,所以211610070b b ⋅-⋅+=.因为6a 2﹣100a +7=0,所以a ,1b 是方程6x 2﹣100x +7=0的两根.所以由根与系数的关系,得a b =67. 三、17.(1)x 1=3+23,x 2=3﹣23. (2)x 1=4337+,x 2=4337-. (3)x 1=3,x 2=﹣23. 18. 解:因为x =a 是方程x 2﹣3x +1=0的根,所以a 2﹣3a +1=0,即a 2﹣3a =﹣1.所以原式=3a 2+2﹣8a ﹣a =3(a 2﹣3a )+2=-1.19. 解:(1)设该生态果园冬桃产量的年平均增长率为x .根据题意,得80(1+x )2=115.2,解得x 1=20%,x 2=﹣220%(不符合题意,舍去).该生态果园冬桃产量的年平均增长率为20%.(2)115.2×(1+20%)=138.24(吨).预计该生态果园2022年冬桃产量为138.24吨.20.(1)证明:由题意,得Δ=[-(m ﹣3)]2﹣4×(﹣m )=m 2﹣6m +9+4m =m 2﹣2m +1+8=(m ﹣1)2+8. 因为(m ﹣1)2≥0,所以(m ﹣1)2+8>0.所以方程有两个不等的实数根.(2)解:由根与系数的关系,得x 1+x 2=m ﹣3,x 1x 2=﹣m .因为x 12+x 22﹣x 1x 2=13,所以(x 1+x 2)2﹣3x 1x 2=13,即(m ﹣3)2+3m =13.整理,得m 2﹣3m ﹣4=0,解得m =-1或m =4.所以m 的值为-1或4.21. 解:(1)75(2)设该纪念品每件的售价为(85+x )元.由题意,得(85+x ﹣75)(100﹣5x )=1080.整理,得x 2﹣10x +16=0,解得x 1=8,x 2=2.因为尽可能让游客获得实惠,所以x=2.85+2=87(元),所以该纪念品每件的售价应定为87元.22. 解:设t=(2x+1)2,方程变形为t 2-7t -8=0,解得t=-1或t=8.因为(2x+1)2≥0,所以t 的值为8.当t=8时,(2x+1)2=8,解得x 1,x 2.综上,原方程的根为x 1=12,x 2=12-. 23.(1)证明:因为方程x 2+2b x +2c ﹣a =0有两个相等的实数根,所以Δ=(2b )2﹣4(2c ﹣a )=0.所以b +a =2c .因为方程3cx +2b =2a 的根为0,所以b =a .所以b =a =c .所以△ABC 为等边三角形.(2)解:因为a ,b 为方程 x 2+mx ﹣3m =0的两根,由(1)知a =b ,所以m 2﹣4×(﹣3m )=0,解得m 1=0,m 2=﹣12.因为a ,b ,c 是△ABC 的三边长,所以a >0.所以m 的值为﹣12.24. 解:(1)a=8,b=4. (2)558 (3)由已知,得0≤t≤4,OP=2t ,BQ=t ,OQ=4-t. 当△POQ 的面积是△AOB 面积的163时,得21OP•OQ=163×21OA•OB ,即21·2t (4-t )=163×21×8×4.整理,得t 2-4t+3=0,解得t 1=1,t 2=3.当△POQ 的面积是△AOB 面积的163时,t 的值为1或3. (4)△APQ 能成为等腰三角形.由(3)可得AP=8-2t.在Rt △POQ 中,PQ 2=OP 2+OQ 2=(2t )2+(4-t )2=5t 2-8t+16.因为∠APQ 是△OPQ 的一个外角,所以∠APQ >∠POQ=90°.若△APQ 是等腰三角形,则∠APQ 只能是顶角,此时PQ=AP.所以PQ 2=AP 2,即5t 2-8t+16=(8-2t )2.整理,得t 2+24t -48=0,解得t 1=83-12,t 2=-83-12(舍去).当t=83-12时,△APQ 能成为等腰三角形.。

人教版九年级数学上册第二十一章《一元二次方程》测试卷(含答案)

人教版九年级数学上册第二十一章《一元二次方程》测试卷(含答案)

人教版九年级数学上册第二十一章《一元二次方程》测试卷(含答案)一.选择题1.一元二次方程2x2﹣5x+1=0的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法确定2.若关于x的一元二次方程(k﹣2)x2+x+k2﹣4=0有一个根是0,则k的值是()A.﹣2B.2C.0D.﹣2或23.关于x的一元二次方程x2﹣2x﹣5=0有()A.两个相等的实数根B.两个不相等的正数根C.两个不相等的负数根D.一个正数根和一个负数根4.已知关于x的一元二次方程(m﹣1)x2+2x﹣3=0有实数根,则m的取值范围是()A.m≥B.m<C.m>且m≠1D.m≥且m≠1 5.关于x的多项式N=x﹣1,M=2x2﹣ax﹣2,a为任意实数,则下列结论中正确的有()个.①若M•N中不含x2项,则a=﹣2;②不论x取何值,总有M≥N;③若关于x的方程M=0的两个解分别为x1=t2,x2=2t﹣3,则实数a的最小值为﹣8;④不论a取何值,关于x的方程(M+N)2﹣(M+N)=6始终有4个不相同的实数解.A.1B.2C.3D.46.下列配方中,变形正确的是()A.x2+2x=(x+1)2B.x2﹣4x﹣3=(x﹣2)2+1C.2x2+4x+3=2(x+1)2+1D.﹣x2+2x=﹣(x+1)2﹣17.某公司今年10月的营业额为2500万元,按计划第四季度的总营业额要达到9100万元,求该公司11、12两个月营业额的月均增长率,设该公司11、12两个月营业额的月均增长率为x,则根据题意可列的方程为()A.2500(1+x)2=9100B.2500[1+(1+x)+(1+x)2]=9100C.2500[(1+x)+(1+x)2]=9100D.9100(1+x)2=25008.已知A=x2+6x+n2,B=2x2+4x+2n2+3,下列结论正确的个数为()①若A=x2+6x+n2是完全平方式,则n=±3;②B﹣A的最小值是2;③若n是A+B=0的一个根,则4n2+=;④若(2022﹣A)(A﹣2019)=2,则(2022﹣A)2+(A﹣2019)2=4.A.1个B.2个C.3个D.4个9.已知关于x的方程x2+(k+3)x+k+2=0,则下列说法正确的是()A.不存在k的值,使得方程有两个相等的实数解B.至少存在一个k的值,使得方程没有实数解C.无论k为何值,方程总有一个固定不变的实数根D.无论k为何值,方程有两个不相等的实数根10.满足(x﹣3)2+(y﹣3)2=6的所有实数对(x,y),使取最小值,此最小值为()A.B.C.D.二.填空题11.对于实数m,n,先定义一种运算“⊗”如下:,若x⊗(﹣2)=10,则实数x的值为.12.德尔塔(Delta)是一种全球流行的新冠病毒变异毒株,其传染性极强.某地有1人感染了德尔塔,因为没有及时隔离治疗,经过两轮传染后,一共有144人感染了德尔塔病毒,如果不及时控制,照这样的传染速度,经过三轮传染后,一共有人感染德尔塔病毒.13.已知m,n是方程x2﹣3x=2的两个根,则式子的值是.14.如图,某生物兴趣小组要在长40米、宽30米的矩形园地种植蔬菜,为便于管理,要在中间开辟一横两纵共三条等宽小路,若蔬菜种植面积为1008平方米,则小路的宽为米.15.欧几里得在《几何原本》中,记载了用图解法解方程x2+ax=b2的方法,类似地我们可以用折纸的方法求方程x2+x﹣1=0的一个正根.如图,一张边长为1的正方形的纸片ABCD,先折出AD,BC的中点E,F,再沿过点A的直线折叠使AD落在线段AF上,点D 的对应点为点H,折痕为AG,点G在边CD上,连接GH,GF,线段BF、DG、CG和GF 中,长度恰好是方程x2+x﹣1=0的一个正根的线段为.三.解答题16.已知a是方程x2﹣2020x+1=0的一个根.求:(1)2a2﹣4040a﹣3的值;(2)代数式a2﹣2019a+的值.17.解方程:(1)2x2﹣4x﹣1=0;(2)3x(x﹣1)=2﹣2x.18.在理解例题的基础上,完成下列两个问题:例题:若m2+2mn+2n2﹣4n+4=0,求m和n的值;解:由题意得:(m2+2mn+n2)+(n2﹣4n+4)=0,∴(m+n)2+(n﹣2)2=0∴,解得.请解决以下问题:(1)若x2+4xy+5y2﹣4y+4=0,求y x的值;(2)若a,b,c是△ABC的边长,满足a2+b2=12a+8b﹣52,c是△ABC的最长边,且c为偶数,则c可能是哪几个数?19.【阅读材料】“我们把多项式a2+2ab+b2及a2﹣2ab+b2叫做完全平方式”.如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式中出现完全平方式,再减去这个项,使整个式的值不变,这种方法叫做配方法,配方法是一种重要的解决问题的数学方法.例如:求当a取何值,代数式a2+6a+8有最小值?最小值是多少?解:a2+6a+8=a2+6a+32﹣32+8=(a+3)2﹣1因为(a+3)2≥0,所以a2+6a+8≥﹣1,因此,当a=﹣3时,代数式a2+6a+8有最小值,最小值是﹣1.【问题解决】利用配方法解决下列问题:(1)当x取何值时,代数式x2﹣2x﹣1有最小值?最小值是多少?(2)当x=时,代数式2x2+8x+12有最小值,最小值为.20.近几年,全社会对空气污染问题越来越重视,空气净化器的销量也在逐年增加.某商场从厂家购进了A,B两种型号的空气净化器,两种净化器的销售相关信息如表:A型销售数量(台)B型销售数量(台)总利润(元)51025001052750(1)每台A型空气净化器的销售利润是元;每台B型空气净化器的销售利润是元;(2)该商场计划一次购进两种型号的空气净化器共80台,其中B型空气净化器的进货量不少于A型空气净化器的2倍,为使该商场销售完这80台空气净化器后的总利润最大,那么应该购进A型空气净化器台;B型空气净化器台.(3)已知A型空气净化器的净化能力为300m3/小时,B型空气净化器的净化能力为200m3/小时.某长方体室内活动场地的总面积为300m2,室内墙高3m.该场地负责人计划购买7台空气净化器,每天花费30分钟将室内空气净化一新,如不考虑空气对流等因素,他至少要购买A型空气净化器多少台?参考答案一.选择题1.【解答】解:∵Δ=(﹣5)2﹣4×2×1=25﹣8=17>0,∴一元二次方程2x2﹣5x+1=0有两个不相等的实数根,故选:C.2.【解答】解:把x=0代入(k﹣2)x2+x+k2﹣4=0得:k2﹣4=0,解得k1=2,k2=﹣2,而k﹣2≠0,所以k=﹣2.故选:A.3.【解答】解:x2﹣2x﹣5=0,Δ=b2﹣4ac=(﹣2)2﹣4×1×(﹣5)=24>0,所以方程有两个不相等的实数根,设方程x2﹣2x﹣5=0的两个根为e、f,则ef=﹣5<0,则e和f异号,即方程有一个正数根和一个负数根,故选:D.4.【解答】解:∵关于x的一元二次方程(m﹣1)x2+2x﹣3=0有实数根,∴,解得:m≥且m≠1.故选:D.5.【解答】解:M•N=(x﹣1)(2x2﹣ax﹣2)=2x3﹣(a+2)x2+(a﹣2)x+2,若M•N中不含x2项,则a+2=0,∴a=﹣2,故①正确;当x=0时,N=﹣1,M=﹣2,此时M<N,故②错误;若关于x的方程2x2﹣ax﹣2=0的两个解分别为x1=t2,x2=2t﹣3,则t2+2t﹣3=,∴a=2(t+1)2﹣8,∴当t=﹣1时,a的最小值是﹣8,故③正确;由(M+N)2﹣(M+N)=6得(M+N﹣3)(M+N+2)=0,∴M+N﹣3=0或M+N+2=0,由M+N﹣3=0得2x2+(1﹣a)x﹣6=0,Δ=(1﹣a)2+48>0,∴M+N﹣3=0有两个不相同的实数根,由M+N+2=0得2x2+(1﹣a)x﹣1=0,Δ=(1﹣a)2+8>0,∴M+N+2=0有两个不同的实数根,∴(M+N)2﹣(M+N)=6始终有4个不相同的实数解,故④正确,∴正确的有①③④,共3个,故选:C.6.【解答】解:x2+2x=x2+2x+1﹣1=(x+1)2﹣1,A错误.x2﹣4x﹣3=x2﹣4x+4﹣4﹣3=(x2﹣4x+4)+(﹣4﹣3)=(x﹣2)2﹣7.B错误.2x2+4x+3=2(x2+2x)+3=2(x2+2x+1﹣1)+3=2(x2+2x+1)﹣2×1+3=2(x+1)2﹣2+3=2(x+1)2+1.C正确.﹣x2+2x=﹣(x2﹣2x+1﹣1)=﹣(x2﹣2x+1)+1=﹣(x+1)2+1D错误.故选:C.7.【解答】解:设该公司11、12两个月营业额的月均增长率为x,则可列方程为2500[1+(1+x)+(1+x)2]=9100,故选:B.8.【解答】解:①∵A=x2+6x+n2是完全平方式,∴n=±3,故结论正确;②∵B﹣A=2x2+4x+2n2+3﹣(x2+6x+n2)=x2﹣2x+n2+3=(x﹣1)2+n2+2,而(x﹣1)2+n2≥0,∴B﹣A≥2,∴B﹣A的最小值是2,故结论正确;③∵A+B=x2+6x+n2+2x2+4x+2n2+3=3x2+10x+3n2+3,把x=n代入3x2+10x+3n2+3=0,得3n2+10n+3n2+3=0,即6n2+10n+3=0,解得n=,当n=时,2n+=+=﹣,∴4n2+=(2n+)2﹣4=﹣4=;当n=时,2n+=+=﹣,∴4n2+=(2n+)2﹣4=﹣4=;故结论错误;④∵(2022﹣A+A﹣2019)2=(2022﹣2019)2=(2022﹣A)2+(A﹣2019)2+2(2022﹣A)(A﹣2019)=(2022﹣A)2+(A﹣2019)2+2×2=9,∴(2022﹣A)2+(A﹣2018)2=5;故结论错误;故选B.9.【解答】解:关于x的方程x2+(k+3)x+k+2=0,Δ=(k+3)2﹣4×1×(k+2)=k2+2k+1=(k+1)2≥0,A、当k=﹣1时,Δ=0,此时方程有两个相等的实数解,故此选项错误;B、因为Δ≥0,所以不存在k的值,使得方程没有实数解.故此选项错误;C、解方程得:x1=﹣1,x2=﹣k﹣2,所以无论k为何值,方程总有一个固定不变的实数根﹣1,故此选项正确;D、当k≠﹣1时,方程有两个不相等的实数解,故此选项错误;故选:C.10.【解答】解:令=t,则(x﹣3)2+(y﹣3)2=6可变形为:(x﹣3)2+(tx﹣3)2=6,整理得:(t2+1)x2﹣6(t+1)x+12=0,则Δ=[﹣6(t+1)]2﹣4×(t2+1)×12=36(t+1)2﹣48(t2+1)≥0,t2﹣6t+1≤0,由t2﹣6t+1=[t﹣(3﹣2)][t﹣(3+2)]知t2﹣6t+1≤0的解集为3﹣2≤t≤3+2,故取最小值,此最小值为3﹣2;故选:A.二.填空题11.【解答】解:分两种情况:当x≥﹣2时,∵x⊗(﹣2)=10,∴x2+x﹣2=10,x2+x﹣12=0,(x+4)(x﹣3)=0,x+4=0或x﹣3=0,x1=﹣4(舍去),x2=3,当x<﹣2时,∵x⊗(﹣2)=10,∴(﹣2)2+x﹣2=10,x=8(舍去),综上所述:x=3,故答案为:3.12.【解答】解:设每轮传染中平均一个人传染了x个人,依题意得:1+x+x(1+x)=144,整理得:x2+2x﹣143=0,解得:x1=11,x2=﹣13(不合题意,舍去).144+11×144=1728(人).答:经过三轮传染后,一共有1728人感染德尔塔病毒.故答案为:1728.13.【解答】解:∵m,n是方程x2﹣3x=2的两个根,∴m2=3m+2,n2﹣2=3n,m+n=3,∴m3﹣10m+n=m(3m+2)﹣10m+n=3m2﹣8m+n=3(3m+2)﹣8m+n=m+n+6=3+6=9,n﹣===3,原式=9×3=27.故答案为:27.14.【解答】解:小路的宽为x米.由题意可得:(40﹣2x)(30﹣x)=1008,解得:x1=2,x2=48(不合题意,舍去),答:小路的宽为2米,故答案为:2.15.【解答】解:设DG=m,则GC=1﹣m.由题意可知:△ADG≌△AHG,F是BC的中点,∴DG=GH=m,FC=0.5,根据勾股定理得AF=.∵S正方形=S△ABF+S△ADG+S△CGF+S△AGF,∴1×1=×1×+×1×m+××(1﹣m)+××m,∴m=.∵x2+x﹣1=0的解为:x=,∴取正值为x=.∴这条线段是线段DG.故答案为:DG.三.解答题16.【解答】解:(1)∵a是方程x2﹣2020x+1=0的一个根,∴a2=2020a﹣1,∴a2=2020a﹣1,∴2a2﹣4040a﹣3=2(2020a﹣1)﹣4040a﹣3=4040a﹣2﹣4040a﹣3=﹣5;(2)原式=2020a﹣1﹣2019a+=a+﹣1=﹣1=﹣1=2020﹣1=2019.17.【解答】解:(1)2x2﹣4x﹣1=0,x2﹣2x﹣=0,x2﹣2x=,x2﹣2x+1=,(x﹣1)2=,x﹣1=,∴x1=1+,x2=1﹣;(2)3x(x﹣1)=2﹣2x,3x(x﹣1)+2(x﹣1)=0,(x﹣1)(3x+2)=0,∴x﹣1=0或3x+2=0,∴x1=1,x2=﹣.18.【解答】解:(1)∵x2+4xy+5y2﹣4y+4=0,∴x2+4xy+4y2+y2﹣4y+4=0,∴(x+2y)2+(y﹣2)2=0,∴x+2y=0,y﹣2=0,解得x=﹣4,y=2,∴y x=2﹣4=;(2)已知等式整理得:(a﹣6)2+(b﹣4)2=0,解得:a=6,b=4,由△ABC中最长的边是c,∴6≤c<10,∵c为偶数,∴c可能是6或8.19.【解答】解:(1)x2﹣2x﹣1=x2﹣2x+1﹣1﹣1=(x﹣1)2﹣2,因为(x﹣1)2≥0,所以x2﹣2x﹣1≥﹣2,因此,当x=1时,代数式x2﹣2x﹣1有最小值,最小值是﹣2;(2)2x2+8x+12=2(x2+4x)+12=2(x2+4x+4﹣4)+12=2[(x+2)2﹣4]+12=2(x+2)2﹣8+12=2(x+2)2+4,因为(x+2)2≥0,所以2x2+8x+12≥4,因此,当x=﹣2时,代数式2x2+8x+12有最小值,最小值是4;故答案为:﹣2;4.20.【解答】解:(1)设每台A型空气净化器的销售利润是x元,每台B型空气净化器的销售利润是y元,根据题意得:,解得:故答案为:200,150;(2)设购进a台A型空气净化器,总利润为w元,则:w=200a+150(80﹣a)=50a+12000,∵80﹣a≥2a,∴a≤26,∴a的最大值为:26,∵w随a的增大而增大,∴当a=26时,w有最大值,此时.80﹣a=54,故答案为:26,54;(3)设要购买A型空气净化器a台,由题意得:150a+100(7﹣a)≥300×3,解得:a≥4,所以a的最小值为:4,答:至少要购买A型空气净化器4台.。

人教版数学九年级上册第二十一章《一元二次方程》 测试试题 (含答案)

人教版数学九年级上册第二十一章《一元二次方程》  测试试题 (含答案)

人教版数学九年级上册第二十一章《一元二次方程》 测试试题 (含答案)1 / 5第二十一章《一元二次方程》 测试题一、单选题(每小题只有一个正确答案)1.下列方程为一元二次方程的是 ( )A .ax 2+bx+c=0B .x 2-2x -3C .2x 2=0D .xy +1=02.把方程x (3-2x )+5=1化成一般式后二次项系数与常数项的积是( )A .3B .-8C .-10D .153.若关于x 的一元二次方程(a +1)x 2+x +a 2-1=0的一个解是x =0,则a 的值为( )A .1B .-1C .±1D .0 4.若a-b+c=0,则方程ax 2+bx+c=0(a 0≠)必有一个根是( )A .0B .1C .-1D .b a - 5.用配方法解一元二次方程2x 2﹣4x+1=0,变形正确的是( )A .(x ﹣12)2=0B .(x ﹣12)2=12C .(x ﹣1)2=12D .(x ﹣1)2=0 6.已知直角三角形的两边长是方程x 2﹣7x+12=0的两根,则第三边长为( )A .7B .5 CD .57.若关于 x 的一元二次方程x 2﹣x ﹣3m =0有两个不相等的实数根,则 m 的取值范围是( )A .m 12> B .m 112< C .m >﹣112 D .m 112< 8.若方程x 2-3x -1=0的两根为x 1、x 2,则11x +21x 的值为( ) A .3 B .-3 C .13 D .-139.已知关于x 的一元二次方程(2a -1)x 2+(a +1)x +1=0的两个根相等,则a 的值等于( )A .-1或-5B .-1或5C .1或-5D .1或510.如图,在长为33米宽为20米的矩形空地上修建同样宽的道路(阴影部分),余下的部分为草坪,要使草坪的面积为510平方米,则道路的宽为( )A .1米B .2米C .3米D .4米11.x=523-±⨯是下列哪个一元二次方程的根( ) A .3x 2+5x+1=0B .3x 2﹣5x+1=0C .3x 2﹣5x ﹣1=0D .3x 2+5x ﹣1=0 12.已知m ,n 是方程x 2﹣2018x +2019=0的两个根,则(m 2﹣2019m +2018)(n 2﹣2019n +2018)的值是( )A .1B .2C .4037D .4038二、填空题13.一元二次方程4x 2= 3x 的解是_____________.14.圣诞节时,某班一个小组有x 人,他们每两人之间互送贺卡一张,已知全组共送贺卡110张,则可列方程为_____.15.关于a 的方程2420a a ++=的两个解为1a 、2a ,则2212a a +=_____. 16.已知两数的积是12,这两数的平方和是25, 以这两数为根的一元二次方程是___________.17.定义新运算:m ,n 是实数,m*n=m (2n ﹣1),若 m ,n 是方程 2x2﹣x+k=0(k <0)的两根,则 m*m ﹣n*n=_____.三、解答题18.已知两个方程20x px q ++=和20x qx p ++=仅有一个相同的根,求p q +的值.19.解下列方程(1)2x 2-4x-10=0 (用配方法)(2)2x 2+3x=4(公式法)(3)(x-2)2=2(x-2)230x +-=20.已知关于x 的方程||(2)210m m x x ++-=.(1)当m 为何值时是一元一次方程?(2)当m 为何值时是一元二次方程?人教版数学九年级上册第二十一章《一元二次方程》 测试试题 (含答案)3 / 521.已知关于x 的一元二次方程22(51)40x m x m m -+++=.(1)求证:无论m 取任何实数时,原方程总有两个实数根;(2)若原方程的两个实数根一个大于3,另一个小于8,求m 的取值范围.22.小刚在做作业时,不小心将方程2350x bx --=的一次项系数用墨水覆盖住了,但从题目的答案中,他知道方程的一个解为5x =,请你帮助小刚求出被覆盖住的数.23.现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?人教版数学九年级上册第二十一章《一元二次方程》 测试试题 (含答案)1 / 5 参考答案1.C2.B3.A4.C5.C6.D7.C8.B9.D10.C11.D12.D13.x 1 =0, x 2=3414.x (x ﹣1)=11015.1216.x 2-7x+12=0或x 2+7x+12=017.0.18.-119.(1)11x =21x =;(2)1x =,2x =;(3)x 1=2,x 2=4;(4)12x =2x =-20.(1)-2或±1或0 (2)221.(1)略(2)182m <<. 22.1423.(1)该快递公司投递总件数的月平均增长率为10%;(2)该公司现有的21名快递投递业务员不能完成今年6月份的快递投递任务,至少需要增加2名业务员.。

人教版九年级上册数学第二十一章测试卷附答案

人教版九年级上册数学第二十一章测试卷附答案

人教版九年级上册数学第二十一章测试卷一、单选题1.如果关于x 的方程27(3)30m m x x ---+=是一元二次方程,那么m 的值为( )A .3±B .3C .3-D .都不是2.如果2是方程x 2-3x +k =0的一个根,则常数k 的值为( ) A .2B .1C .-1D .-23.下列说法正确的是( )A .一元二次方程的一般形式是20ax bx c ++=B .方程2x x =的解是1x =C .一元二次方程的一般形式是20ax bx c ++= 的根是x =D .方程()()230x x x +-=的实数根有三个 4.一元二次方程240x -=的解是( )A .2-B .2C .D .2±5.若α,β是方程x 2+2x ﹣2005=0的两个实数根,则α2+3α+β的值为( ) A .2005B .2003C .﹣2005D .40106.用配方法将一元二次方程2640x x --=变形为2()x m n +=的形式是( ) A .2(3)13x +=B .2(3)4x -=C .2(3)5x -=D .2(3)13x -=7.如果关于x 的方程()2110m x x -++=有实数根,那么m 的取值范围是( )A .54m <B .5<4m 且1m ≠C .54m ≤D .54m ≤且1m ≠ 8.关于x 的方程2()0a x m b ++=的解是12x =-,21(x a =,m ,b 均为常数,0)a ≠,则方程2(2)0a x m b +++=的解是( ) A .2-或1B .4-或1-C .1或3D .无法求解9.已知p 、q 是方程x 2-3x-1=0的两个不相等的实数根,则代数式3p 2-8p+q 的值是( ) A .6B .1-C .3D .010.把方程2310x x +-=的左边配方后可得方程( )A .2313()24x +=B .235()24x += C .2313()24x -= D .235()24x -=二、填空题11.当x =________时,代数式22x x --与21x -的值互为相反数.12.用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一条边长为x 米,则根据题意可列出关于x 的方程为________.13.若关于x 的方程(k ﹣1)x 2﹣4x ﹣5=0有实数根,则k 的取值范围是_____.14.某商店4月份销售额为50万元,第二季度的总销售额为182万元,若5、6两个月的月增长率相同,求月增长率为________.15.若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围是_________.16.已知1x ,2x 分别是一元二次方程260x x --=的两个实数根,则12x x +=________.17.已知关于x 的一元二次方程()2121m x mx +-=的一个根是3x =,则m =________.18.若把代数式232x x -+化为2()x m k -+的形式,其中m ,k 为常数,则m k +=___.19.把关于x 的方程2220x x -+=配方成为()2(2)20a x b x c -+-+=的形式,得___.20.要给一幅长30cm ,宽25cm 的照片配一个镜框,要求镜框的四条边宽度相等,且镜框所占的面积为照片面积的四分之一,设镜框边的宽度为xcm ,则依据题意,列出的方程是:_____.三、解答题21.(1)用配方法解方程2650x x +-=(2)用适当的方法解方程:()23(5)25x x -=-22.已知关于x的方程220++-=.x ax a(1)当该方程的一个根为1时,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.23.用6m长的铝合金型材做一个形状如图所示的矩形窗框,应做成长、宽各为多少时,才能使做成的窗框的透光面积为21.44m?(设窗框宽为xm)24.为了绿化学校附近的荒山,某校初三年级学生连续三年春季上山植树,至今已成活了2000棵,已知这些学生在初一时种了400棵,若平均成活率95%,求这个年级两年来植树数的年平均增长率.(只列式不计算)25.如图,为美化校园环境,某校计划在一块长为60米,宽为40米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为a米.(1)当通道宽a为10米时,花圃的面积=________;(2)通道的面积与花圃的面积之比能否恰好等于3:5,如果可以,试求出此时通道的宽.26.在解决数学问题时,我们经常要回到基本定义与基本方法去思考.试利用方程的解的定义及解方程组的基本方法解决以下问题:已知a 是关于x 的方程()22140x k x -++=及()236180x k x --+=的公共解,求a 和k 的值.27.根据下列问题,列出关于x 的方程,并将其化为一元二次方程的一般形式 (1)有一个三位数,它的个位数字比十位数字大3,十位数字比百位数字小2,三个数字的平方和的9倍比这个三位数小20,求这个三位数.(2)如果一个直角三角形的两条直角边长之和为14cm ,面积为224cm ,求它的两条直角边的长.28.若1x ,2x 是关于x 的一元二次方程()200ax bx c a ++=≠的两个根,则方程的两个根1x ,2x 和系数a ,b ,c 有如下关系:12b x x a +=-,12cx x a⋅=,把它们称为一元二次方程根与系数关系定理,请利用此定理解答一下问题:已知1x ,2x 是一元二次方程()2320m x mx m -++=的两个实数根.(1)是否存在实数m ,使11224x x x x -+=+成立?若存在,求出m 的值,若不存在,请你说明理由;(2)若12x x -m 的值和此时方程的两根.29.某商场服装部销售一种名牌衬衫,平均每天可售出30件,每件盈利40元.为了扩大销售,减少库存,商场决定降价销售,经调查,每件降价1元时,平均每天可多卖出2件. (1)若商场要求该服装部每天盈利1200元,每件衬衫应降价多少元? (2)试说明每件衬衫降价多少元时,商场服装部每天盈利最多.参考答案1.C【分析】据一元二次方程的定义得到m-3≠0且m2-7=2,然后解不等式和方程即可得到满足条件的m 的值.【详解】解:根据题意得m-3≠0且m2-7=2,解得m=-3.故选:C.【点睛】本题考查了一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.2.A【分析】把x=2代入已知方程列出关于k的新方程,通过解方程来求k的值.【详解】解:∵2是一元二次方程x2-3x+k=0的一个根,∴22-3×2+k=0,解得,k=2.故选:A.【点睛】本题考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.3.D【分析】根据一元二次方程的定义,因式分解法解方程,求根公式进行判断.【详解】A、当ax2+bx+c=0中的a=0时,该方程不是一元二次方程.故本选项错误;B、方程x2=x的解是x=1或x=0.故本选项错误;C、一元二次方程的一般形式是ax2+bx+c=0,且a≠0.故本选项错误;D、方程x(x+2)(x-3)=0的实数根是x=0或x=-2或x=3,共3个.故本选项正确;故选D.【点睛】本题考查了解一元二次方程的方法,一元二次方程的一般形式.一般地,任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式.其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项;c叫做常数项.一次项系数b和常数项c可取任意实数,二次项系数a是不等于0的实数,这是因为当a=0时,方程中就没有二次项了,所以,此方程就不是一元二次方程了.4.D【分析】这个式子先移项,变成x2=4,从而把问题转化为求4的平方根.【详解】移项得,x2=4开方得,x=±2,故选D.【点睛】(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.5.B【分析】根据一元二次方程根的定义和根与系数的关系求解则可.设x1,x2是关于x的一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的两个实数根,则x1+x2=-ba,x1x2=ca.而α2+3α+β=α2+2α+(α+β),即可求解.【详解】α,β是方程x2+2x−2005=0的两个实数根,则有α+β=−2.α是方程x2+2x−2005=0的根,得α2+2α−2005=0,即:α2+2α=2005.所以α2+3α+β=α2+2α+(α+β)=α2+2α−2=2005−2=2003,故选B.【点睛】此题考查根与系数的关系,一元二次方程的解,解题关键在于掌握运算法则.6.D【分析】先移项,然后两边同时加上一次项系数一半的平方.【详解】2640x x,--=移项得,264x x-=,配方得,2226343x x,-+=+2(3)13x-=,故选:D.【点睛】本题考查了配方法,解题的关键是注意:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.7.C【分析】分类讨论:当m-1=0时,方程为一元一次方程,有解;当m-1≠0时,根据判别式的意义得到△=12-4×(m-1)×1≥0,解得m≤54且m≠1,然后综合两种情况就可得到m的取值范围.【详解】解:当m-1=0时,x+1=0,解得x=-1;当m-1≠0时,△=12-4×(m-1)×1≥0,解得m≤54且m≠1,所以m的取值范围为m≤5 4 .故选:C.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.8.B【分析】把后面一个方程中的x+2看作整体,相当于前面一个方程中的x求解.【详解】∵关于x的方程a(x+m)2+b=0的解是x1=-2,x2=1,(a,m,b均为常数,a≠0),∴方程a(x+m+2)2+b=0变形为a[(x+2)+m]2+b=0,即此方程中x+2=-2或x+2=1,解得x=-4或x=-1.故方程a(x+m+2)2+b=0的解为x1=-4,x2=-1.故选B.【点睛】此题主要考查了方程解的定义.注意由两个方程的特点进行简便计算.9.A【分析】根据一元二次方程的解的定义得到p2-3p-1=0,即p2=3p+1,则3p2-8p+q=3(3p+1)-8p+q=p+q+3,再根据根与系数的关系得到p+q=3,然后利用整体思想计算即可.【详解】∵p是方程x2-3x-1=0的解,∴p2-3p-1=0,即p2=3p+1,∴3p2-8p+q=3(3p+1)-8p+q=p+q+3,∵p、q是方程x2-3x-1=0的两个不相等的实数根,∴p+q=3,∴3p2-8p+q=3+3=6.故选A.【点睛】本题考查的知识点是一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系,解题关键是熟记根与系数的关系. 10.A 【分析】首先把常数项1-移项后,再在左右两边同时加上一次项系数3的一半的平方,继而可求得答案. 【详解】 2310x x +-=,∴231x x +=, ∴29931+44x x ++=, ∴231324x ⎛⎫+= ⎪⎝⎭. 故选:A . 【点睛】此题考查了配方法解一元二次方程的知识,此题比较简单,注意掌握配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.11【分析】根据互为相反数的定义,先列出方程,然后利用公式解方程求得x 的值即可. 【详解】∵代数式x 2−x −2与2x −1的值互为相反数, ∴x 2−x −2+2x −1=0, ∴x 2+x −3=0,b 2−4ac =1−4×1×(−3)=13>0,∴x ==∴12x x ==【点睛】考查一元二次方程的解法,解题的关键是根据题意列出方程. 12.x (5﹣x )=6. 【详解】试题解析:一边长为x 米,则另外一边长为:5x -, 由题意得:()5 6.x x -= 故答案为()5 6.x x -= 13.15k ≥【详解】当k−1=0,即k=1时,原方程为−4x−5=0, 解得:x=−54,∴k=1符合题意;当k−1≠0,即k≠1时,有4)210(4(1)(5)0k k --≠⎧⎨∆=-⨯-⨯-≥⎩, 解得:k ⩾15且k≠1.综上可得:k 的取值范围为k ⩾15.故答案为k ⩾15.14.20% 【分析】设月平均增长率为x ,就可以表示出5月份的销售额为50×(1+x )万元,6月份的销售额为50×(1+x )2万元,根据第二季度的销售总额为182万元建立方程求出其解即可. 【详解】设月平均增长率为x ,就可以表示出5月份的销售额为50×(1+x )万元,6月份的销售额为50×(1+x )2万元,由题意,得 50+50×(1+x )+50×(1+x )2=182, 解得:x 1=-3.2(舍去),x 2=0.2=20% 故答案为20%.本题考查了运用增长率解实际问题的运用,一元二次方程的解法的运用,解答时根据条件找到等量关系建立方程是关键. 15.1k >-且0k ≠ 【分析】根据一元二次方程的定义及根的判别式即可求解. 【详解】解:关于x 的一元二次方程2210kx x --=有两个不相等的实数根, ∴0k ≠且440k +>, 解得1k >-且0k ≠, 故答案为:1k >-且0k ≠. 【点睛】本题考查一元二次方程的定义及根的判别式,掌握一元二次方程的定义及根的判别式是解题的关键. 16.1 【分析】根据一元二次方程x 2-x-6=0的根与系数的关系x 1+x 2=-ba(a 是二次项系数、b 是一次项系数)来填空. 【详解】∵一元二次方程x 2-x-6=0的二次项系数a=1,一次项系数b=-1, 又∵x 1,x 2分别是一元二次方程x 2-x-6=0的两个实数根, ∴根据根与系数的关系,知 x 1+x 2=-b a =-11-=1;故答案是:1. 【点睛】此题主要考查了根与系数的关系.根与系数的关系有:x 1+x 2=-b a、x 1•x 2=ca .解答时,注意要找对方程中的二次项系数、一次项系数及常数项.17.83-将x=3代入方程,再依据一元二次方程的二次项系数不为零,问题可求. 【详解】∵关于x 的一元二次方程(m+1)x 2-2mx=1的一个根是x=3, ∴(m+1)×32-2m×3=1,m+1≠0, ∴m=-83.故答案为-83.【点睛】本题主要考查了方程的根的定义,把求未知系数的问题转化为解方程的问题,是待定系数法的应用,容易出现的错误是忽视二次项系数不等于0这一条件. 18.54【分析】将代数式配方后,求出m 与k 的值,即可确定出m+k 的值. 【详解】x 2-3x+2=x 2-3x+94-14=(x-32)2-14,∴m=32,k=-14,则m+k=32-14=54.故答案为54.【点睛】此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.19.()2(2)2220x x -+-+=【分析】此题把x-2看作整体,用配方法可化为(x-2)2+2(x-2)+2=0,即可. 【详解】∵x 2-2x+2=x 2-4x+4+2x-4+2=(x-2)2+2(x-2)+2,∴方程x 2-2x+2=0配方成为a (x-2)2+b (x-2)+c=0的形式为, (x-2)2+2(x-2)+2=0,故答案为(x-2)2+2(x-2)+2=0. 【点睛】本题考查了用配方法解一元一次方程,还考查了一个很重要的思想,整体思想. 20.()()530225230254x x ++=⨯⨯【分析】镜框所占的面积为照片面积的四分之一,为了不出差错,最好表示出照片加上镜框的面积.那么镜框+照片的面积=54照片面积.【详解】 如图,设镜框边的宽度为xcm ,那么新矩形的长(30+2x )cm ,宽(25+2x )cm , ∴(30+2x )(25+2x )=54×30×25.故填空答案:(30+2x )(25+2x )=54×30×25. 【点睛】本题的难点在于把给出的关键描述语进行整理,找到不容易出差错的等量关系.21.(1)3x =-(2)5x =或133x = 【分析】(1)配方法求解可得; (2)因式分解法求解可得. 【详解】(1)∵265x x +=,∴26959x x ++=+,即2(3)14x +=,∴3x +=则3x =-;(2)∵()23(5)250x x -+-=,∴()()53520x x ⎡⎤--+=⎣⎦,即()()53130x x --=, 则50x -=或3130x -=, 解得:5x =或133x =. 【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键. 22.(1)12,32-;(2)证明见解析.【详解】试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可. (2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可. 试题解析:(1)设方程的另一根为x 1,∵该方程的一个根为1,∴1111{211a x a x +=--⋅=.解得132{12x a =-=.∴a 的值为12,该方程的另一根为32-.(2)∵()()222241248444240a a a a a a a ∆=-⋅⋅-=-+=-++=-+>, ∴不论a 取何实数,该方程都有两个不相等的实数根.考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用. 23.宽为0.8m 、长为1.8m 或长宽均为1.2m 【详解】试题分析:设出长为x ,然后表示出宽,利用面积公式列出方程求解即可. 试题解析:设窗框宽为xm 63 1.442xx -⋅= 22550240x x -+=(54)(56)0x x --= 120.8, 1.2x x ==答:宽为0.8m 、长为1.8m 或长宽均为1.2m 考点:一元二次方程的应用.24.()(295%[40040014001)2000x x ⎤++++=⎦【分析】设这个年级两年来植树数的年平均增长率我x ,然后用含x 的表达式表示每年的植树数量,再根据题中相等的关系列出方程即可. 【详解】设这个年级两年来植树数的年平均增长率我x , 由题意得:初二时植树数为:()4001x +, 那么这些学生在初三时的植树数为:2400(1)x +;由题意得:()(295%[40040014001)2000x x ⎤++++=⎦.【点睛】本题考查列一元二次方程,解此题的关键在于用含x 的表达式表示出各个数值,再找出题中相等的关系即可.25.(1)800(米2);(2)5米. 【分析】(1)用含a 的式子先表示出花圃的长和宽后利用其矩形面积公式列出式子即可; (2)根据通道所占面积是整个长方形空地面积的38,列出方程进行计算即可. 【详解】解:(1)由图可知,花圃的面积为(40-2a )(60-2a ); 当a=10米时,面积=(40-2×10)(60-2×10)=800(米2) 故答案为:800(米2);(2)由已知可列式:60×40-(40-2a )(60-2a )=38×60×40, 解得:a 1=5,a 2=45(舍去). 答:所以通道的宽为5米. 【点睛】本题考查了一元二次方程的应用,解题的关键是根据所给出的图形和数据表示出花圃的长和宽.26.a 的值为1,k 的值为2 【分析】根据一元二次方程解的意义,列出关于a 、k 的二元二次方程组,然后解方程组即可. 【详解】∵a 是这两个方程的公共根,则()()22214036180a k a a k a ⎧-++=⎪⎨--+=⎪⎩,由①3⨯-②得1a =,将1a =代入①,得()12140k -++=, 解得2k =.故a 的值为1,k 的值为2. 【点睛】本题考查了一元二次方程的解,解题时,逆用一元二次方程解的定义易得出关于a 、k 的方程组,在解题时要重视解题思路的逆向分析. 27. (1)227791060x x +-=;(2)214480x x -+=. 【分析】(1)个位上的数字是几,表示几个一,十位上的数字是几就表示几个十,百位上的数字是几就表示几个百;由此求解;(2)设一边长为x ,然后表示出另一边,然后利用直角三角形的面积的计算方法列出方程即可. 【详解】解:()1设十位数字为x ,则个位数字为3x +,百位数字为2x +,根据题意得:()()][(222[10021039(3)2)20x x x x x x ⎤++++-++++=⎦,化简为227791060x x +-=;(2)设其中一条直角边的长为x ,则另一条直角边为()14x -,根据题意得:()114242x x -=,整理得:214480x x -+=. 【点睛】本题考查了由实际问题列出一元二次方程,解题的关键是找到等量关系,难度不大.28.(1)存在,12(2)1x ,2x =;1x =2x =【分析】(1)先根据根的判别式得到m 的取值范围为m≥0且m≠3,再根据根与系数的关系得x 1+x 2=23m m --,x 1•x 2=3m m -,然后利用-x 1+x 1x 2=4+x 2得2433m mm m =---,再解关于m 的方程即可;(2)先利用完全平方公式变形得到(x 1-x 2)2=3,即(x 1+x 2)2-4x 1x 2=3,再把1223mx x m +=--,123m x x m ⋅=-,代入得到(-23m m -)2-4×3mm -=3,解得m 1=1,m 2=9,然后分别把m 的值代入原方程,并且利用公式法解方程. 【详解】 (1)存在.∵1x ,2x 是一元二次方程()2320m x mx m -++=的两个实数根,∴30m -≠且()24430m m m =--⋅≥,∴m 的取值范围为0m ≥且3m ≠, 根据根与系数的关系得1223m x x m +=--,123mx x m ⋅=-, ∵11224x x x x -+=+, ∴12124x x x x =++, ∴2433m mm m =---, ∴12m =;(2)∵12x x -∴212()3x x -=,即21212()43x x x x +-=,∴22()4333m mm m --⨯=--,解得11m =,29m =,当1m =时,原方程变形为22210x x --=,解得1x =,2x =当9m =时,原方程变形为22630x x ++=,解得1x =,2x =【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x 1,x 2,则x 1+x 2=-b a、x 1•x 2=ca .也考查了一元二次方程根的判别式.29.(1)设每件应降价x 元,由题意可列方程为(40-x )•(30+2x )=1200,解得x1=0,x2=25,当x=0时,能卖出30件;当x=25时,能卖出80件.根据题意,x=25时能卖出80件,符合题意,不降价也能盈利1200元,符合题意.因为要减少库存,所以应降价25元.答:每件衬衫应降价25元;(2)设商场每天盈利为W元.W=(40-x)(30+2x)=-2x2+50x+1200=-2(x2-25x)+1200=-2(x-12.5)2+1512.5.当每件衬衫降价为12或13元时,商场服装部每天盈利最多.【详解】(1)本题的关键语“每件降价1元时,平均每天可多卖出2件”,设每件应降价x元,用x 来表示出商场所要求的每件盈利的数额量,然后根据盈利1200元来列出方程;(2)根据(1)中的方程,然后按一元二次方程的特点,来求出最大值.解:(1)设每件应降价x元,由题意可列方程为(40-x)·(30+2x)=1200,解得x1=0,x2=25,当x=0时,能卖出30件;当x=25时,能卖出80件.根据题意,x=25时能卖出80件,符合题意.故每件衬衫应降价25元.(2)设商场每天盈利为W元.W=(40-x)(30+2x)=-2x2+50x+1200=-2(x2-25x)+1200=-2(x-12.5)2+1512.5当每件衬衫降价为12.5元时,商场服装部每天盈利最多,为1512.5元.。

人教版九年级上册数学第二十一章测试卷含答案

人教版九年级上册数学第二十一章测试卷含答案

人教版九年级上册数学第二十一章测试卷一、单选题1.已知关于x 的一元二次方程22(1)210a x x a --+-=有一个根为0x =,则a 的值为( ) A .0 B .±1 C .1 D .1-2.国家实施”精准扶贫“政策以来,很多贫困人口走向了致富的道路.某地区2016年底有贫困人口9万人,通过社会各界的努力,2018年底贫困人口减少至1万人.设2016年底至2018年底该地区贫困人口的年平均下降率为x ,根据题意列方程得( )A .()9121x -=B .()2911x -=C .()9121x +=D .()2911x += 3.一次函数y kx b =+的图象不经过第二象限,则关于方程20x kx b ++=的根的情况是 A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法确定4.一元二次方程2310x x -+=的两个根为12,x x ,则2121232x x x x ++-的值是( )A .10B .9C .8D .75.等腰三角形一边长为2,它的另外两条边的长度是关于x 的一元二次方程x 2﹣6x+k =0的两个实数根,则k 的值是( )A .8B .9C .8或9D .126.方程4x 2=81化成一元二次方程的一般形式后,其中的二次项系数、一次项系数和常数项分别是( )A .4,0,81B .﹣4,0,81C .4,0,﹣81D .﹣4,0,﹣81 7.若方程22(2)210m m x x --+-=是关于x 的一元二次方程,则m 的值是( )A .2B .-2C .2±D .38.用“配方法”解一元二次方程x 2﹣16x +24=0,下列变形结果,正确的是( ) A .(x ﹣4)2=8 B .(x ﹣4)2=40 C .(x ﹣8)2=8 D .(x ﹣8)2=40 9.方程2690x x +-=的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .有一个根为1-D .没有实数根10.某村2020年的人均收入为12000元,2018年的人均收入为14520元,则人均收入的年平均增长为( )A .10%或-210%B .12.1%C .11%D .10%11.已知m 是方程23220x x --=A .2BCD 12.设m 、n 是一元二次方程x 2+3x ﹣7=0的两个根,则m 2+4m +n =( )A .﹣3B .4C .﹣4D .513.目前,支付宝平台入驻了不少的理财公司,推出了一些理财产品.李阿姨用10000元本金购买了一款理财产品,到期后自动续期,两期结束后共收回本息10926元设此款理财产品每期的平均收益率为x ,则根据题意可得方程( )A .10000(12)10926x +=B .210000(1)10926x +=C .210000(12)10926x +=D .10000(1)(12)10926x x ++=14.如图,等边△ABC 中,D 在射线BA 上,以CD 为一边,向右上方作等边△EDC .若BC 、CD 的长为方程x 2﹣15x +7m =0的两根,当m 取符合题意的最大整数时,则不同位置的D 点共有( )A .1个B .2个C .3个D .4个15.《代数学》中记载,形如21039x x +=的方程,求正数解的几何方法是:“如图1,先构造一个面积为2x 的正方形,再以正方形的边长为一边向外构造四个面积为52x 的矩形,得到大正方形的面积为392564+=,则该方程的正数解为853-=.”小聪按此方法解关于x 的方程260x x m ++=时,构造出如图2所示的图形,已知阴影部分的面积为36,则该方程的正数解为( )A .6B .3C .2D .32二、填空题16.已知方程230x bx ++=+_______.17.若关于x 的一元二次方程2840ax x -+=有两个不相等的实数根,则a 的取值范围是_____. 18.对于实数,a b ,定义运算“◎”如下:a ◎b 22()()a b a b =+--.若()2m +◎()3m -24=,则m =_____.19.若关于x 的一元二次方程210(0)4ax x a --=≠有两个不相等的实数根,则点(1, 3 )P a a +--在第____象限. 20.写出一个以﹣1和﹣2为两根的一元二次方程(二次项系数为1)_____.21.若关于x 的一元二次方程2(1)210a x x --+=有两个不相等的实数根,则a 的最大整数值是__________.22.已知关于x 的方程a (x +m )2+b =0(a ,b ,m 均为常数,且a ≠0)的两个解是x 1=3,x 2=7,则方程21402a x m b ⎛⎫++= ⎪⎝⎭的解是________. 23.设方程( 1) (11)(11)(21)x x x x ++++++(1)(21)0x x ++=的两根为12,x x ,则()()1211x x ++=______.24.如果关于x 的一元二次方程20ax bx c ++=有两个实数根,且其中一个根为另外一个根的2倍,则称这样的方程为“倍根方程”,以下关于“倍根方程”的说法,正确的有_____(填序号).①方程220x x --=是“倍根方程”;②若(2)()0x mx n -+=是“倍根方程”,则22450m mn n ++=;③若,p q 满足2pq =,则关于x 的方程230px x q ++=是“倍根方程”;④若方程20ax bx c ++=是“倍根方程”,则必有229b ac =.三、解答题25.解方程:(1)2(1)4x -=;(2)267x x +=-.26.已知关于x 的方程22210x x k -+-=有实数根.(1)求k 的取值范围;(2)设方程的两根分别是1x 、2x ,且211212x x x x x x +=⋅,试求k 的值.27.安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y (千克)与每千克降价x (元)(020)x <<之间满足一次函数关系,其图象如图所示:(1)求y 与x 之间的函数关系式;(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?28.解方程:(1)23(21)270x --=;(2)22510x x -+=.29.若m 是一元二次方程||120a x x ---=的一个实数根.(1)求a 的值;(2)不解方程,求代数式()221m m m m ⎛⎫-⋅-+ ⎪⎝⎭的值.30.已知关于x 的一元二次方程()24240x m x m +++=-,(1)求证:该一元二次方程总有两个实数根;(2)若该方程只有一个小于4的根,求m 的取值范围;(3)若x 1,x 2为方程的两个根,且n =x 12+x 22﹣4,判断动点()P m n ,所形成的数图象是否经过点()5,9A -,并说明理由.31.某企业为响应国家教育扶贫的号召,决定对某乡镇全体贫困初、高中学生进行资助,初中学生每月资助200元,高中学生每月资助300元.已知该乡受资助的初中学生人数是受资助的高中学生人数的2倍,且该企业在2018年下半年7﹣12月这6个月资助学生共支出10.5万元.(1)问该乡镇分别有多少名初中学生和高中学生获得了资助?(2)2018年7﹣12月期间,受资助的初、高中学生中,分别有30%和40%的学生被评为优秀学生,从而获得了该乡镇政府的公开表扬.同时,提供资助的企业为了激发更多受资助学生的进取心和学习热情,决定对2019年上半年1﹣6月被评为优秀学生的初中学生每人每月增加a%的资助,对被评为优秀学生的高中学生每人每月增加2a%的资助.在此奖励政策的鼓励下,2019年1﹣6月被评为优秀学生的初、高中学生分别比2018年7﹣12月的人数增加了3a%、a%.这样,2019年上半年评为优秀学生的初、高中学生所获得的资助总金额一个月就达到了10800元,求a的值.32.如图,长方形ABCD中(长方形的对边平行且相等,每个角都是90°),AB=6cm,AD =2cm,动点P,Q分别从点A,C同时出发,点P以2cm/s的速度向终点B移动,点Q以1cm/s的速度向点D移动,当有一点到达终点时,另一点也停止运动,设运动的时间为t(s),问:(1)当t=1s时,四边形BCQP面积是多少?(2)当t为何值时,点P和点Q距离是3cm?(3)当t=s时,以点P,Q,D为顶点的三角形是等腰三角形.(直接写出答案)参考答案1.D【分析】根据一元二次方程的定义,再将0x =代入原式,即可得到答案.【详解】解:∵关于x 的一元二次方程22(1)210a x x a --+-=有一个根为0x =,∴210a -=,10a -≠,则a 的值为:1a =-.故选D .【点睛】本题考查一元二次方程,解题的关键是熟练掌握一元二次方程的定义.2.B【分析】等量关系为:2016年贫困人口()212018⨯-=下降率年贫困人口,把相关数值代入计算即可.【详解】解:设这两年全省贫困人口的年平均下降率为x ,根据题意得: ()2911x -=,故选B .【点睛】本题考查由实际问题抽象出一元二次方程,得到2年内变化情况的等量关系是解决本题的关键.3.A【分析】利用一次函数性质得出k >0,b ≤0,再判断出△=k 2-4b >0,即可求解.【详解】 解:一次函数y kx b =+的图象不经过第二象限, 0k ∴>,0b ≤,240k b ∴∆=->,∴方程有两个不相等的实数根.故选A .【点睛】本题考查的是一元二次方程的根的判别式,熟练掌握一次函数的图像和一元二次方程根的判别式是解题的关键.4.D【分析】利用方程根的定义可求得21131x x ∴=-,再利用根与系数的关系即可求解.【详解】1x 为一元二次方程2310x x -+=的根,21131x x ∴=-,2121232x x x x ∴++-=()12121212313233x x x x x x x x -++-=++-.根据题意得123x x +=,121=x x ,212123233137x x x x ∴++-=⨯+-=.故选:D .【点睛】本题主要考查了一元二次方程的解,根与系数的关系以及求代数式的值,熟练掌握根与系数的关系12b x x a +=-,12c x x a=是解题的关键. 5.B【分析】根据一元二次方程的解法以及等腰三角形的性质即可求出答案.【详解】解:①当等腰三角形的底边为2时,此时关于x 的一元二次方程x 2−6x +k =0的有两个相等实数根,∴△=36−4k =0,∴k =9,此时两腰长为3,∵2+3>3,∴k=9满足题意,②当等腰三角形的腰长为2时,此时x=2是方程x2−6x+k=0的其中一根,代入得4−12+k=0,∴k=8,∴x2−6x+8=0求出另外一根为:x=4,∵2+2=4,∴不能组成三角形,综上所述,k=9,故选B.【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法以及等腰三角形的性质.6.C【分析】方程整理后为一般形式,找出二次项系数、一次项系数和常数项即可.【详解】方程整理得:4x2﹣81=0,二次项系数为4;一次项系数为0,常数项为﹣81,故选:C.【点睛】此题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.7.B【分析】本题根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.由这两个条件得到相应的关系式,再求解即可.由22(2)210m m x x --+-=是关于x 的一元二次方程,得222m -=,且20m -≠. 解得:2m =-,故选:B .【点睛】本题考查了一元二次方程的定义.要特别注意二次项系数0a ≠这一条件.8.D【分析】根据配方法解一元二次方程的步骤即可求解.【详解】x 2﹣16x +24=0x 2﹣16x +64=﹣24+64(x ﹣8)2=40故选D .【点睛】本题考查了配方法解一元二次方程,解决本题的关键是方程两边同时加上一次项系数绝对值的一半的平方.9.B【分析】利用根的判别式可求得答案.【详解】∵1a =,6b =,9c =-,∴()224641936360b ac =-=-⨯⨯-=+>,∴该方程有两个不相等的实数根,故选:B .【点睛】本题主要考查了根的判别式,掌握方程根的情况与根的判别式的关系是解题的关键. 10.D设人均收入的年平均增长率为x,根据向阳村2016年、2018年的人均收入,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【详解】设人均收入的年平均增长率为x,根据题意得:12000(1+x)2=14520,解得:x=0.1=10%或x=-2.1(不合题意,舍去).∴人均收入的年平均增长率为10%.故选D.【点睛】本题考查一元二次方程的应用—增长率问题,掌握解决增长率问题的做题方法.11.C【分析】把m代入方程,根据等式性质得3m2-2m=2,232mm-=,再代入可得.【详解】因为m是方程3x2-2x-2=0的一个实数根,所以3m2-2m-2=0所以3m2-2m=2,232 mm-==故选:C【点睛】考核知识点:一元二次方程的根.掌握等式基本性质是关键. 12.B【分析】根据根与系数的关系即可求出答案.【详解】解:∵m+n=﹣3,mn=﹣7,m2+3m=7,∴原式=m2+3m+m+n=7﹣3=4,故选B.【点睛】本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,属于基础题型.13.B【分析】根据题意,找出等量关系列出方程,即可得到答案.【详解】解:根据题意,设此款理财产品每期的平均收益率为x,则210000(1)10926x+=;故选择:B.【点睛】本题考查了一元二次方程的应用——增长率问题,解题的关键是找到等量关系,列出方程. 14.C【分析】先由根的判别式求出m的取值范围,再求出m的值,再解这个方程x2-15x+7m=0,就可以求出x的值从而得出BC、CD的值,进而可以得出结论.【详解】解:由题意,得225﹣28m≥0,解得:m≤225 28.∵m为最大的整数,∴m=8.∴x2﹣15x+56=0,∴x1=7,x2=8.当BC =7时,CD =8,∴点D 在BA 的延长线上,如图1.当BC =8时,CD =7,∴点D 在线段BA 上,有两种情况,如图2,在D 和D ′的位置.∴综上所述,不同D 点的位置有3个.故选:C .【点睛】本题考查根的判别式的运用,一元一次不等式的解法解运用,一元二次方程的解法的运用,解答时求出m 的值是解答一元二次方程的关键.15.B【分析】 根据已知的数学模型,同理可得空白小正方形的边长为32,先计算出大正方形的面积=阴影部分的面积+4个小正方形的面积,可得大正方形的边长,从而得结论.【详解】x 2+6x+m=0,x 2+6x=-m ,∵阴影部分的面积为36,∴x 2+6x=36,4x=6, x=32, 同理:先构造一个面积为x 2的正方形,再以正方形的边长为一边向外构造四个面积为32x 的矩形,得到大正方形的面积为36+(32)2×4=36+9=45,33=. 故选:B .【点睛】此题考查了解一元二次方程的几何解法,用到的知识点是长方形、正方形的面积公式,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.16-【分析】设方程的另一个根为c ,再根据根与系数的关系即可得出结论.【详解】解:设方程的另一个根为c ,∵3c =,∴c =-【点睛】本题考查的是根与系数的关系,熟记一元二次方程根与系数的关系是解答此题的关键. 17.4a <且0a ≠【分析】根据根的判别式即可求出答案,当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.【详解】解:由题意可知:64160a ∆=->, 4a ∴<,0a ≠,4a ∴<且0a ≠,故答案为4a <且0a ≠【点睛】本题考查根的判别式,解题的关键是熟练运用根的判别式,本题属于基础题型. 18.-3或4【分析】利用新定义得到22[(2)(3)][(2)(3)]24m m m m ++--+--=,整理得到2(21)490m --=,然后利用因式分解法解方程.【详解】根据题意得,22[(2)(3)][(2)(3)]24m m m m ++--+--=,2(21)490m --=,(2 m-1+7)(2 m-1-7)=0,2 m-1+7=0或2 m-1-7=0,所以123,4m m =-=.故答案为3-或4.【点睛】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.19.四.【分析】由二次项系数非零及根的判别式△>0,即可得出关于a 的一元一次不等式组,解之即可得出a 的取值范围,由a 的取值范围可得出a+1>0,-a-3<0,进而可得出点P 在第四象限,此题得解.【详解】∵关于x 的一元二次方程210(0)4ax x a --=≠有两个不相等的实数根, ∴201(1)4-04a a ≠⎧⎪⎨⎛⎫∆=--⨯⨯> ⎪⎪⎝⎭⎩, 解得:1a >-且0a ≠.∴10a +>,30a --<,∴点(1,3)P a a +--在第四象限.故答案为四.【点睛】本题考查了根的判别式、一元二次方程的定义以及点的坐标,利用二次项系数非零及根的判别式△>0,找出关于a 的一元一次不等式组是解题的关键.20.不唯一如:(x+1)(x+2)=0【解析】∵以p q 、为根,且二次项系数为1的一元二次方程为()()0x p x q --=,∴以-1,-2为根,且二次项系数为1的一元二次方程为(1)(2)0x x ++=,即2320x x ++=. 21.0【分析】根据题意可知210,40a b ac -≠∆=->,代入数据求解即可.【详解】解:∵一元二次方程2(1)210a x x --+=有两个不相等的实数根∴210,444(1)0a b ac a -≠∆=-=-->解得:2,1a a <≠∴a 的最大整数值是0故答案为:0.【点睛】本题考查的知识点是根的判别式以及一元二次方程的定义,需注意二次项系数不为0. 22.32或72【分析】首先根据一元二次方程解的定义求出m 和ba 的值,然后代入所求方程整理求解即可.【详解】解:∵方程()20a x m b ++=的解为:x 1=3,x 2=7,∴()()223070a m b a m b ⎧++=⎪⎨++=⎪⎩, 解得:54m ba =-⎧⎪⎨=-⎪⎩, ∵21402a x m b ⎛⎫++= ⎪⎝⎭,0a ≠, ∴21402bx m a ⎛⎫++= ⎪⎝⎭, ∴254402x ⎛⎫--= ⎪⎝⎭,∴32x =或72, 故答案为:32或72. 【点睛】本题考查解一元二次方程的拓展应用,掌握解一元二次方程的基本方法是解题关键. 23.2003【分析】把原方程整理成一般式,根据一元二次方程根与系数的关系求得12x x +,12x x 的值,代入()()()121212111x x x x x x ++=+++即可求解.【详解】(1)(11)(11)(21)1)(20(1)x x x x x x ++++++++=,221211x x x ∴++++23223122210x x x ++++=,23662630x x ∴++=.∵3a =,66b =,263c =,224664326343563156b ac ∆=-=-⨯⨯=-=12000>,1212263223x x b a a x c x =-=∴+=-=,. ()()()1212122631112213x x x x x x ++=+++=-+=2003. 故答案为:2003. 【点睛】 本题考查了一元二次方程根与系数的关系以及求代数式的值,熟练掌握一元二次方程根与系数的关系12b x x a +=-,12c x x a=是解题的关键. 24.②③④【分析】①求出方程的根,再判断是否为“倍根方程”;②根据“倍根方程”和其中一个根,可求出另一个根,进而得到m ,n 之间的关系; ③当,p q 满足2pq =时,有23px x q ++=(1)()0px x q ++=,求出两个根,再根据2pq =代入可得两个根之间的关系,讲而判断是否为“倍根方程”;④用求根公式求出两个根,当122x x =或122x x =时,进一步化简,得出关系式,进行判断即可.【详解】①解方程220x x --=,得1221x x ==-,,122x x ≠,∴方程220x x --=不是“倍根方程”.故①不正确;②(2)()0x mx n -+=是“倍根方程”,且12x =,因此21x =或24x =.当21x =时,0m n +=,当24x =时,40m n +=,2245()(4)m mn n m n m n ∴++=++0=,故②正确;③2pq =,23(1)()0px x q px x q ∴++=++=,121x x q p ∴=-=-,,2122x q x p ∴=-=-=,因此230px x q ++=是“倍根方程”,故③正确;④方程20ax bx c ++=的根为12x若122x x ==2,20=,0=,0b ∴+=,b ∴-,()2294b ac b ∴-=,229b ac ∴=,若122x x =2=0=,0b ∴-+=,b ∴=,()2294b b ac ∴=-,229b ac ∴=.故④正确,故答案为:②③④.【点睛】本题考查了解一元二次方程以及一元二次方程的求根公式,新定义的倍根方程的意义,理解倍根方程的意义和正确求出方程的解是解决问题的关键.25.(1)123,1x x ==-;(2)1233x x =-=-【分析】(1)直接开方即可得出两个一元一次方程,求出方程的解即可;(2)配方,开方,即可得出两个一元一次方程,求出方程的解即可.【详解】(1)2(1)4x -=,两边直接开平方,得12x -=±,12x ∴-=或12x -=-,解得1231x x ==-,;(2)267x x +=-,26979x x ∴++=-+,即2(3)2x +=,3x ∴+=3x ∴=-即1233x x =-=-【点睛】本题考查了解一元二次方程,主要考查学生的计算能力.26.(1)1k ≤;(2)k =. 【分析】(1)根据一元二次方程22210x x k -+-=有两个不相等的实数根得到()()224210k ∆=---≥,求出k 的取值范围即可;(2)根据根与系数的关系得出方程解答即可.【详解】(1)解:∵原方程有实数根,∴240b ac -≥,∴()()224210k ---≥,∴1k ≤.(2)∵1x ,2x 是方程的两根,根据一元二次方程根与系数的关系,得: 122x x +=,1221x x k ⋅=-,又∵211212x x x x x x +=⋅, ∴22121212x x x x x x +=⋅⋅, ∴()()221212122x x x x x x +-=⋅,∴()()22222121k k --=-,解之,得:1k =2k = 经检验,都符合原分式方程的根,∵1k ≤,∴k = 【点睛】本题主要考查了根的判别式以及根与系数关系的知识,解答本题的关键是根据根的判别式的意义求出k 的取值范围,此题难度不大.27.(1)10100y x =+;(2)商贸公司要想获利2090元,则这种干果每千克应降价9元.【分析】(1)根据图象可得:当2x =,120y =,当4x =,140y =;再用待定系数法求解即可; (2)根据这种干果每千克的利润×销售量=2090列出方程,解方程即可.【详解】解:(1)设一次函数解析式为:y kx b =+,根据图象可知:当2x =,120y =;当4x =,140y =;∴21204140k b k b +=⎧⎨+=⎩,解得:10100k b =⎧⎨=⎩, ∴y 与x 之间的函数关系式为10100y x =+;(2)由题意得:(6040)(10100)2090x x --+=,整理得:21090x x -+=,解得:11x =.29x =,∵让顾客得到更大的实惠,∴9x =.答:商贸公司要想获利2090元,这种干果每千克应降价9元.【点睛】本题考查了一元二次方程的应用和一次函数的应用,读懂图象信息、熟练掌握待定系数法、正确列出一元二次方程是解题的关键.28.(1)12x =,21x =-;(2)1x =2x = 【分析】(1)移项后开方,即可得出两个一元一次方程,求出方程的解即可;(2)求出24b ac -的值,再代入公式求出即可.【详解】(1)移项,得23(21)27x -=,化简,得2(21)9x -=,开平方,得213x -=±,12x ∴=,21x =-;(2)251a b c ==-=,,,224(5)421170b ac ∴∆=-=--⨯⨯=>,x ∴==1x =∴,2x =【点睛】本题考查了解一元二次方程,主要考查学生的计算能力.29.(1)3a =±;(2)4【分析】(1)根据一元二次方程的定义得到||12a -=,即可求解;(2)利用方程的解得到220m m --=,推出22m m -=和21m m-=,再整体代入原式即可求解.【详解】(1)由于||120a x x ---=是关于x 的一元二次方程,所以||12a -=,解得3a =±;(2)由(1)知,该方程为220x x --=,把x m =代入,得220m m --=,所以22m m -=,①由220m m --=,得210m m --=, 所以21m m -=,② 把①和②代入()221m m m m ⎛⎫-⋅-+ ⎪⎝⎭, 得()2212(11)4m m m m ⎛⎫-⋅-+=⨯+= ⎪⎝⎭, 即()2214m m m m ⎛⎫-⋅-+= ⎪⎝⎭. 【点睛】本题考查了一元二方程的定义,一元二方程的解以及求代数式的值,利用一元二方程的解求得22m m -=和21m m-=是解题的关键. 30.(1)证明见解析;(2)m ≥2;(3)经过,理由见解析.【分析】(1)由△=[-(m+4)]2-4(2m+4)=m 2≥0知方程有两个实数根;(2)由一元二次方程的求根公式得出方程的两个根,由于其中一个等于2,已经小于4,故令另外一个含有m 的根大于等于4,即可求出m 的值;(3)先由一元二次方程根与系数的关系得出x 1+x 2=m+4,x 1x 2=2m+4,代入n=x 12+x 22-4,从而将动点P (m ,n )仅用含m 的代数式表示,再将点A (-5,9)代入验证即可.【详解】(1)证明:∵b 2﹣4ac =[﹣(m+4)]2﹣4(2m+4)=m 2≥0,∴该一元二次方程总有两个实数根;(2)解:∵关于x 的一元二次方程x 2﹣(m+4)x+2m+4=0∴a =1,b =﹣(m+4),c =2m+4∴由一元二次方程的求根公式得:x =42m m +± ∴x 1=m+2,x 2=2∵该方程只有一个小于4的根∴m+2≥4∴m≥2;(3)∵x 1+x 2=m+4,x 1x 2=2m+4∴n =x 12+x 22﹣4=()212x x +﹣2x 1x 2﹣4=(m+4)2﹣2(2m+4)﹣4=m 2+4m+4∴动点P (m ,n )可表示为(m ,m 2+4m+4)∴当m =﹣5时,m 2+4m+4=25﹣20+4=9∴动点P (m ,n )所形成的数图象经过点A (﹣5,9).【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根;同时本题还考查了公式法求解方程及根与系数的关系的应用,以及点的坐标与函数的对应关系.31.(1)50,25;(2)20【分析】(1)先将10.5万元化为105000元,设该乡镇有x 名高中学生获得了资助,则该乡镇有2x 名初中学生受到资助,由题意得一元一次方程,求解即可;(2)以“2019年上半年评为优秀学生的初、高中学生所获得的资助总金额一个月就达到了10800元”为等量关系,列出方程,然后设a%=t ,化为关于t 的一元二次方程,求解出t ,再根据a%=t ,求得a 即可.【详解】(1)10.5万元=105000元设该乡镇有x 名高中学生获得了资助,则该乡镇有2x 名初中学生受到资助,由题意得: 20023006105000x x ⨯+⨯=解得:25x =∴250x =∴该乡镇分别有50名初中学生和25名高中学生获得了资助.(2)由题意得:5030%13%2001%2540%1%30012%10800a a a a ⨯⨯+⨯++⨯⨯+⨯+=∴1013%1%101%12%36a a a a ⨯+⨯++⨯+⨯+=设%a t =,则方程化为:22101431013236t t t t +++++=∴2253580t t +=﹣解得 1.6t =﹣(舍)或20%t = ∴20a =.【点睛】本题主要考查了由实际问题抽象出一元二次方程和一元一次方程,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.32.(1)5cm 2;(2;(365 【分析】(1)当t =1时,可以得出CQ =1cm ,AP =2cm ,就有PB =6-2=4(cm ),由梯形的面积就可以得出四边形BCQP 的面积;(2)如图1,作QE ⊥AB 于E ,在Rt △PEQ 中,由勾股定理建立方程求出其解即可,如图2,作PE ⊥CD 于E ,在Rt △PEQ 中,由勾股定理建立方程求出其解即可;(3)分情况讨论,如图3,当PQ =DQ 时,如图4,当PD =PQ 时,如图5,当PD =QD 时,由等腰三角形的性质及勾股定理建立方程就可以得出结论.【详解】解:(1)如图,∵四边形ABCD 是矩形,∴AB=CD=6,AD=BC=2,∠A=∠B=∠C=∠D=90°.∵CQ=1cm,AP=2cm,∴AB=6﹣2=4(cm).∴S=()14252+⨯=(cm2).答:四边形BCQP面积是5cm2;(2)如图1,作QE⊥AB于E,∴∠PEQ=90°,∵∠B=∠C=90°,∴四边形BCQE是矩形,∴QE=BC=2cm,BE=CQ=t(cm).∵AP=2t(cm),∴PE=6﹣2t﹣t=(6﹣3t)cm.在Rt△PQE中,由勾股定理,得(6﹣3t)2+4=9,解得:t如图2,作PE⊥CD于E,∴∠PEQ=90°.∵∠B=∠C=90°,∴四边形BCQE是矩形,∴PE=BC=2cm,BP=CE=6﹣2t.∵CQ=t,∴QE=t﹣(6﹣2t)=3t﹣6在Rt△PEQ中,由勾股定理,得(3t﹣6)2+4=9,解得:t综上所述:t(3)如图3,当PQ=DQ时,作QE⊥AB于E,∴∠PEQ=90°,∵∠B=∠C=90°,∴四边形BCQE是矩形,∴QE=BC=2cm,BE=CQ=t(cm).∵AP=2t,∴PE=6﹣2t﹣t=6﹣3t.DQ=6﹣t.∵PQ=DQ,∴PQ=6﹣t.在Rt△PQE中,由勾股定理,得(6﹣3t)2+4=(6﹣t)2,解得:t如图4,当PD=PQ时,作PE⊥DQ于E,∴DE =QE =12DQ ,∠PED =90°.∵∠A =∠D =90°,∴四边形APED 是矩形,∴PE =AD =2cm .DE =AP =2t ,∵DQ =6﹣t ,∴DE =62t - . ∴2t =62t -, 解得:t =65; 如图5,当PD =QD 时,∵AP =2t ,CQ =t ,∴DQ =6﹣t ,∴PD =6﹣t .在Rt △APD 中,由勾股定理,得4+4t 2=(6﹣t )2,解得t 1t 2.综上所述:t 6565 【点睛】 本题主要考查了矩形的性质的运用,勾股定理的运用,等腰三角形的性质的运用,梯形的面积公式的运用,一元二次方程的解法的运用.解答时灵活运用动点问题的求解方法是关键.。

人教版数学九年级上册第二十一章测试题及答案

人教版数学九年级上册第二十一章测试题及答案

人教版数学九年级上册第二十一章考试试卷时间:120分钟 满分:120分班级:__________ 姓名:__________ 得分:__________一、选择题(每小题3分,共30分)1.若关于x 的方程(a +1)x 2+2x -1=0是一元二次方程,则a 的取值范围是( )A .a ≠-1B .a >-1C .a <-1D .a ≠02.已知x =2是一元二次方程x 2-2mx +4=0的一个解,则m 的值为( )A .2B .0C .0或2D .0或-23.一元二次方程x 2-8x -1=0配方后可变形为( )A .(x +4)2=17B .(x +4)2=15C .(x -4)2=17D .(x -4)2=154.方程2x 2=3x 的解为( )A .0 B.32 C .-32 D .0,325.已知一元二次方程x 2-2x -1=0的两根分别为m ,n ,则m +n 的值为( )A .-2B .-1C .1D .26.某市2014年平均房价为每平方米8000元,2016年平均房价降到每平方米7000元,设这两年平均房价年平均降低率为x ,根据题意,下面所列方程正确的是( )A .8000(1+x )2=7000B .8000(1-x )2=7000C .7000(1-x )2=8000D .7000(1+x )2=80007.若关于x 的一元二次方程kx 2+2x -1=0有实数根,则实数k 的取值范围是( )A .k ≥-1B .k >-1C .k ≥-1且k ≠0D .k >-1且k ≠08.一个等腰三角形的两条边长分别是方程x 2-7x +10=0的两根,则该等腰三角形的周长是( )A .12B .9C .13D .12或99.若关于x 的一元二次方程x 2-3x +p =0(p ≠0)的两个不相等的实数根分别为a 和b ,且a 2-ab +b 2=18,则a b +b a的值是( ) A .3 B .-3 C .5 D .-510.在直角坐标系xOy 中,已知点P (m ,n ),m ,n 满足(m 2+1+n 2)(m 2+3+n 2)=8,则OP 的长为( ) A. 5 B .1 C .5 D.5或1二、填空题(每小题3分,共24分)11.方程(x -3)2+5=6x 化成一般形式是x 2-12x +14=0,其中一次项系数是________.12.方程x 2-2x -3=0的解为__________.13.已知关于x 的一元二次方程x 2-23x -k =0有两个相等的实数根,则k 的值为_____.14.已知关于x 的一元二次方程x 2+(m +3)x +m +1=0的两个实数根为x 1,x 2,若x 21+x 22=4,则m 的值为___________.15.设一元二次方程x 2-3x -1=0的两根分别是x 1,x 2,则x 1+x 2(x 22-3x 2)=______.16.如图是一个邻边不等的矩形花圃ABCD ,它的一边AD 利用已有的围墙,另外三边所围的栅栏的总长度是6m.若矩形的面积为4m 2,则AB 的长度是_____m(可利用的围墙长度超过6m).17.小明设计了一个魔术盒,当任意实数对(a ,b )进入其中时,会得到一个新的实数a 2+2b -3.例如把(2,-5)放入其中就会得到22+2×(-5)-3=-9.现将实数对(m ,-3m )放入其中,得到实数4,则m =__________.18.已知关于x 的方程x 2-(a +b )x +ab -1=0,x 1,x 2是此方程的两个实数根,现给出三个结论:①x 1≠x 2;②x 1x 2<ab ;③x 21+x 22<a 2+b 2.则正确结论的序号是_______(填序号). 三、解答题(共66分)19.(每小题4分,共12分)解下列方程:(1)x 2+4x -5=0;(2)x (x -4)=2-8x ;(3)x -3=4(x -3)2.20.(6分)嘉淇同学用配方法推导一元二次方程ax 2+bx +c =0(a ≠0)的求根公式时,对于b 2-4ac >0的情况,她是这样做的:由于a ≠0,方程ax 2+bx +c =0变形为:x 2+b a x =-c a,……第一步 x 2+b a x +⎝⎛⎭⎫b 2a 2=-c a+⎝⎛⎭⎫b 2a 2,……第二步 ⎝⎛⎭⎫x +b 2a 2=b 2-4ac 4a 2,……第三步x +b 2a =b 2-4ac 4a 2,……第四步 x =-b +b 2-4ac 2a.……第五步 (1)嘉淇的解法从第四步开始出现错误;事实上,当b 2-4ac >0时,方程ax 2+bx +c =0(a ≠0)的求根公式是____________________;(2)用配方法解方程:x 2-2x -24=0.21.(8分)已知关于x 的方程3x 2-(a -3)x -a =0(a >0).(1)求证:方程总有两个不相等的实数根;(2)若方程有一个根大于2,求a 的取值范围.22.(8分)青海新闻网讯:2016年2月21日,西宁市首条绿道免费公共自行车租赁系统正式启用.市政府今年投资了112万元,建成40个公共自行车站点、配置720辆公共自行车.今后将逐年增加投资,用于建设新站点、配置公共自行车.预计2018年将投资340.5万元,新建120个公共自行车站点、配置2205辆公共自行车.(1)请问每个站点的造价和公共自行车的单价分别是多少万元?(2)请你求出2016年到2018年市政府配置公共自行车数量的年平均增长率.23.(10分)关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实根x1,x2.(1)求实数k的取值范围;(2)若方程两实根x1,x2满足|x1|+|x2|=x1·x2,求k的值.24.(10分)某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.(1)降价前商场每月销售该商品的利润是多少元?(2)要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?25.(12分)如图,已知A,B,C,D为矩形的四个顶点,AB=16cm,AD=6cm,动点P,Q分别从点A,C同时出发,点P以3cm/s的速度向点B移动,一直到点B为止,点Q 以2cm/s的速度向点D移动.问:(1)P,Q两点从开始出发多长时间时,四边形PBCQ的面积是33cm2?(2)P,Q两点从开始出发多长时间时,点P与Q之间的距离是10cm?答案1.A2.A3.C4.D5.D6.B7.C8.A9.D 解析:∵a ,b 为方程x 2-3x +p =0(p ≠0)的两个不相等的实数根,∴a +b =3,ab =p .∵a 2-ab +b 2=(a +b )2-3ab =32-3p =18,∴p =-3.当p =-3时,Δ=(-3)2-4p =9+12=21>0,∴p =-3符合题意.a b +b a =a 2+b 2ab =(a +b )2-2ab ab =(a +b )2ab -2=32-3-2=-5.故选D. 10.B 解析:设m 2+n 2=t ,则(t +1)(t +3)=8,化简为t 2+4t -5=0,解得t =1或-5.∵m 2+n 2>0,∴m 2+n 2=1,故OP =m 2+n 2=1.11.x 2-12x +14=0 -12 12.x 1=3,x 2=-1 13.-314.-1或-3 15.3 16.1 17.7或-118.①② 解析:Δ=(a +b )2-4(ab -1)=(a -b )2+4>0,故方程有两个不相等的实数根,即x 1≠x 2,故①正确.∵x 1·x 2=ab -1<ab ,∴②正确.∵x 1+x 2=a +b ,∴x 21+x 22=(x 1+x 2)2-2x 1x 2=(a +b )2-2(ab -1)=a 2+b 2+2>a 2+b 2,故③错误.19.解:(1)x 1=1,x 2=-5;(4分)(2)x 1=-2+6,x 2=-2-6;(8分)(3)x 1=3,x 2=134.(12分) 20.解:(1)四 x =-b ±b 2-4ac 2a(2分) (2)x 2-2x =24,x 2-2x +1=24+1,(x -1)2=25,(4分)x -1=±5.∴x 1=6,x 2=-4.(6分)21.(1)证明:Δ=(a -3)2-4×3×(-a )=(a +3)2.(2分)∵a >0,∴(a +3)2>0,即Δ>0.∴方程总有两个不相等的实数根;(4分)(2)解:∵Δ=(a +3)2>0,由求根公式得x =a -3±(a +3)22×3,∴x 1=-1,x 2=a 3.(6分)∵方程有一个根大于2,∴a 3>2.∴a >6.(8分) 22.解:(1)设每个站点的造价为x 万元,公共自行车的单价为y 万元.根据题意可得{40x +720y =112,120x +2205y =340.5,(2分)解得{x =1,y =0.1.(3分) 答:每个站点的造价为1万元,公共自行车的单价为0.1万元;(4分)(2)设2016年到2018年市政府配置公共自行车数量的年平均增长率为a .根据题意可得720(1+a )2=2205,(6分)解此方程得a 1=34=75%,a 2=-114(不符合题意,舍去).(7分)答:2016年到2018年市政府配置公共自行车数量的年平均增长率为75%.(8分)23.解:(1)∵原方程有两个不相等的实数根,∴Δ=(2k +1)2-4(k 2+1)=4k 2+4k+1-4k 2-4=4k -3>0,解得k >34;(4分) (2)∵k >34,∴x 1+x 2=-(2k +1)<0.(6分)又∵x 1·x 2=k 2+1>0,∴x 1<0,x 2<0,∴|x 1|+|x 2|=-x 1-x 2=-(x 1+x 2)=2k +1.(8分)∵|x 1|+|x 2|=x 1·x 2,∴2k +1=k 2+1,∴k 1=0,k 2=2.又∵k >34,∴k =2.(10分) 24.解:(1)由题意得60×(360-280)=4800(元).即降价前商场每月销售该商品的利润是4800元;(4分)(2)设每件商品应降价x 元,由题意得(360-x -280)(5x +60)=7200,解得x 1=8,x 2=60.(8分)要更有利于减少库存,则x =60.即要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价60元.(10分)25.解:(1)设经过x s ,则由题意得(16-3x +2x )×6×12=33,(4分)解得x =5.即经过5s 四边形PBCQ 的面积是33cm 2;(6分)(2)设出发t s ,过点Q 作QH ⊥AB 于H .在Rt △PQH 中,有(16-5t )2+62=102,(10分)解得t 1=1.6,t 2=4.8.即出发1.6s 或4.8s 后,点P 与Q 之间的距离是10cm.(12分)。

人教版九年级上册数学第二十一章测试卷带答案

人教版九年级上册数学第二十一章测试卷带答案

人教版九年级上册数学第二十一章测试卷一、单选题1.如果2是方程的一个根,那么c 的值是( ) A .4 B .-4 C .2 D .-22.用配方法解方程x 2+8x ﹣9=0时,此方程可变形为( )A .(x+4)2=7B .(x+4)2=25C .(x+4)2=9D .(x+4)2=﹣7 3.一元二次方程240x -=的解是( )A .x 1=2,x 2=-2B .x =-2C .x =2D .x 1=2,x 2=0 4.将二次函数y=x 2﹣2x+3化为y=(x ﹣h )2+k 的形式,结果为( )A .y=(x+1)2+4B .y=(x ﹣1)2+4C .y=(x+1)2+2D .y=(x ﹣1)2+25.设x 1、x 2是一元二次方程2x 2﹣4x ﹣1=0的两实数根,则x 12+x 22的值是( ) A .2 B .4 C .5 D .66.已知一元二次方程2x 2+x ﹣5=0的两根分别是x 1,x 2,则x 12+x 22的值是( )A .12B .-12C .-214D .2147.有下列关于x 的方程:①ax 2+bx+c=0,②3x (x ﹣4)=0,③x 2+y ﹣3=0,④21x +x=2,⑤x 3﹣3x+8=0,⑥12x 2﹣5x+7=0,⑦(x ﹣2)(x+5)=x 2﹣1.其中是一元二次方程的有( )A .2B .3C .4D .58.关于x 的一元二次方程()222201440a x x a -++-=的一个根是0,则a 的值( )A .-2B .2C .2或-2D .09.某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率.设平均每次降价的百分率为,可列方程为 ( )A .120(1-x )2="100"B .100(1-x )2=120C .100(1+x )2=120D .120(1+x )2=10010.华润万家超市某服装专柜在销售中发现:进货价为每件50元,销售价为每件90元的某品牌童装平均每天可售出20件.为了迎接“六一”,商场决定采取适当的降价措施,扩大销售量,增加盈利.经调查发现:如果每件童装降价1元,那么平均每天就可多售出2件,要想平均每天销售这种童装盈利1200元,同时又要使顾客得到较多的实惠,设降价x 元,根据题意列方程得( )A .(40﹣x)(20+2x)=1200B .(40﹣x)(20+x)=1200C .(50﹣x)(20+2x)=1200D .(90﹣x)(20+2x)=1200二、填空题11.方程 2x -4x+c=0有两个不相等的实数根,则c 的取值范围是________.12.已知1x =是方程²30x ax ++=的一个根,则a 的值为_________________13.已知x=2是方程 232x ﹣2a=0的一个根,则2a+1=________. 14.当x=________时,代数式(3x ﹣4)2与(4x ﹣3)2的值相等.15.若(x 2+y 2)2﹣3(x 2+y 2)﹣70=0,则x 2+y 2= _________ .16.等腰三角形一条边的边长为3,它的另两条边的边长是关于x 的一元二次方程x 2﹣12x+k=0的两个根,则k 的值是________.17.已知m 是方程2x 2﹣x ﹣1=0的一个根,则代数式6m 2﹣3m 的值等于_____.18.若x=a 是方程x 2+x ﹣1=0的一个实数根,则代数式3a 2+3a ﹣5的值是__________.19.方程()()231212x x x +-=+化为一般形式为________20.在国家政策的宏观调控下,某市的商品房成交均价由去年10月份的7000元/m 2下降到12月份的5670元/m 2,则11、12两月平均每月降价的百分率是_____.三、解答题21.请选择适当的方法解下列一元二次方程:(1)240x -=(2)(6)5x x -=22.我市一家电子计算器专卖店每只进价13元,售价20元,为了扩大销售,该店现规定,凡是一次买10只以上的,每多买1只,所买的全部计算器每只就降低0.10元,例如,某人买20只计算器,于是每只降价0.10×(20-10)=1(元),因此,所买的全部20只计算器都按照每只19元计算,但是最低价为每只16元.问一次卖多少只获得的利润为120元?23.已知关于x的方程x2+ax+a﹣2=0.(1)求证:不论a取何实数,该方程都有两个不相等的实数根;(2)若该方程的一个根为1,求a的值及该方程的另一根.24.某单位通过旅行社组织职工去上海世博会.下面是领队与旅行社导游收费标准的一段话:领队:每人的收费标准是多少?导游:如果人数不超过30人,人均旅游费用为120元.领队:超过30人怎样优惠呢?导游:如果超过30人,每增加1人,人均旅游费用就降低2元,但人均旅游费用不得低于90元.该单位按旅行社的收费标准组团参观世博会后,共支付给旅行社4000元.请你根据上述信息,求该单位这次参观世博会的共有几人?25.如图,学校准备修建一个面积为48m2的矩形花园.它的一边靠墙,其余三边利用长20m 的围栏.已知墙长9m,问围成矩形的长和宽各是多少?26.巴中市某楼盘准备以每平方米5000元的均价对外销售,由于有关部门关于房地产的新政策出台后,部分购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4050元的均价开盘销售,若两次下调的百分率相同,求平均每次下调的百分率.27.一幅长20cm、宽12cm的图案,如图,其中有一横两竖的彩条,横、竖彩条的宽度比为3:2.若图案中三条彩条所占面积是图案面积的25,求横、竖彩条的宽度.28.如图,已知△ABC是边长为3cm的等边三角形,动点P、Q同时从A、B两点出发(点P 不与点A、B重合,点Q不与点B、C重合),分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动,设点P的运动时间为t s,则当t为何值时,△PBQ是直角三角形?参考答案1.A【详解】解:由题意得,40-=c解得:4c =,故选A .2.B【分析】将方程常数项移动右边,两边都加上16,左边化为完全平方式,右边合并即可得到结果.【详解】x 2+8x ﹣9=0,移项得:x 2+8x =9,配方得:x 2+8x +16=25,即(x +4)2=25.故选B .【点睛】本题考查了解一元二次方程﹣配方法,熟掌握完全平方公式是解答本题的关键.3.A【分析】首先将原方程移项可得24x =,据此进一步利用直接开平方法求解即可.【详解】原方程移项可得:24x =,解得:12x =,22x -=,故选:A.【点睛】本题主要考查了直接开平方法解一元二次方程,熟练掌握相关方法是解题关键.4.D【详解】试题分析:本题是将一般式化为顶点式,由于二次项系数是1,只需加上一次项系数的一半的平方来凑成完全平方式即可得y=x 2﹣2x+3=x 2﹣2x+1﹣1+3=(x ﹣1)2+2.故选D .考点:二次函数的三种形式5.C【详解】【分析】根据根与系数的关系得出x 1+x 2=2,x 1•x 2=-12,把2212x x +2化成(x 1+x 2)2-2x 1x 2代入进行求出即可.【详解】∵x 1、x 2是一元二次方程2x 2﹣4x ﹣1=0的两实数根,∴x 1+x 2=2,x 1x 2=﹣12,∴x 12+x 22=(x 1+x 2)2﹣2x 1x 2=22﹣2×(﹣12)=5,故选C .【点睛】本题考查了根与系数的关系的应用,关键是把所求的代数式化成含有x 1+x 2和x 1•x 2的形式.6.D【分析】根据根与系数的关系得到x 1+x 212=-,x 1x 252=-,再利用完全平方公式变形得到x 12+x 22=(x 1+x 2)2﹣2x 1x 2,然后利用整体代入的方法计算.【详解】根据题意得:x 1+x 212=-,x 1x 252=-,所以x 12+x 22=(x 1+x 2)2﹣2x 1x 2=(12-)2﹣2×(52124)-=. 故选D .【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2b a =,x 1x 2c a=. 7.A【详解】一元二次方程有②⑥,共2个,故选A.8.A【分析】代入求解即可,注意二次项系数不为0.【详解】因为0是方程的根,所以a 2–4=0,又因为a ≠2,所以a=–2.【点睛】二次项系数不为0是易错点.9.A【详解】∵某种商品原价是120元,平均每次降价的百分率为x ,∴第一次降价后的价格为:120×(1﹣x ),∴第二次降价后的价格为:120×(1﹣x )×(1﹣x )=120×(1﹣x )2,∴可列方程为:120(1﹣x )2=100,故选A .10.A【详解】试题分析:总利润=单件利润×数量;单件利润=90-50-x ,数量=20+2x ,则(40-x )(20+2x )=1200.考点:一元二次方程的应用11.c <4.【详解】试题分析:利用方程有两个不相等的实数根时△>0,建立关于c 的不等式,求出c 的取值范围即可.由题意得△=2b ﹣4ac=16﹣4c >0,解得c <4.故答案为c <4.考点:根的判别式.12.4-【分析】把1x =代入方程²30x ax ++=,即可求出a 的值. 【详解】把1x =代入方程²30x ax ++=,得 1+a+3=0,∴a=-4.故答案为:-4.【点睛】本题考查了一元二次方程的根,能使一元二次方程成立的未知数的值叫作一元二次方程的解,也叫作一元二次方程的根,熟练掌握一元二次方程解得定义是解答本题的关键.13.7【分析】根据一元二次方程解的定义把x =2代入232x -2a =0得到关于a 的方程,然后解关于a 的方程即可.【详解】把x =2代入232x -2a =0得:6﹣2a =0,解得:2a =6,2a +1=6+1=7. 故答案为7.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.14.﹣1或1【分析】代数式(3x ﹣4)2与(4x ﹣3)2的值相等,则可得到一个一元二次方程,然后移项,套用公式a 2﹣b 2=(a +b )(a ﹣b )进行因式分解,利用因式分解法即可得到x 的值.【详解】由题意得:(3x ﹣4)2=(4x ﹣3)2移项得:(3x ﹣4)2﹣(4x ﹣3)2=0分解因式得:[(3x ﹣4)+(4x ﹣3)][(3x ﹣4)﹣(4x ﹣3)]=0解得:x 1=﹣1,x 2=1.故答案为﹣1或1.【点睛】本题考查了解一元二次方程的方法,当方程通过移项把等式的右边化为0后,方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的式子的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.【详解】试题分析:将看作一个整体,记则方程为解得a=-7或10即又因为所以考点:解一元二次方程;整体思想点评:本题实际考查解一元二次方程,本题的关键在于整体思想的应用16.36【分析】分3为等腰三角形的腰与3为等腰三角形的底两种情况考虑.①当3为等腰三角形的腰时,将x=3代入原方程可求出k的值,再利用分解因式法解一元二次方程可求出等腰三角形的底,由三角形的三边关系可确定此情况不存在;②当3为等腰三角形的底时,由方程的系数结合根的判别式可得出△=144﹣4k=0,解之即可得出k值,进而可求出方程的解,再利用三角形的三边关系确定此种情况符合题意.此题得解.【详解】①当3为等腰三角形的腰时,将x=3代入原方程得9﹣12×3+k=0,解得:k=27,此时原方程为x2﹣12x+27=0,即(x﹣3)(x﹣9)=0,解得:x1=3,x2=9.∵3+3=6<9,∴3不能为等腰三角形的腰;②当3为等腰三角形的底时,方程x2﹣12x+k=0有两个相等的实数根,∴△=(﹣12)2﹣4k=144﹣4k=0,解得:k=36,此时x1=x2122-=-=6.∵3、6、6可以围成等腰三角形,∴k=36.故答案为36.【点睛】本题考查了解一元二次方程-因式分解法、根的判别式、三角形的三边关系以及等腰三角形的性质,分3为等腰三角形的腰与3为等腰三角形的底两种情况考虑是解题的关键.【分析】把x=m 代入方程得出2m 2﹣m=1,把6m 2﹣3m 化成3(2m 2﹣m ),代入求出即可.【详解】解:∵m 是方程2x 2﹣x ﹣1=0的一个根,∴2m 2﹣m ﹣1=0,∴2m 2﹣m=1,∴6m 2﹣3m=3(2m 2﹣m )=3×1=3,故答案为:3.【点睛】本题考查了一元二次方程的解的应用,用了整体代入思想,即把2m 2﹣m 当作一个整体来代入.18.-2.【详解】试题分析:由题意,将x=a 代入关于x 的方程得,a 2+a-1=0,移项:a 2+a=1,所以3a 2+3a-5=3(a 2+a)-5=3×1-5=-2.故答案为-2.考点:一元二次方程根的意义.19.5x 2﹣x ﹣3=0【分析】将原方程移项、合并同类项,就可化成ax 2+bx+c=0(a≠0)的形式.【详解】解:()()231212x x x +-=+,6x 2+2x ﹣3x ﹣1=x 2+2,6x 2+2x ﹣3x ﹣1﹣x 2﹣2=0,5x 2﹣x ﹣3=0,故答案为5x 2﹣x ﹣3=0【点睛】考查一元二次方程的一般形式.一元二次方程的一般形式为:形如ax 2+bx+c=0(a≠0). 20.10%【分析】设11、12两月平均每月降价的百分率是x ,那么11月份的房价为7000(1−x ),12月份的房价为7000(1−x )2,然后根据12月份的价格即可列出方程解决问题.【详解】解:设11、12两月平均每月降价的百分率是x ,由题意,得:7000(1﹣x )2=5670,解得:x 1=0.1=10%,x 2=1.9(不合题意,舍去).故答案为:10%.【点睛】本题是一道一元二次方程的应用题,与实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.21.(1) x 1=﹣2,x 2=2;(2)13x =23x =【详解】试题分析:利用直接开平方法直接可求解;(2)先化简,再根据公式法求解.试题解析:(1)x 2﹣4=0x 2=4x=±2(2)x (x ﹣6)=5x 2-6x-5=0因为a=1,b=-6,c=-5所以△=36-4×(-5)=56>0所以x ==3,所以13x =13x =22.20只【分析】设每次卖x 只,所获得的利润为120元,根据我市一家电子计算器专卖店每只进价13元,售价20元,为了扩大销售,该店现规定,凡是一次买10只以上的,每多买1只,所买的全部计算器每只就降低0.10元,可列方程求解.【详解】设每次卖x只,所获得的利润为120元,x[20-13-0.1(x-10)]=120x2-80x+1200=0x=20或x=60(舍去).(因为最多降价到16元,所以60舍去.)故卖20只时利润可达到120.23.(1)见解析;(2)a=12,x1=﹣32【分析】(1)根据根的判别式即可求解;(2)将x=1代入方程x2+ax+a﹣2=0,求出a,再利用根与系数的关系求出方程的另一根.【详解】解:(1)∵△=a2﹣4(a﹣2)=a2﹣4a+8=a2﹣4a+4+4=(a﹣2)2+4≥0,∴不论a取何实数,该方程都有两个不相等的实数根.(2)将x=1代入方程x2+ax+a﹣2=0得1+a+a﹣2=0,解得a=12;∴方程为x2+12x﹣32=0,即2x2+x﹣3=0,设另一根为x1,则1×x1=ca=﹣32,∴另一根x1=﹣32.【点睛】此题主要考查一元二次方程根的求解,解题的关键是熟知根的判别式与根与系数的关系.24.30X120="3600" ∵3600小于4000,∴参观的人数大于30人设共有x人,则人均旅游费为【120-2(x-30)】元由题意得:x【120-2(x-30)】=4000整理得:x1=40,x2=50当x=40时,120—2(40-30)=100大于90当x=50时,120—2(50.30)=80.小于90(不合,舍去)答:该单位这次参观世博会共又40人【分析】本题要先判断出人数的大致范围,判断是否超过30人,根据对话中给出的条件来套用合适的等量关系:人均旅游费×人数=4000元,即可列出方程求解.【详解】30×120=3600.∵3600<4000,∴参观的人数大于30人,设共有x人,则人均旅游费为[120﹣2(x﹣30)]元,由题意得:x[120﹣2(x﹣30)]=4000解得:x1=40,x2=50.当x=40时,120﹣2(40﹣30)=100>90;当x=50时,120﹣2(50﹣30)=80<90(不合,舍去).答:该单位这次参观世博会共有40人.【点睛】本题考查了一元二次方程的应用,关键是首先要弄清题意,可根据题意列出方程,判断所求的解是否符合题意,舍去不合题意的解.25.围成矩形的长为8m、宽为6m【详解】试题分析:设宽为xm,则长为(20﹣2x)m,然后根据48平方米的长方形即可列出方程,解方程即可解决问题.解:设宽为x m,则长为(20﹣2x)m.由题意,得x•(20﹣2x)=48,解得x1=4,x2=6.当x=4时,20﹣2×4=12>9(舍去),当x=6时,20﹣2×6=8.答:围成矩形的长为8m、宽为6m.考点:一元二次方程的应用.26.10%【分析】设平均每次下调的百分率为x ,根据调价前后的价格,即可得出关于x 的一元二次方程,解之取小于1的正值即可得出结论.【详解】设平均每次下调的百分率为x ,根据题意得:5000(1﹣x )2=4050,解得:x 1=0.1=10%,x 2=1.9(不合题意,舍去).答:平均每次下调的百分率为10% .【点睛】本题考查了一元二次方程的应用,根据调价前后的价格,列出关于x 的一元二次方程是解题的关键.27.横彩条的宽度为3cm ,竖彩条的宽度为2cm .【分析】设竖彩条的宽度为xcm ,则横彩条的宽度为3cm 2x ,根据三条彩条所占面积是图案面积的25,即可得出关于x 的一元二次方程,解之即可得出结论.【详解】设竖彩条的宽度为xcm ,则横彩条的宽度为3cm 2x , 根据题意,得:23322021223542012225x x x x x x ⨯+⨯⋅-⨯⋅=-+=⨯⨯, 整理,得:218320x x -+=,解得:12216x x ==,(舍去), ∴332x =, 答:横彩条的宽度为3cm ,竖彩条的宽度为2cm .【点睛】考查由实际问题抽象出一元二次方程,读懂题目,找出题目中的等量关系是解题的关键. 28.当t=1秒或t=2秒时,△PBQ 是直角三角形.【分析】分情况进行讨论:①∠BPQ=90°;②∠BQP=90°.然后在直角三角形BQP 中根据BP ,BQ的表达式和∠B 的度数进行求解即可.【详解】根据题意得AP=tcm,BQ=tcm,△ABC中,AB=BC=3cm,∠B=60°,∴BP=(3-t)cm,△PBQ中,BP=3-t,BQ=t,若△PBQ是直角三角形,则∠BQP=90°或∠BPQ=90°,BP,当∠BQP=90°时,BQ=12(3-t),t=1(秒),即t=12BQ,当∠BPQ=90°时,BP=12t,∴3-t=12∴t=2(秒),答:当t=1秒或t=2秒时,△PBQ是直角三角形.【点睛】主要考查了直角三角形的判定、等边三角形的性质.分情况进行讨论:①∠BPQ=90°;②∠BQP=90°是解本题的关键.。

人教版九年级上册数学第二十一章测试卷有答案

人教版九年级上册数学第二十一章测试卷有答案

人教版九年级上册数学第二十一章测试卷一、单选题1.关于x 的方程(m ﹣1)x 2+2mx ﹣3=0是一元二次方程,则m 的取值是( ) A .任意实数 B .m ≠1 C .m ≠﹣1 D .m >12.一元二次方程254x x +=-的一次项的系数是( )A .4B .-4C .1D .53.若关于x 的一元二次方程(a +1)x 2+x +a 2-1=0的一个解是x =0,则a 的值为( ) A .1 B .-1 C .±1 D .04.方程(x +1)2=0的根是( )A .x 1=x 2=1B .x 1=x 2=﹣1C .x 1=﹣1,x 2=1D .无实根5.方程x 2+2x +1=0的根是( )A .x 1=x 2=1B .x 1=x 2=﹣1C .x 1=﹣1,x 2=1D .无实根6.方程210x x +-=的根是( )A .1BC .1-D 7.方程240x x -=的根是( )A .x=4B .x=0C .120,4x x ==D . 1204,x x ==- 8.如果(x +2y )2+3(x +2y )﹣4=0,那么x +2y 的值为( )A .1B .﹣4C .1或﹣4D .﹣1或39.已知关于x 的一元二次方程x 2+(2k +1)x +k 2=0①有两个不相等的实数根.则k 的取值范围为( )A .k >﹣14B .k >4C .k <﹣1D .k <410.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x ,那么x 满足的方程是( )A .50(1+x )²=182B .50+50(1+x )+50(1+x )²=182C .50(1+2x)=182D .50+50(1+x)+550(1+x )²=182二、填空题11.已知1x =-是方程230x ax a ++-=的一个根,则a 的值是_______.12.如果关于x 的方程(m ﹣1)x 3﹣mx 2+2=0是一元二次方程,那么此方程的根是_____. 13.已知关于x 的一元二次方程210mx x ++=有实数根,则m 的取值范围是__. 14.将一元二次方程x 2﹣6x +10=0化成(x ﹣a )2=b 的形式,则b 的值为_____. 15.圣诞节时,某班一个小组有x 人,他们每两人之间互送贺卡一张,已知全组共送贺卡110张,则可列方程为_____.16.我市计划用三年时间对全市学校的设施和设备进行全面改造,2015年市政府已投资5亿元人民币,若每年投资的增长率相同,2017年投资7.2亿元人民币,那么每年投资的增长率为_____.17.若12x x 、是一元二次方程2310x x -+=的两个根,则1211+x x =___________. 18.已知x =2是一元二次方程x 2+mx +6=0的一个根,则方程的另一个根是_____. 19.施秉县城关镇为打造“绿色小镇”,投入资金进行河道治污.已知2017年投入资金1000万元,2019年投入资金1210万元.(1)求该镇投入资金从2017年至2019年的年平均增长率;(2)若2020年投入资金保持前两年的年平均增长率不变,求该镇2020年预计投入资金多少万元?三、解答题20.解方程:(1)2(x ﹣3)=3x (x ﹣3)(2)2x 2﹣x ﹣3=0.21.是否存在某个实数m ,使得方程x 2+mx +2=0和x 2+2x +m =0有且只有一个公共的实根?如果存在,求出这个实数m 及两方程的公共实根;如果不存在,请说明理由.22.关于x的方程(m+1)x|m﹣1|+mx﹣1=0是一元二次方程,求m的值.23.已知:关于x的一元二次方程x2﹣(k+3)x+2k+2=0.(1)求证:方程总有两个实数根;(2)若方程有一个根小于0,求k的取值范围.24.汽车产业的发展,有效促进我国现代化建设.某汽车销售公司2016年盈利1500万元,到2018年盈利2160万元,且从2016年到2018年,每年盈利的年增长率相同.(1)求平均年增长率?(2)若该公司盈利的年增长率继续保持不变,预计2019年盈利多少万元?25.为了让学生亲身感受合肥城市的变化,蜀山中学九(1)班组织学生进行“环巢湖一日研学游”活动,某旅行社推出了如下收费标准:(1)如果人数不超过30人,人均旅游费用为100元;(2)如果超过30人,则每超过1人,人均旅游费用降低2元,但人均旅游费用不能低于80元.该班实际共支付给旅行社3150元,问:共有多少名同学参加了研学游活动?参考答案1.B【分析】本题根据一元二次方程的定义求解,一元二次方程必须满足二次项系数不为0,所以m -1≠0,即可求得m 的值.【详解】根据一元二次方程的定义得:m -1≠0,即m ≠1,故答案为B.【点睛】本题考查了一元二次方程的定义,熟练掌握该定义是本题解题的关键.2.A【分析】方程整理为一般形式,求出一次项系数即可.【详解】方程整理得:x 2+4x +5=0,则一次项系数为4.故选A .【点睛】本题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax 2+bx +c =0(a ,b ,c 是常数且a ≠0)特别要注意a ≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax 2叫二次项,bx 叫一次项,c 是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项.3.A【分析】方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于a 的方程,从而求得a 的值,且(a +1)x 2+x +a 2-1=0为一元二次方程,+10a ≠即-1a ≠. 【详解】把x=0代入方程得到:a 2-1=0解得:a=±1. (a +1)x 2+x +a 2-1=0为一元二次方程∴+10a ≠即-1a ≠.综上所述a=1.故选A .【点睛】此题考查一元二次方程的解,解题关键在于掌握一元二次方程的求解方法.4.B【分析】根据平方根的意义,利用直接开平方法即可进行求解.【详解】(x +1)2=0,解: x +1=0,所以x 1=x 2=﹣1,故选B.【点睛】本题主要考查一元二次方程的解法,解决本题的关键是要熟练掌握一元二次方程的解法. 5.B【分析】由原方程得出(x+1)2=0,开方即可得.【详解】∵x 2+2x+1=0,∴(x+1)2=0,则x+1=0,解得:x 1=x 2=−1,故答案选:B.【点睛】本题考查的知识点是解一元二次方程-配方法,解题的关键是熟练的掌握解一元二次方程-配方法.6.D【分析】观察原方程,可用公式法求解.【详解】解:∵1a =,1b =,1c =-,∴241450b ac -=+=>,∴x =; 故选:D .【点睛】本题考查了一元二次方程的解法,正确理解运用一元二次方程的求根公式是解题的关键. 7.C【分析】利用因式分解法求解即可.【详解】方程整理得:x (x ﹣4)=0,可得x =0或x ﹣4=0,解得:x 1=0,x 2=4.故选C .【点睛】本题考查了一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解答本题的关键. 8.C【分析】在本题中有两个未知数,且通过观察最后结果,可采用换元法,把2x y +当成一个整体进行考虑.【详解】设2x y a +=,则原方程变形为2340a a +-=,解得4a =-或1a =.故选:C .【点睛】此题考查了解一元二次方程,主要是把2x y +当成一个整体,把求代数式的值的问题转化为解关于这个整体的方程,利用因式分解法求解.9.A【分析】根据方程的系数结合根的判别式△>0;即可得出关于k 的一元一次不等式;解之即可得出结论.【详解】∵关于x 的一元二次方程x 2+(2k +1)x +k 2=0有两个不相等的实数根,∴△=(2k +1)2﹣4×1×k 2=4k +1>0,∴k >﹣14.故选A .【点睛】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键. 10.B【分析】先根据平均每月的增长率求出该厂五.六月份生产的零件数量,再根据“第二季度共生产零件182万个”列出方程即可.【详解】由题意得:该厂五、六月份生产的零件数量分别为50(1)x +万个、250(1)x +万个 则25050(1)50(1)182x x ++++=故选:B .【点睛】本题考查了一元二次方程的实际应用,理解题意,正确求出该厂五、六月份生产的零件数量是解题关键.11.2【分析】由题意知x=-1是方程x 2+ax+3-a=0的一个根,再根据一元二次方程的根的定义代入x=-1,求解即可.【详解】∵x=-1是方程的根,由一元二次方程的根的定义,可得,1-a+3-a=0,解此方程得到a=2.【点睛】本题考查一元二次方程解的定义,把解代入方程易得出a 的值.12.【分析】直接利用一元二次方程的定义得出m 的取值范围,再代入方程解方程即可.【详解】由题意得:10{0m m -=-≠, ∴m=1,原方程变为:﹣x 2+2=0,x=故答案为【点睛】此题主要考查了一元二次方程的定义,正确把握二次项系数不为零是解题关键. 13.14m 且0m ≠ 【分析】由于关于x 的一元二次方程有实数根, 计算根的判别式, 得关于m 的不等式, 求解即可 【详解】解:关于x 的一元二次方程210mx x ++=有实数根,则△140m =-,且0m ≠.解得14m ≤且0m ≠. 故答案为14m ≤且0m ≠. 【点睛】本题考查了根的判别式、 一次不等式的解法及一元二次方程的定义 . 题目难度不大, 解题过程中容易忽略0m ≠条件而出错 .14.8【分析】对原方程移项,利用完全平方公式的特点对其配方.【详解】原方程移项得x 2﹣6x=-1,配方得x 2﹣6x+9=-1+9,即(x-3)2=8故b 的值为8.【点睛】本题考查的知识点是解一元二次方程配方法,解题的关键是熟练的掌握解一元二次方程配方法.15.x (x ﹣1)=110【分析】设这个小组有x 人,要求他们之间互送贺卡,即除自己外,每个人都要求送其他的人一张贺卡,即每个人要送x -1张贺卡,所以全组共送x (x -1)张,又知全组共送贺卡110张,由送贺卡数相等为等量关系,列出方程即可.【详解】设这个小组有x 人,则每人应送出x −1张贺卡,由题意得:x (x −1)=110,故答案为x (x −1)=110.【点睛】本题考查了由实际问题抽象出二元一次方程,熟练掌握该知识点是本题解题的关键. 16.20%【分析】先设每年投资的增长率为x .根据2015年县政府已投资5亿元人民币,若每年投资的增长率相同,预计2017年投资7.2亿元人民币,列方程求解.【详解】设每年投资的增长率为x ,根据题意,得:5(1+x )2=7.2,解得:x 1=0.2=20%,x 2=−2.2(舍去),答:每年投资的增长率为20%.故答案为20%.【点睛】本题考查了一元二次方程的定义,熟练掌握该定义是本题解题的关键.17.3【分析】根据韦达定理可得123x x +=,121=x x ,将1211+x x 整理得到1212x x x x +,代入即可. 【详解】解:∵12x x 、是一元二次方程2310x x -+=的两个根,∴123x x +=,121=x x ,∴121212113x x x x x x ++==, 故答案为:3.【点睛】 本题考查韦达定理,掌握12b x x a +=-,12c x x a=是解题的关键. 18.x=3.【分析】设方程的另一根为a ,由根与系数的关系可得到方程2a=6,解方程求得a 的值,即可求得原方程的另一根.【详解】设方程的另一根为a ,∵x=2是一元二次方程x 2+mx+6=0的一个根,∴2a=6,解得a=3,即方程的另一个根是x=3,故答案为x=3.【点睛】 本题考查一元二次方程根与系数的关系,掌握一元二次方程的两根之和等于﹣b a、两根之积等于c a 是解题的关键. 19.(1)该镇投入资金从2017年至2019年的年平均增长率为10%;(2)该镇2020年预计投入资金1331万元.【分析】(1)利用2017年投资1000万元,2019年投资1210万元,进而得出方程求出即可; (2)利用(1)中所求,得出2020年该镇2020年预计投入资金.【详解】(1)设该镇投入资金从2017年至2019年的年平均增长率为x ,根据题意得:2100011210x (+)=,解得:120.110% 2.1x x ==,=﹣(舍去). 答:该镇投入资金从2017年至2019年的年平均增长率为10%.(2)1210×(1+10%)=1331(万元).答:该镇2020年预计投入资金1331万元.【点睛】本题考查了一元二次方程的应用,熟练掌握该知识点是本题解题的关键.20.(1)x1=3,x2=23;(2)x1=32,x2=﹣1.【分析】(1)方程整理后,利用因式分解法求出解即可;(2)方程变形后,利用因式分解法求出解即可.【详解】解:(1)2(x﹣3)﹣3x(x﹣3)=0,(x﹣3)(2﹣3x)=0,x﹣3=0或2﹣3x=0,所以x1=3,x2=;(2)(2x﹣3)(x+1)=0,2x﹣3=0或x+1=0,所以x1=,x2=﹣1.【点睛】本题考查了解一元二次方程-因式分解法,熟练掌握解一元二次方程的方法是本题解题的关键.21.实数m=﹣3,两方程的公共根为x=1.【分析】设两方程的公共根为a,然后将两方程相减,消去二次项,求出公共根和m的值.【详解】解:假设存在符合条件的实数m,且设这两个方程的公共实数根为a,则①﹣②,得a(m﹣2)+(2﹣m)=0(m﹣2)(a﹣1)=0∴m=2 或a=1.当m=2时,已知两个方程是同一个方程,且没有实数根,故m=2舍去;当a=1时,代入②得m=﹣3,把m=﹣3代入已知方程,求出公共根为x=1.故实数m=﹣3,两方程的公共根为x=1.【点睛】本题考查了一元二次方程的解及定义,熟练掌握该知识点是本题解题的关键.22.m的值为3.【分析】根据一元二次方程的定义,m+1≠0、│m-1│=2即可求出答案.【详解】解:根据题意得,|m﹣1|=2,且m+1≠0,解得:m=3,答:m的值为3.【点睛】本题考查了一元二次方程的定义,熟练掌握一元二次方程的定义是本题解题的关键. 23.(1)见解析;(2)k<﹣1.【分析】根据一元二次方程的解及定义,(1)根据公式法可知当 ≥0时,方程总有两个实数根;(2)通过因式分解法求出两根,可得其中一个为实数、一个为k+1,再根据方程一根小于0即可求出本题答案.【详解】(1)证明:∵△=[﹣(k+3)]2﹣4×1×(2k+2)=k2﹣2k+1=(k﹣1)2≥0,∴方程总有两个实数根;(2)解:∵x2﹣(k+3)x+2k+2=0,即(x﹣2)[x﹣(k+1)]=0,∴x1=2,x2=k+1.∵方程有一个根小于0,∴k+1<0,∴k<﹣1.【点睛】本题考查了一元二次方程的解及定义,熟练掌握该知识点是本题解题的关键.24.(1)20%;(2)2592万元.【分析】(1)设平均年增长率为x ,根据题意列出方程,求解即可,需注意去除不符合题意的根; (2)根据所求得的平均增长率和2018年盈利2160万元,即可求出2019年盈利.【详解】解:(1)设平均年增长率为x ,根据题意得:()2150012160x +=,整理得:()21 1.44x +=,开方得:1 1.2x +=±,解得:0.220%x ==或 2.2x =-(舍去),则平均年增长率为20%;(2)根据题意得:()2160120%2592⨯+=(万元),则2019年盈利2592万元.【点睛】本题考查一元二次方程的应用,能根据增长率公式列出方程是解决本题的关键,需注意要排除不符合题意的根.25.共有35名同学参加了研学游活动.【分析】由该班实际共支付给旅行社3150元,可以判断出参加的人数在30人以上,等量关系为:(100﹣在30人基础上降低的人数×2)×参加人数=3150,得到相关解后根据人均活动费用不得低于80元作答即可.【详解】∵100×30=3000<3150,∴该班参加研学游活动的学生数超过30人.设九(1)班共有x 人去旅游,则人均费用为[100﹣2(x ﹣30)]元,由题意得: x[100﹣2(x ﹣30)]=3150,整理得x 2﹣80x+1575=0,解得x 1=35,x 2=45,当x=35时,人均旅游费用为100﹣2(35﹣30)=90>80,符合题意.当x=45时,人均旅游费用为100﹣2(45﹣30)=70<80,不符合题意,应舍去. 答:该班共有35名同学参加了研学旅游活动.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十一章达标测试卷1.下列式子是一元二次方程的是()A.3x2-6x+2 B.x2-y+1=0C.x2=0 D.1x2+x=22.一元二次方程x2-2x=0的根是()A.x1=0,x2=-2 B.x1=1,x2=2C.x1=1,x2=-2 D.x1=0,x2=23.用配方法解方程x2+2x-1=0时,配方结果正确的是()A.(x+2)2=2 B.(x+1)2=2C.(x+2)2=3 D.(x+1)2=34.关于y的方程my(y-1)=ny(y+1)+2化成一般形式后为y2-y-2=0,则m,n的值依次是()A.1,0 B.0,1 C.-1,0 D.0,-1 5.已知关于x的一元二次方程3x2+4x-5=0,下列说法正确的是() A.方程有两个相等的实数根B.方程有两个不相等的实数根C.方程没有实数根D.无法确定6.中国“一带一路”倡仪给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年年人均收入200美元,预计2018年年人均收入将达到1 000美元,设2016年到2018年该地区居民年人均收入平均增长率为x,可列方程为()A.200(1+2x)=1 000 B.200(1+x)2=1 000C.200(1+x2)=1 000 D.200+2x=1 0007.若关于x的方程2x2-ax+2b=0的两根和为4,积为-3,则a,b分别为()A.a=-8,b=-6 B.a=4,b=-3C.a=3,b=8 D.a=8,b=-38.若关于x的一元二次方程(k+1)x2+2(k+1)x+k-2=0有实数根,则k的取值范围在数轴上表示正确的是()9.如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的数(如6,7,8,13,14,15,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为()A.32 B.126 C.135 D.144(第9题)(第10题)10.如图,在▱ABCD中,AE⊥BC于E,AE=EB=EC=a,且a是一元二次方程x2+2x-3=0的一个根,则▱ABCD的周长为()A.4+2 2 B.12+6 2C.2+2 2 D.2+2或12+6 2二、填空题(每题3分,共24分)11.一元二次方程(3x-1)(2x+4)=1的一般形式为__________________,其中二次项系数为__________,一次项系数为________.12.已知x=3是方程x2-6x+k=0的一个根,则k=________.13.关于x的一元二次方程(a-1)x2+x+|a|-1=0的一个根是0,则实数a的值为________.14.关于x的一元二次方程x2+(2k-1)x+(k2-1)=0无实数根,则k的取值范围是____________.15.若两个不等实数m,n满足条件:m2-2m-1=0,n2-2n-1=0,则m2+n2的值是________.16.定义运算“★”:对于任意实数a,b,都有a★b=a2-3a+b,如:3★5=32-3×3+5.若x★2=6,则实数x的值是____________.17.有一个两位数,它的十位上的数字比个位上的数字小2,十位上的数字与个位上的数字的积的3倍刚好等于这个两位数,则这个两位数是________.18.已知a,b是一个直角三角形的两边长,且a,b满足(a2-7)2+b2-2b-15=0,则此直角三角形第三边的长为____________.三、解答题(19题16分,20题6分,21~23题每题8分,其余每题10分,共66分)19.用适当的方法解下列方程:(1)4(x-1)2-9=0;(2)(7x+3)2=2(7x+3);(3)x2-3x-94=0; (4)y2-2y=5.20.已知2是关于x的方程x2-x+a=0的一个根,求a-2-a2a+2的值.21.已知关于x的一元二次方程x2+kx-2=0的一个解与方程x+2x-1=4的解相同,求:(1)k的值;(2)方程x2+kx-2=0的另一个解.22.已知关于x的方程x2+(2k-1)x+k2-1=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)若x1,x2满足x12+x22=16+x1x2,求实数k的值.23.受益于国家支持新能源汽车发展和“一带一路”倡仪等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2014年利润为2亿元,2016年利润为2.88亿元.(1)求该企业从2014年到2016年利润的年平均增长率;(2)若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?24.汽车在行驶中,由于惯性作用,刹车后,还要向前滑行一段距离才能停住,我们称这段距离为“刹车距离”,刹车距离是分析造成事故原因的一个重要因素.在一个限速40 k m/h的弯道上,甲、乙两车相向而行,两车发现情况不对后同时刹车,但还是相碰了.事后现场测得甲车的刹车距离为12 m,乙车的刹车距离超过10 m,但小于12 m.查有关资料知,甲车的刹车距离s甲(m)与车速x(k m/h)的关系为s甲=0.1x+0.01x2;乙车的刹车距离s乙(m)与车速x(k m/h)的关系如图所示.请你就两车的速度方面分析是谁的责任.(第24题)25.如图,在矩形ABCD中,BC=20 cm,点P,Q,M,N分别从点A,B,C,D出发沿AD,BC,CB,DA方向在矩形的边上同时运动,当有一个点先到达所在边的另一个端点时,其他点也立即停止运动.已知在相同时间内,若BQ=x cm(x≠0),则AP=2x cm,CM=3x cm,DN=x2 cm.当x为何值时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形?(第25题)答案一、1.C 2.D 3.B 4.A 5.B 6.B 7.D8.A 点拨:∵关于x 的一元二次方程(k +1)x 2+2(k +1)x +k -2=0有实数根, ∴⎩⎨⎧k +1≠0,Δ=[2(k +1)]2-4(k +1)(k -2)≥0, 解得k >-1.故选A.9.D 点拨:根据题图可以得出,圈出的9个数,最大数与最小数的差为16,设最小数为x ,则最大数为x +16,根据题意得:x (x +16)=192,解得x 1=8,x 2=-24(不合题意,舍去).故最小的三个数为8,9,10,中间一行的数分别比上面三个数大7,即为15,16,17,第3行三个数,比中间一行三个数分别大7,即为22,23,24,故这9个数的和为8+9+10+15+16+17+22+23+24=144.10.A 点拨:x 2+2x -3=0的两根是x 1=-3,x 2=1,∴a =1.∴在Rt △ABE 中,AB =AE 2+BE 2=12+12=2,且BC =BE +EC =2. ∴▱ABCD 的周长为2(AB +BC )=2×(2+2)=4+2 2.二、11.6x 2+10x -5=0;6;1012.9 13.-1 14.k >54 15.6 16.4或-1 17.24 18.42或3 2三、19.解:(1)原方程变形为(x -1)2=94,开平方,得x -1=±32.∴x 1=52,x 2=-12.(2)原方程变形为(7x +3)2-2(7x +3)=0,因式分解得(7x +3) (7x +3-2)=0. ∴x 1=-37,x 2=-17.(3)方程中a =1,b =-3,c =-94.∴Δ=b 2-4a c =(-3)2-4×1×⎝ ⎛⎭⎪⎫-94=12.∴x =3±122,即x1=3+232=323,x2=3-232=-12 3.(4)配方,得y2-2y+1=5+1,即y2-2y+1=6,则(y-1)2=6.∴y-1=±6,∴y1=1+6,y2=1- 6.20.解:将x=2代入方程x2-x+a=0,得(2)2-2+a=0,即2-2+a=0,解得a=2-2.a-2-a2a+2=a2-4a+2-a2a+2=-4a+2.当a=2-2时,原式=-4a+2=-42-2+2=-42=-2 2.21.解:(1)解x+2x-1=4,得x=2.经检验,x=2是分式方程的解.∴x=2是x2+kx-2=0的一个解.∴4+2k-2=0,解得k=-1.(2)由(1)知方程为x2-x-2=0,解得x1=2,x2=-1.∴方程x2+kx-2=0的另一个解为x=-1.22.解:(1)∵关于x的方程x2+(2k-1)x+k2-1=0有两个实数根x1,x2,∴Δ=(2k-1)2-4(k2-1)=-4k+5≥0,解得k≤5 4,∴实数k的取值范围为k≤5 4.(2)∵关于x的方程x2+(2k-1)x+k2-1=0有两个实数根x1,x2,∴x1+x2=1-2k,x1·x2=k2-1.∵x12+x22=(x1+x2)2-2x1·x2=16+x1·x2,∴(1-2k)2-2×(k2-1)=16+(k2-1),即k2-4k-12=0,解得k=-2或k=6(不符合题意,舍去).∴实数k的值为-2. 23.解:(1)设这两年该企业年利润平均增长率为x.根据题意得2(1+x)2=2.88,解得x1=0.2=20%,x2=-2.2(不合题意,舍去).答:这两年该企业年利润平均增长率为20%.(2)如果2017年的利润仍保持相同的年平均增长率,那么2017年该企业利润为2.88×(1+20%)=3.456(亿元),3.456>3.4,答:该企业2017年的利润能超过3.4亿元.24.解:∵s甲=0.1x+0.01x2,而s甲=12,∴0.1x+0.01x2=12,即x2+10x-1 200=0,解得x1=30,x2=-40(舍).∵30<40,∴甲车未超速行驶.设s乙=kx(k≠0),把(60,15)代入,得15=60k,解得k=14.故s乙=14x.由题意知10<14x<12,解得40<x<48,故乙车超速行驶.因此就两车的速度方面分析是乙车的责任.25.解:当点P与点N重合或点Q与点M重合时,以PQ,MN为两边,以矩形的边(BC或AD)的一部分为第三边可构成一个三角形.(1)当点P与点N重合时,由x2+2x=20,得x1=21-1,x2=-21-1(不合题意,舍去).∵BQ+CM=(x+3x) cm=4(21-1) cm<20 cm,∴此时点Q与点M不重合.∴x=21-1符合题意.(2)当点Q与点M重合时,由x+3x=20,得x=5.此时DN=x2cm=25 cm>20 cm,不符合题意,故点Q与点M不能重合.∴所求x的值为21-1.。

相关文档
最新文档