2006年高考数学福建卷文科及参考答案

合集下载

[2006年][高考真题][全国卷I][数学文][答案]

[2006年][高考真题][全国卷I][数学文][答案]

2006年普通高等学校招生全国统一考试文科数学本试卷分第I 卷(选择题)第II 卷(非选择题)两部分。

第I 卷1至2页。

第II 卷3 至4页。

考试结束后,将本试卷和答题卡一并交回。

第I 卷注意事项: 1.答题前,考生在答题卡上务必用黑色签字笔将自己的姓名、 准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。

3.本卷共12小题,每小题5分, 共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:如果事件A 、B 互斥,那么球的表面积公式P (A +B )=P (A )+P (B ) S =4πR 2如果事件A 、B 相互独立,那么其中R 表示球的半径 P (A ·B )=P (A )· P (B )球的体积公式如果事件A 在一次试验中发生的概率是P ,那么334R V π=n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径k n kk n n P P C k P --=)1()(一.选择题(1)已知向量a 、b 满足| a |=1,| b |=4,且a ·b =2,则a 与b 的夹角为(A )6π(B )4π (C )3π (D )2π (2)设集合}2|||{},0|{2<=<-=x x N x x x M ,则 (A )=N M ∅ (B )M N M =(C )M N M =(D )=N M R(3)已知函数xe y =的图像与函数)(xf y =的图像关于直线x y =对称,则(A )∈=x e x f x()2(2R ) (B )2ln )2(=x f ·x ln (0>x )(C )∈=x e x f x(2)2(R )(D )+=x x f ln )2(2ln (0>x )(4)双曲线122=+y mx 的虚轴长是实轴长的2倍,则m =(A )41-(B )-4 (C )4 (D )41 (5)设n S 是等差数列}{n a 的前n 项和,若S 7=35,则a 4=(A )8(B )7(C )6(D )5(6)函数)4tan()(π+=x x f 的单调增区间为(A )∈+-k k k ),2,2(ππππZ(B )∈+k k k ),)1(,(ππZ(C )∈+-k k k ),4,43(ππππZ (D )∈+-k k k ),43,4(ππππZ (7)从圆012222=+-+-y y x x 外一点P (3,2)向这个圆作两条切线,则两切线夹角的余弦值为(A )21 (B )53 (C )23 (D )0(8)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c . 若a 、b 、c 成等比数列,且==B a c cos ,2则(A )41(B )43 (C )42 (D )32 (9)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是(A )16π(B )20π(C )24π(D )32π(10)在10)21(xx -的展开式中,4x 的系数为(A )-120 (B )120(C )-15 (D )15(11)抛物线2x y -=上的点到直线0834=-+y x 距离的最小值是(A )34 (B )57 (C )58 (D )3(12)用长度分别为2、3、4、5、6(单位:cm )的5根细木棒围成一个三角形(允许连接,但不允许折断),能够得到的三角形的最大面积为 (A )58cm 2 (B )106cm 2(C )553cm 2(D )20cm 22006年普通高等学校招生全国统一考试文科数学第Ⅱ卷注意事项: 1.答题前,考生先在答题卡上用黑色签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。

2006年普通高等学校招生全国统一考试(福建卷)理科数学试题及答案(WORD版)

2006年普通高等学校招生全国统一考试(福建卷)理科数学试题及答案(WORD版)

2006年普通高等学校招生全国统一考试(福建卷)数学(理工农医类)一.选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)设,,,a b c R ∈则复数()()a bi c di ++为实数的充要条件是(A )0ad bc -= (B )0ac bd -= (C )0ac bd += (D )0ad bc += (2)在等差数列{}n a 中,已知1232,13,a a a =+=则456a a a ++等于 (A )40 (B )42 (C )43 (D )45(3)已知3(,),sin ,25παπα∈=则tan()4πα+等于 (A )17 (B )7 (C )17- (D )7-(4)已知全集,U R =且{}{}2|12,|680,A x x B x x x =->=-+<则()U C A B 等于(A )[1,4)- (B )(2,3) (C )(2,3] (D )(1,4)- (5)已知正方体外接球的体积是323π,那么正方体的棱长等于(A ) (B )3 (C )3 (D )3(6)在一个口袋中装有5个白球和3个黑球,这些球除颜色外完全相同。

从中摸出3个球,至少摸到2个黑球的概率等于(A )27 (B )38 (C )37 (D )928 (7)对于平面α和共面的直线m 、,n 下列命题中真命题是(A )若,,m m n α⊥⊥则n α∥ (B )若m αα∥,n ∥,则m ∥n(C )若,m n αα⊂∥,则m ∥n (D )若m 、n 与α所成的角相等,则m ∥n (8)函数2log (1)1xy x x =>-的反函数是 (A )2(0)21x xy x =>- (B )2(0)21xx y x =<- (C )21(0)2x x y x -=> (D )21(0)2x x y x -=< (9)已知函数()2sin (0)f x x ωω=>在区间,34ππ⎡⎤-⎢⎥⎣⎦上的最小值是2-,则ω的最小值等于 (A )23 (B )32(C )2 (D )3 (10)已知双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,若过点F 且倾斜角为60o的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是 (A )(1,2] (B )(1,2) (C )[2,)+∞ (D )(2,)+∞(11)已知1,.0,OA OB OAOB===点C 在AOC ∠30o =。

2006年高考数学按章节汇编02--第二章函数

2006年高考数学按章节汇编02--第二章函数

第二章函数 1.(2006年福建卷)函数2log (1)1x y x x =>-的反函数是 (A ) (A )2(0)21x x y x =>- (B )2(0)21xx y x =<- (C )21(0)2x x y x -=> (D )21(0)2x x y x -=< 2.(2006年安徽卷)函数22,0,0x x y x x ≥⎧=⎨-<⎩的反函数是( ) A .,02,0x x y x x ⎧≥⎪=⎨⎪-<⎩ B .2,0,0x x y x x ≥⎧⎪=⎨-<⎪⎩ C .,02,0x x y x x ⎧≥⎪=⎨⎪--<⎩ D .2,0,0x x y x x ≥⎧⎪=⎨--<⎪⎩ 2.解:有关分段函数的反函数的求法,选C 。

3.(2006年安徽卷)函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15,f =-则()()5f f =__________。

3.解:由()()12f x f x +=得()()14()2f x f x f x +==+,所以(5)(1)5f f ==-,则()()115(5)(1)(12)5f f f f f =-=-==--+。

4.(2006年广东卷)函数)13lg(13)(2++-=x x x x f 的定义域是A.),31(+∞- B. )1,31(- C. )31,31(- D. )31,(--∞ 4.解:由13101301<<-⇒⎩⎨⎧>+>-x x x ,故选B. 5.(2006年广东卷)下列函数中,在其定义域内既是奇函数又是减函数的是A. R x x y ∈-=,3B. R x x y ∈=,sinC. R x x y ∈=,D.R x x y ∈=,)21( 5、B 在其定义域内是奇函数但不是减函数;C 在其定义域内既是奇函数又是增函数;D 在其定义域内不是奇函数,是减函数;故选A.7.(2006年广东卷)函数)(x f y =的反函数)(1x fy -=的图象与y 轴交于点)2,0(P (如图2所示),则方程0)(=x f 的根是=x A. 4 B. 3 C. 2 D.17.0)(=x f 的根是=x 2,故选C7.(2006年陕西卷)设函数()log ()(0,1)a f x x b a a =+>≠的图像过点(2,1),其反函数的图像过点(2,8),则a b +等于( C )(A )3 (B )4 (C )5 (D )68.(2006年陕西卷)已知函数2()24(03),f x ax ax a =++<<若1212,1,x x x x a <+=-则 (A )(A )12()()f x f x > (B )12()()f x f x <(C )12()()f x f x = (D )1()f x 与2()f x 的大小不能确定9.(2006年陕西卷)为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文,,,a b c d 对应密文2,2,23,4.a b b c c d d +++例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为(C )(A )7,6,1,4 (B )6,4,1,7 (C )4,6,1,7 (D )1,6,4,710.( 2006年重庆卷)如图所示,单位圆中弧AB 的长为x ,f (x )表示弧AB 与弦AB所围成的弓形面积的2倍,则函数y =f (x )的图象是 ( D )题 (9)图11. (2006年上海春卷)方程1)12(log 3=-x 的解=x 2 .12. (2006年上海卷)函数]1,0[,53)(∈+=x x x f 的反函数=-)(1x f []8,5),5(31∈-x x . 13. (2006年上海春卷)已知函数)(x f 是定义在),(∞+∞-上的偶函数. 当)0,(∞-∈x 时,4)(x x x f -=,则当),0(∞+∈x 时,=)(x f 4x x -- .14.(2006年全国卷II )函数y =ln x -1(x >0)的反函数为 (B )(A )y =e x +1(x ∈R ) (B )y =e x -1(x ∈R )(C )y =e x +1(x >1) (D )y =e x -1(x >1)15.(2006年全国卷II )函数y =f (x )的图像与函数g (x )=log 2x (x >0)的图像关于原点 对称,则f (x )的表达式为 (D )(A )f (x )=1log 2x(x >0) (B )f (x )=log 2(-x )(x <0) (C )f (x )=-log 2x (x >0) (D )f (x )=-log 2(-x )(x <0)16.(2006年天津卷)已知函数)(x f y =的图象与函数x a y =(0>a 且1≠a )的图象关于直线x y =对称,记]1)2(2)()[()(-+=f x f x f x g .若)(x g y =在区间]2,21[上是增函数,则实数a 的取值范围是( D )A .),2[+∞B .)2,1()1,0(YC .)1,21[D .]21,0(17. (2006年湖北卷)设()x x x f -+=22lg ,则⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛x f x f 22的定义域为 (B ) A. ()()4,00,4Y - B. ()()4,11,4Y --C. ()()2,11,2Y --D. ()()4,22,4Y -- 17.解选B 。

【高考数学】2006年高考试题分类解析--第十章排列、组合与二项式定理

【高考数学】2006年高考试题分类解析--第十章排列、组合与二项式定理

2006年高考试题分类解析--第十章排列、组合与二项式定理1.(2006年福建卷)251()x x -展开式中4x 的系数是_10_(用数字作答)。

2.(2006年广东卷)在112⎪⎭⎫ ⎝⎛-x x 的展开式中,5x 的系数为 3.85112)2()2(1121111111111111=⇒=-⇒-=-=-----+r r x C xx C T r r r r r r r 所以5x 的系数为1320)2()2(3113111111-=-=---C C r r4.(2006年陕西卷)12(3x展开式中1x -的常数项为_594_(用数字作答)。

5.某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,甲和丙只能同去或同不去,则不同的选派方案共有__600_种(用数字作答)。

6.( 2006年重庆卷)若(x 3 )x 1n 的展开式中各项系数之和为64,则展开式的常数项为( A)(A)-540 (B)(c)162 (D)5407.( 2006年重庆卷)将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则不同的分配方案有 ( B )(A )30种 (B )90种(C )180种 (D )270种8. (2006年上海春卷)电视台连续播放6个广告,其中含4个不同的商业广告和2个不同的公益广告,要求首尾必须播放公益广告,则共有 48 种不同的播放方式(结果用数值表示).9.(2006年全国卷II )在(x 4+1x)10的展开式中常数项是 45 (用数字作答) 10.(2006年天津卷)将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有( A )A .10种B .20种C .36种D .52种11.(2006年天津卷)7)12(x x +的二项展开式中x 的系数是____280 (用数学作答).12. (2006年湖北卷)在2431⎪⎪⎭⎫ ⎝⎛+x x 的展开式中,x 的幂的指数是整数的项共有 (C ) A.3项 B.4项 C.5项 D.6项12.解选 C 。

2006年普通高等学校招生全国统一考试(福建卷.文)含答案

2006年普通高等学校招生全国统一考试(福建卷.文)含答案

2005高考全国卷Ⅰ数学(理)试题(河北、河南等地区用)2005年普通高等学校招生全国统一考试数 学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3到10页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

不能答在试题卷上。

3.本卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径kn kkn n P P C k P --=)1()(一.选择题(1)设I 为全集,321S S S 、、是I 的三个非空子集,且I S S S =⋃⋃321,则下面论断正确的是()(A )Φ=⋃⋂)(321S S S C I(B ))(221S C S C S I I ⋂⊆ (C )Φ=⋂⋂)321S C S C S C I I I(D ))(221S C S C S I I ⋃⊆(2)一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为()(A )π28(B )π8(C )π24(D )π4(3)已知直线l 过点),(02-,当直线l 与圆x y x 222=+有两个交点时,其斜率k 的取值范围是( )(A )),(2222-(B )),(22-(C )),(4242- (D )),(8181-(4)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且BCF ADE ∆∆、均为正三角形,EF ∥AB ,EF=2,则该多面体的体积为()(A )32 (B )33(C )34(D )23(5)已知双曲线)0( 1222>=-a yax 的一条准线与抛物线x y62-=的准线重合,则该双曲线的离心率为() (A )23(B )23 (C )26 (D )332(6)当20π<<x 时,函数xxx x f 2sin sin82cos 1)(2++=的最小值为( )(A )2(B )32 (C )4 (D )34(7)设0>b ,二次函数122-++=a bx ax y 的图像为下列之一则a 的值为 (A )1(B )1-(C )251-- (D )251+-(8)设10<<a ,函数)22(log )(2--=x x a a a x f ,则使0)(<x f 的x 的取值范围是()(A ))0,(-∞(B )),0(+∞ (C ))3log,(a-∞ (D )),3(log+∞a(9)在坐标平面上,不等式组⎩⎨⎧+-≤-≥131x y x y 所表示的平面区域的面积为()(A )2 (B )23 (C )223 (D )2(10)在ABC ∆中,已知C B A sin 2tan=+,给出以下四个论断:①1cot tan =⋅B A ②2sin sin 0≤+<B A③1cossin22=+B A④C B A 222sin coscos =+其中正确的是(A )①③ (B )②④(C )①④ (D )②③(11)过三棱柱任意两个顶点的直线共15条,其中异面直线有( )(A )18对 (B )24对 (C )30对 (D )36对 (12)复数ii 2123--=( )(A )i (B )i - (C )i -22 (D )i +-22第Ⅱ卷注意事项:1.用钢笔或圆珠笔直接答在试题卷上。

2006年福建省高考数学试卷+解析+参考答案(文科)

2006年福建省高考数学试卷+解析+参考答案(文科)

2006年福建省高考数学试卷(文科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知两条直线2y ax =-和(2)1y a x =++互相垂直,则a 等于( ) A .2B .1C .0D .1-2.(5分)在等差数列{}n a 中,已知12a =,2313a a +=,则456a a a ++等于( ) A .40B .42C .43D .453.(5分)“tan 1α=”是“4πα=”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件4.(5分)已知(2πα∈,)π,3sin 5α=,则tan()4πα+等于( ) A .17B .7C .17-D .7-5.(5分)已知全集U R =,且{||1|2}A x x =->,2{|680}B x x x =-+<,则()U A B 等于( )A .(2,3)B .[2,3]C .(2,3]D .(2,3]-6.(5分)函数(1)1xy x x =≠-+的反函数是( ) A .(1)1xy x x =≠+ B .(1)1xy x x=≠- C .1(0)x y x x -=≠ D .1(0)xy x x-=≠ 7.(5分)已知正方体外接球的体积是323π,那么正方体的棱长等于( )A .BCD 8.(5分)从4名男生和3名女生中选出3人,分别从事三项不同的工作,若这3人中至少有1名女生,则选派方案共有( ) A .108种B .186种C .216种D .270种9.(5分)已知向量a 与b 的夹角为120︒,||3,||13a a b =+=,则||b 等于( ) A .5B .4C .3D .110.(5分)对于平面α和共面的直线m 、n ,下列命题中真命题是( ) A .若m α⊥,m n ⊥,则//n α B .若//m α,//n α,则//m n C .若m α⊂,//n α,则//m nD .若m 、n 与α所成的角相等,则//m n11.(5分)已知双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,若过点F 且倾斜角为60︒的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( ) A .(1,2]B .(1,2)C .[2,)+∞D .(2,)+∞12.(5分)已知()f x 是周期为2的奇函数,当01x <<时,()f x lgx =.设6()5a f =,3()2b f =,5()2c f =,则( ) A .a b c <<B .b a c <<C .c b a <<D .c a b <<二、填空题(共4小题,每小题4分,满分16分)13.(4分)在二项式251()x x-的展开式中,含4x 的项的系数是 .14.(4分)已知直线10x y --=与抛物线2y ax =相切,则a = . 15.(4分)已知实数x 、y 满足1|1|y y x ⎧⎨-⎩,则2x y +的最大值是 .16.(4分)已知函数()2sin (0)f x x ωω=>在区间[,]34ππ-上的最小值是2-,则ω的最小值是 .三、解答题(共6小题,满分74分)17.(12分)已知函数22=++,x Rf x x x x x()sin cos2cos∈.(Ⅰ)求函数()f x的最小正周期和单调增区间;(Ⅱ)函数()=∈的图象经过怎样的变换得到?y x x Rf x的图象可以由函数sin2()18.(12分)每次抛掷一枚骰子(六个面上分别标以数字1,2,3,4,5,6).(Ⅰ)连续抛掷2次,求向上的数不同的概率;(Ⅱ)连续抛掷2次,求向上的数之和为6的概率;(Ⅲ)连续抛掷5次,求向上的数为奇数恰好出现3次的概率.19.(12分)如图,四面体ABCD 中,O 、E 分别是BD 、BC 的中点,2CA CB CD BD ====,2AB AD ==. (Ⅰ)求证:AO ⊥平面BCD ;(Ⅱ)求异面直线AB 与CD 所成角的大小; (Ⅲ)求点E 到平面ACD 的距离.20.(12分)已知椭圆2212xy+=的左焦点为F,O为坐标原点.(Ⅰ)求过点O、F,并且与椭圆的左准线l相切的圆的方程;(Ⅱ)设过点F的直线交椭圆于A、B两点,并且线段AB的中点在直线0x y+=上,求直线AB的方程.21.(12分)已知()f x是二次函数,不等式()0f x<的解集为(0,5)且()f x在[1,4]-上的最大值为12,①求()f x的解析式;②是否存在自然数m,使方程37()0f xx+=在区间(,1)m m+内有且只有两个不等的实根?若不存在,说明理由;若存在,求m的值.22.(14分)已知数列{}n a 满足11a =,23a =,*2132()n n n a a a n N ++=-∈. (Ⅰ)证明:数列1{}n n a a +-是等比数列; (Ⅱ)求数列{}n a 的通项公式;(Ⅲ)若数列{}n b 满足12111*444(1)()n n b b b b n a n N ---⋯=+∈,证明{}n b 是等差数列.2006年福建省高考数学试卷(文科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知两条直线2y ax =-和(2)1y a x =++互相垂直,则a 等于( ) A .2B .1C .0D .1-【解析】由2y ax =-,(2)1y a x =++得20ax y --=,(2)10a x y +-+=,因为直线2y ax =-和(2)1y a x =++互相垂直,所以(2)10a a ++=,解得1a =-.故选:D .【点评】本题考查两直线垂直的条件.2.(5分)在等差数列{}n a 中,已知12a =,2313a a +=,则456a a a ++等于( ) A .40B .42C .43D .45【解析】在等差数列{}n a 中,已知12a =,2313a a +=,得3d =,514a =,4565342a a a a ∴++==.故选:B .【点评】本题主要考查了等差数列的性质.属基础题. 3.(5分)“tan 1α=”是“4πα=”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【解析】若“tan 1a =”,则4k παπ=+,k Z ∈,α不一定等于4π; 而若“4a π=”则tan 1α=,∴“tan 1a =”是4a π=的必要而不充分条件,故选:B .【点评】本题是三角方程求解,充要条件的判断,是容易题. 4.(5分)已知(2πα∈,)π,3sin 5α=,则tan()4πα+等于( ) A .17B .7C .17-D .7-【解析】已知3(,),sin 25παπα∈=,则3tan 4α=-,∴1tan 1tan()41tan 7πααα++==-,故选:A .【点评】本题主要考查两角和与差的正切公式.属基础题.5.(5分)已知全集U R =,且{||1|2}A x x =->,2{|680}B x x x =-+<,则()U A B 等于( )A .(2,3)B .[2,3]C .(2,3]D .(2,3]-【解析】{|3A x x =>或1}x <-,{|13}UA x x =-,{|24}B x x =<<,()(2,3]U A B ∴=,故选:C .【点评】本题主要考查了集合的运算,属于以不等式为依托,求集合的交集、补集的基础题,也是高考常会考的题型. 6.(5分)函数(1)1xy x x =≠-+的反函数是( ) A .(1)1x y x x =≠+ B .(1)1x y x x =≠- C .1(0)x y x x -=≠ D .1(0)xy x x-=≠【解析】由函数(1)1x y x x =≠-+,解得(1)1y x y y =≠-,∴原函数的反函数是(1)1xy x x=≠-.故选:B .【点评】本题主要考查反函数的知识点,反函数是高考的常考点,需要同学们熟练掌握. 7.(5分)已知正方体外接球的体积是323π,那么正方体的棱长等于( )A .BC .3D【解析】正方体外接球的体积是323π,则外接球的半径2R =,正方体的对角线的长为4, 故选:D .【点评】本题考查球的内接正方体问题,是基础题.8.(5分)从4名男生和3名女生中选出3人,分别从事三项不同的工作,若这3人中至少有1名女生,则选派方案共有( ) A .108种B .186种C .216种D .270种【解析】从4名男生和3名女生中选出3人,分别从事三项不同的工作,有37A 种选法,其中只选派男生的方案数为34A ,分析可得,“这3人中至少有1名女生”与“只选派男生”为对立事件,则这3人中至少有1名女生等于从全部方案中减去只选派男生的方案数,即合理的选派方案共有3374186A A -=种,故选:B . 【点评】本题考查排列的运用,出现最多、至少一类问题时,常见的方法是间接法. 9.(5分)已知向量a 与b 的夹角为120︒,||3,||13a a b =+=,则||b 等于( ) A .5B .4C .3D .1【解析】向量a 与b 的夹角为120︒,||3,||13a a b =+=,∴3||||cos120||2a b a b b ⋅=⋅⋅︒=-,222||||2||a b a a b b +=+⋅+,∴21393||||b b =-+,∴||1b =-(舍去)或||4b =,故选:B .【点评】两个向量的数量积是一个数量,它的值是两个向量的模与两向量夹角余弦的乘积,结果可正、可负、可以为零,其符号由夹角的余弦值确定.10.(5分)对于平面α和共面的直线m 、n ,下列命题中真命题是( ) A .若m α⊥,m n ⊥,则//n α B .若//m α,//n α,则//m n C .若m α⊂,//n α,则//m n D .若m 、n 与α所成的角相等,则//m n【解析】对于平面α和共面的直线m 、n ,真命题是“若m α⊂,//n α,则//m n ”.故选:C . 【点评】本题考查空间直线与平面之间的位置关系,是基础题.11.(5分)已知双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,若过点F 且倾斜角为60︒的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( ) A .(1,2]B .(1,2)C .[2,)+∞D .(2,)+∞【解析】已知双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,若过点F 且倾斜角为60︒的直线与双曲线的右支有且只有一个交点, 则该直线的斜率的绝对值小于等于渐近线的斜率b a, ∴3ba,离心率2222224c a b e a a +==,2e ∴,故选:C . 【点评】本题考查双曲线的性质及其应用,解题时要注意挖掘隐含条件.12.(5分)已知()f x 是周期为2的奇函数,当01x <<时,()f x lgx =.设6()5a f =,3()2b f =,5()2c f =,则( ) A .a b c <<B .b a c <<C .c b a <<D .c a b <<【解析】已知()f x 是周期为2的奇函数,当01x <<时,()f x lgx =.则6444()()()05555a f f f lg ==-=-=->,3111()()()02222b f f f lg ==-=-=->,511()()0222c f f lg ===<,又4152lglg >,41052lg lg ∴<-<-,c a b ∴<<,故选:D . 【点评】本题主要考查奇函数性质与函数的周期性,同时考查对数函数的单调性. 二、填空题(共4小题,每小题4分,满分16分)13.(4分)在二项式251()x x-的展开式中,含4x 的项的系数是 10 .【解析】根据所给的二项式写出展开式的通项,251031551()()(1)r r r r r r r T C x C x x --+=-=-,要求4x 的项的系数,1034r ∴-=,2r ∴=,4x ∴的项的系数是225(1)10C -=,故答案为:10.【点评】本题考查二项式定理的应用,本题解题的关键是正确写出二项展开式的通项,在这种题目中通项是解决二项展开式的特定项问题的工具.14.(4分)已知直线10x y --=与抛物线2y ax =相切,则a = 14. 【解析】设切点00(),P x y ,2y ax =,2y ax ∴'=,则有:0010x y --=(切点在切线上)①;200y ax =(切点在曲线上)②021ax =(切点横坐标的导函数值为切线斜率)③;由①②③解得:14a =. 【点评】本题主要考查抛物线的应用.考查了学生综合运用所学知识的能力. 15.(4分)已知实数x 、y 满足1|1|y y x ⎧⎨-⎩,则2x y +的最大值是 4 .【解析】已知实数x 、y 满足1|1|y y x ⎧⎨-⎩在坐标系中画出可行域,三个顶点分别是(0,1)A ,(1,0)B ,(2,1)C ,由图可知,当2x =,1y =时,2x y +的最大值是4.故答案为:4.【点评】用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.16.(4分)已知函数()2sin (0)f x x ωω=>在区间[,]34ππ-上的最小值是2-,则ω的最小值是 32.【解析】函数()2sin (0)f x x ωω=>在区间[,]34ππ-上的最小值是2-,则x ω的取值范围是[,]34ωπωπ-,当22x k πωπ=-+,k Z ∈时,函数有最小值2-,232k ωπππ∴-+-,或342ωππ,k Z ∈,∴362k ω-,6ω,k Z ∈,0ω>,ω∴的最小值等于32.故答案为:32.【点评】本题主要考查正弦函数的最值的应用.考查基础知识的运用能力.三角函数式高考的重要考点,一定要强化复习.三、解答题(共6小题,满分74分)17.(12分)已知函数22()sin cos 2cos f x x x x x =++,x R ∈. (Ⅰ)求函数()f x 的最小正周期和单调增区间;(Ⅱ)函数()f x 的图象可以由函数sin 2()y x x R =∈的图象经过怎样的变换得到?【解析】(Ⅰ)1cos2133()2(1cos2)2cos2sin(2)22262x f x x x x x x π-=++=++=++. ()f x ∴的最小正周期22T ππ==.由题意得222,262k x k k Z πππππ-++∈,即,36k x k k Z ππππ-+∈.()f x ∴的单调增区间为[,],36k k k Z ππππ-+∈.(Ⅱ)先把sin 2y x =图象上所有点向左平移12π个单位长度,得到sin(2)6y x π=+的图象,再把所得图象上所有的点向上平移32个单位长度,就得到3sin(2)62y x π=++的图象. 【点评】本小题主要考查三角函数的基本公式、三角恒等变换、三角函数的图象和性质等基本知识,以及推理和运算能力.18.(12分)每次抛掷一枚骰子(六个面上分别标以数字1,2,3,4,5,6). (Ⅰ)连续抛掷2次,求向上的数不同的概率; (Ⅱ)连续抛掷2次,求向上的数之和为6的概率;(Ⅲ)连续抛掷5次,求向上的数为奇数恰好出现3次的概率.【解析】(Ⅰ)由题意知,本题是一个等可能事件的概率,试验发生包含的事件数4416⨯=, 满足条件的事件是向上的数不同,第一次由6种选择,第二次出现5种结果,共有5630⨯=, 设A 表示事件“抛掷2次,向上的数不同”,∴655()666P A ⨯==⨯. 答:抛掷2次,向上的数不同的概率为56. (Ⅱ)由题意知,本题是一个等可能事件的概率,试验发生包含的事件数4416⨯=, 满足条件的事件是向上的数之和为6的结果有(1,5)、(2,4)、(3,3)、(4,2)、(5,1)5种, 设B 表示事件“抛掷2次,向上的数之和为6”.∴55()6636P B ==⨯. 答:抛掷2次,向上的数之和为6的概率为536. (Ⅲ)设C 表示事件“抛掷5次,向上的数为奇数恰好出现3次”,即在5次独立重复试验中,事件向上的数为奇数恰好出现3次,在这个试验中向上的数为奇数的概率是12, 根据独立重复试验的概率公式得到∴3325511105()(3)()()223216P C P C ====. 答:抛掷5次,向上的数为奇数恰好出现3次的概率为516. 【点评】本题考查独立重复试验,考查等可能事件的概率,主要考查概率的基本知识,运用数学知识解决实际问题的能力.是一个综合题.19.(12分)如图,四面体ABCD 中,O 、E 分别是BD 、BC 的中点,2CA CB CD BD ====,2AB AD ==. (Ⅰ)求证:AO ⊥平面BCD ;(Ⅱ)求异面直线AB 与CD 所成角的大小; (Ⅲ)求点E 到平面ACD 的距离.【解析】(Ⅰ)证明:连接OC ,BO DO =,AB AD =,AO BD ∴⊥.BO DO =,BC CD =,CO BD ∴⊥. 在AOC ∆中,由已知可得1,3AO CO ==而2AC =,222AO CO AC ∴+=,90AOC ∴∠=︒,即AO OC ⊥. BD OC O =,AO ∴⊥平面BCD .(Ⅱ)解:以O 为原点,如图建立空间直角坐标系,则(1,0,0)B ,(1,0,0)D -,3,0)C ,(0,0,1)A ,13(2E ,(1,0,1)BA =-,(1,3,0)CD =-.∴.2cos ,4||||BA CD BA CD BA CD <>== ∴异面直线AB 与CD 所成角的大小为2(Ⅲ)解:设平面ACD 的法向量为(,,)n x y z =,则.(,,)(1,0,1)0.(,,)(03,1)0n AD x y z n AC x y z ⎧=⋅--=⎪⎨=⋅-=⎪⎩,∴030.x z z +=⎧⎪⎨-=⎪⎩令1y =,得(3,1,3)n =-是平面ACD 的一个法向量.又13(2EC =-,∴点E 到平面ACD 的距离|.|321||7EC n h n ===.【点评】本小题主要考查直线与平面的位置关系、异面直线所成的角以及点到平面的距离基本知识,考查空间想象能力、逻辑思维能力和运算能力.20.(12分)已知椭圆2212x y +=的左焦点为F ,O 为坐标原点.(Ⅰ)求过点O 、F ,并且与椭圆的左准线l 相切的圆的方程;(Ⅱ)设过点F 的直线交椭圆于A 、B 两点,并且线段AB 的中点在直线0x y +=上,求直线AB 的方程.【解析】(Ⅰ)22a =,21b =,1c ∴=,(1,0)F -,:2l x =-.圆过点O 、F ,∴圆心M 在直线12x =-上.设1(,)2M t -,则圆半径13|()(2)|22r =---=.由||OM r =2213()22t -+=,解得2t =±∴所求圆的方程为2219()(2)24x y ++=.(Ⅱ)设直线AB 的方程为(1)(0)y k x k =+≠,代入2212x y +=,整理得2222(12)4220k x k x k +++-=.直线AB 过椭圆的左焦点F ,∴方程有两个不等实根,记11(),A x y ,22(),B x y ,AB 中点0(N x ,0)y ,则2122421k x x k +=-+,2012002212(),(1)22121k kx x x y k x k k =+=-=+=++, 线段AB 的中点N 在直线0x y +=上,∴20022202121k k x y k k +=-+=++,0k ∴=,或12k =.当直线AB 与x 轴垂直时,线段AB 的中点F 不在直线0x y +=上.∴直线AB 的方程是0y =或210x y -+=.【点评】本题主要考查直线、圆、椭圆和不等式等基本知识,考查平面解析几何的基本方法,考查运算能力和综合解题能力.解题时要注意公式的灵活运用.21.(12分)已知()f x 是二次函数,不等式()0f x <的解集为(0,5)且()f x 在[1,4]-上的最大值为12, ①求()f x 的解析式;②是否存在自然数m ,使方程37()0f x x+=在区间(,1)m m +内有且只有两个不等的实根?若不存在,说明理由;若存在,求m 的值. 【解析】(1)()f x 是二次函数,且()0f x <的解集是(0,5),∴可设()(5)(0)f x ax x a =->.()f x ∴在区间[1,4]-上的最大值是(1)6f a -=.由已知得612a =,2a ∴=,2()2(5)210()f x x x x x x R ∴=-=-∈. (2)方程37()0f x x+=等价于方程32210370x x -+=. 设32()21037h x x x =-+,则2()6202(310)h x x x x x '=-=-. 在区间10(0,)3x ∈时,()0h x '<,()h x 是减函数; 在区间(,0)-∞,或10(,)3+∞上,()0h x '>,()h x 是增函数,故(0)h 是极大值,10()3h 是极小值.(3)10h =>,101()0327h =-<,(4)50h =>,∴方程()0h x =在区间1010(3,),(,4)33内分别有惟一实数根,故函数()h x 在(3,4)内有2个零点. 而在区间(0,3),(4,)+∞内没有零点,在(,0)-∞上有唯一的零点. 画出函数()h x 的单调性和零点情况的简图,如图所示.所以存在惟一的自然数3m =,使得方程37()0f x x+=在区间(,1)m m +内有且只有两个不同的实数根. 【点评】本小题主要考查函数的单调性、极值等基本知识,考查运用导数研究函数的性质的方法,考查函数与方程、数形结合等数学思想方法和分析问题、解决问题的能力,属于中档题. 22.(14分)已知数列{}n a 满足11a =,23a =,*2132()n n n a a a n N ++=-∈. (Ⅰ)证明:数列1{}n n a a +-是等比数列; (Ⅱ)求数列{}n a 的通项公式;(Ⅲ)若数列{}n b 满足12111*444(1)()n n b b b b n a n N ---⋯=+∈,证明{}n b 是等差数列. 【解析】(Ⅰ)证明:2132n n n a a a ++=-,2112()n n n n a a a a +++∴-=-,11a =,23a =,∴*2112()n n n na a n N a a +++-=∈-.1{}n n a a +∴-是以212a a -=为首项,2为公比的等比数列.(Ⅱ)解:由(Ⅰ)1{}n n a a +-是以212a a -=为首项,2为公比的等比数列得*12()n n n a a n N +-=∈, 12*112211()()()222121()n n n n n n n n a a a a a a a a n N -----∴=-+-++-+=++++=-∈.(Ⅲ)证明:12111444(1)n n b b b b n a ---=+,∴1242n n b b b n nb ++⋯+-=122[()]n n b b b n nb ∴++⋯+-=,①12112[()(1)](1)n n n b b b b n n b ++++⋯++-+=+.②②-①,得112(1)(1)n n n b n b nb ++-=+-, 即1(1)20n n n b nb +--+=.③21(1)20n n nb n b ++-++=.④④-③,得2120n n n nb nb nb ++-+=,即2120n n n b b b ++-+=,*211()n n n n b b b b n N +++∴-=-∈,{}n b ∴是等差数列.【点评】本小题主要考查数列、不等式等基本知识的综合运用,考查化归的数学思想方法在解题中的运用,考查综合解题能力.。

06年高考数学(文史类)模拟试卷

06年高考数学(文史类)模拟试卷

06年高考数学(文史类)模拟试卷命题 泉州一中 邱形贵 2006-4本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷(选择题 共60分)参考公式:如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率P n (k )=k n kk n P PC --)1(球的体积公式:334R V π= 球的表面积公式S=4πR 2(其中R 表示球的半径)一. 选择题:(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.全集U=R ,集合M={x| x>1},P={x| x 2>1},则下列关系中正确的是 ( ) A .M =P B .P ÜM C .M ÜP D .U M P =∅ ð 2.直线l 的方向向量为(1,3),直线m 的方程为13xy +=。

则两直线位置关系为( ) A .平行 B .垂直 C .重合 D .无法确定3.已知α、(0,)2πβ∈,2tan221tan 2αα=-,且2sin sin()βαβ=+,则β的值为( ) A .6π B .4π C . 3πD . 125π4.在等差数列}{n a 中24)(2)(31310753=++++a a a a a ,则此数列前13项的和为( )A . 156B .13C .12D .26 5.函数2log y x =-的反函数是 ( )A .2x y -=B .2x y =-C .2x y =D .2x y -=-6.设命题p :点)c o s ,(s i n ααM 与))(2,1(R N ∈-+ααα在直线30x y +-=的异侧;命题q :若a u r,b u r 为两个非零向量,则a b ⊥u r u r的充要条件是222()a b a b +=-u r u r u r u r 。

2006年普通高等学校招生全国统一考试(福建卷)语文试卷答案

2006年普通高等学校招生全国统一考试(福建卷)语文试卷答案

2006年普通高等学校招生全国统一考试(福建卷)语文参考答案一、(6分,每小题3分)1.B 2.D二、(6分,每小题3分)3.C 4.C三、(12分,每小题3分)5.B 6.A 7.C 8.A四、(24分)9.(10分)(1)由今之道/ 无变今之俗/ 虽与之天下/ 不能一朝居也(2)翻译①现在侍奉国君的人说:“我能替国君开辟疆土,充实府库。

”②君王不向往王道,不追求仁政,(侍奉国君的人)却谋求使国君富有,这是让夏桀一样的暴君富有阿。

10.(6分)(1)不能换成“对”或其他词。

用“敌”字不仅突出“空床”与“素秋”默默相对的寂寥清冷的氛围,而且表现出空床独寝的人无法承受“素秋”的清冷凄凉的情状,抒发了诗人心灵深处难以言状的凄怆之情。

用“对”或其他词难以达到这种表达效果。

如果认为用“对”或其他词好,言之成理可酌情给分。

(2)在艺术手法上,第三、四句的最大特点是借景抒情。

诗人借助对“青苔”、“红树”以及“雨”景、“月”色的描写,赋予客观景物以浓厚的主观色彩,营造出了冷寂、凄清的氛围,表达了悲愁、孤寂和思亲的情感。

从其他角度(如互文手法)回答,言之成理也可。

11.(8分)(1)①渺沧海之一粟②羁鸟恋旧林③便胜却人间无数④何人不起故园情⑤齐彭殇为妄作⑥留取丹心照汗青⑦学然后知不足⑧君予坦荡荡(2)⑨星垂平野阔/月涌大江流⑩问君能有几多愁/恰似一江春水向东流五、(20分)12.(6分)①当一位亲密的朋友说出冷酷无情的话时,我们只好莫名其妙地笑。

②当我们向尊敬的人倾诉悲苦,他却轻描淡写地加以应付时,我们只好无聊赖地笑。

③当我们一生忙碌,费尽心机,却不知生的意义而感到悲哀时,我们只好吃吃地笑。

意思答对即可。

13.(4分)使用了暗喻(或比喻)的修辞手法。

现实生活中的种种因素把我们弄得无可奈何,只好痛苦地承认自己的失败。

意思答对即可。

14.(4分)作者认为泪是对人生的肯定,是人生的甘露,它能使人感到快乐,净化人们的情感,让人们的心灵呈现出非常健康的状态。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2006年高考数学福建卷文科一.选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知两条直线2y ax =-和(2)1y a x =++互相垂直,则a 等于(A)2 (B)1 (C)0 (D)1-(2)在等差数列{}n a 中,已知1232,13,a a a =+=则456a a a ++等于(A)40 (B)42 (C)43 (D)45(3)"tan 1"α=是""4πα=的(A)充分而不必要条件 (B)必要不而充分条件(C)充要条件 (D)既不充分也不必要条件(4)已知3(,),sin ,25παπα∈=则tan()4πα+等于(A)17 (B)7 (C)17- (D)7-(5)已知全集,U R =且{}{}2|12,|680,A x x B x x x =->=-+<则()U C A B 等于(A)[1,4)- (B)(2,3) (C)(2,3] (D)(1,4)-(6)函数(1)1xy x x =≠-+的反函数是 (A)(1)1x y x x =≠+方 (B)(1)1x y x x =≠- (C)1(0)x y x x -=≠ (D)1(0)xy x x-=≠ (7)已知正方体外接球的体积是323π,那么正方体的棱长等于(A) (B)3 (C)3 (D)3(8)从4名男生和3名女生中选出3人,分别从事三项不同的工作,若这3人中至少有1名女生,则选派方案共有(A)108种 (B)186种 (C)216种 (D)270种 (9)已知向量a 与b 的夹角为120o,3,13,a a b =+=则b 等于 (A)5 (B)4 (C)3 (D)1(10)对于平面α和共面的直线m 、,n 下列命题中真命题是 (A)若,,m m n α⊥⊥则n α∥ (B)若m αα∥,n ∥,则m ∥n(C)若,m n αα⊂∥,则m ∥n (D)若m 、n 与α所成的角相等,则m ∥n(11)已知双曲线22221(0,0)x y a b a b-=>>的右焦点为F,若过点F 且倾斜角为60o的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是(A)(1,2] (B)(1,2) (C)[2,)+∞ (D)(2,)+∞(12)已知()f x 是周期为2的奇函数,当01x <<时,()lg .f x x =设63(),(),52a fb f ==5(),2c f =则(A)a b c << (B)b a c << (C)c b a << (D)c a b <<二.填空题:本大题共4小题,每小题4分,共16分。

把答案填在答题卡的相应位置。

(13)251()x x-展开式中4x 的系数是_____(用数字作答)。

(14)已知直线10x y --=与抛物线2y ax =相切,则______.a =(15)已知实数x 、y 满足1,1,y y x ≤⎧⎪⎨≥-⎪⎩则2x y +的最大值是____。

(16)已知函数()2sin (0)f x x ωω=>在区间,34ππ⎡⎤-⎢⎥⎣⎦上的最小值是2-,则ω的最小值是____。

三.解答题:本大题共6小题,共74分。

解答应写出文字说明,证明过程或演算步骤。

(17)(本小题满分12分)已知函数22()sin cos 2cos ,.f x x x x x x R =+∈ (I)求函数()f x 的最小正周期和单调增区间;(II)函数()f x 的图象可以由函数sin 2()y x x R =∈的图象经过怎样的变换得到?(18)(本小题满分12分)每次抛掷一枚骰子(六个面上分别标以数字1,2,3,4,5,6).(I)连续抛掷2次,求向上的数不同的概率; (II)连续抛掷2次,求向上的数之和为6的概率; (III)连续抛掷5次,求向上的数为奇数恰好出现3次的概率。

(19)(本小题满分12分) 如图,四面体ABCD 中,O 、E 分别是BD 、BC 的中点,2,CA CB CD BD AB AD ======(I)求证:AO ⊥平面BCD ; (II)求异面直线AB 与CD 所成角的大小; (III)求点E 到平面ACD 的距离。

(20)(本小题满分12分) 已知椭圆2212x y +=的左焦点为F,O 为坐标原点。

(I)求过点O 、F,并且与椭圆的左准线l 相切的圆的方程; (II)设过点F 的直线交椭圆于A 、B 两点,并且线段AB 的中点在直线0x y +=上,求直线AB 的方程。

(21)(本小题满分12分) 已知()f x 是二次函数,不等式()0f x <的解集是(0,5),且()f x 在区间[]1,4-上的最大值是12。

(I)求()f x 的解析式;(II)是否存在实数,m 使得方程37()0f x x+=在区间(,1)m m +内有且只有两个不等的实数根?若存在,求出m 的取值范围;若不存在,说明理由。

(22)(本小题满分14分) 已知数列{}n a 满足*12211,3,32().n n n a a a a a n N ++===-∈ (I)证明:数列{}1n n a a +-是等比数列; (II)求数列{}n a 的通项公式;(II)若数列{}n b 满足12111*44...4(1)(),nn b b b b n a n N ---=+∈证明{}n b 是等差数列。

2006年高考(福建卷)数学文试题答案一.选择题:本大题考查基本概念和基本运算。

每小题5分,满分60分。

(1)D (2)B (3)B (4)A (5)C (6)A(7)D (8)B (9)B (10)C (11)C (12)D 二.填空题:本大题考查基础知识和基本运算。

每小题4分满分16分。

(13)10 (14)14 (15)4 (16)32三.解答题:本大题共6小题,共74分。

解答应写出文字说明,证明过程或演算步骤。

(17)本小题主要考查三角函数的基本公式、三角恒等变换、三角函数的图象和性质等基本知识,以及推理和运算能力。

满分12分。

解:(I)1cos 2()2(1cos 2)2x f x x x -=++132cos 2223sin(2).62x x x π=++=++ ()f x ∴的最小正周期2.2T ππ== 由题意得222,,262k x k k Z πππππ-≤+≤+∈即 ,.36k x k k Z ππππ-≤≤+∈()f x ∴的单调增区间为,,.36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦(II)方法一:先把sin 2y x =图象上所有点向左平移12π个单位长度,得到sin(2)6y x π=+的图象,再把所得图象上所有的点向上平移32个单位长度,就得到3sin(2)62y x π=++的图象。

方法二:把sin 2y x =图象上所有的点按向量3(,)122a π=-平移,就得到3sin(2)62y x π=++的图象。

(18)本小题主要考查概率的基本知识,运用数学知识解决实际问题的能力。

满分12分。

解:(I)设A 表示事件“抛掷2次,向上的数不同”,则655().666P A ⨯==⨯答:抛掷2次,向上的数不同的概率为5.6(II)设B 表示事件“抛掷2次,向上的数之和为6”。

向上的数之和为6的结果有(1,5)、(2,4)、(3,3)、(4,2)、(5,1) 5种,55().6636P B ∴==⨯ 答:抛掷2次,向上的数之和为6的概率为5.36(III)设C 表示事件“抛掷5次,向上的数为奇数恰好出现3次”,即在5次独立重复试验中,事件“向上的数为奇数”恰好出现3次, 3325511105()(3)()().223216P C P C ∴====答:抛掷5次,向上的数为奇数恰好出现3次的概率为5.16(19)本小题主要考查直线与平面的位置关系、异面直线所成的角以及点到平面的距离基本知识,考查空间想象能力、逻辑思维能力和运算能力。

满分12分。

方法一: (I)证明:连结OC ,,.BO DO AB AD AO BD ==∴⊥ ,,.BO DO BC CD CO BD ==∴⊥在AOC ∆中,由已知可得1,AO CO = 而2,AC =222,AO CO AC ∴+=90,o AOC ∴∠=即.AO OC ⊥,BD OC O = AO ∴⊥平面BCD(II)解:取AC 的中点M,连结OM 、ME 、OE,由E 为BC 的中点知ME ∥AB,OE ∥DC∴直线OE 与EM 所成的锐角就是异面直线AB 与CD 所成的角在OME ∆中,111,222EM AB OE DC ====OM 是直角AOC ∆斜边AC 上的中线,11,2OM AC ∴==cos 4OEM ∴∠=∴异面直线AB 与CD所成角的大小为(III)解:设点E 到平面ACD 的距离为.h,11 (33)E ACD A CDE ACD CDE V V h S AO S --∆∆=∴=在ACD ∆中,2,CA CD AD ==ABMDEOC12ACDS∆∴==而211,22CDEAO S∆===1.7CDEACDAO ShS∆∆∴===∴点E到平面ACD的距离为7方法二:(I)同方法一。

(II)解:以O为原点,如图建立空间直角坐标系,则(1,0,0),(1,0,0),B D-1(0,0,1),((1,0,1),(1,2C A E BA CD=-=-.2cos,4BACDBA CDBA CD∴<>==∴异面直线AB与CD所成角的大小为(III)解:设平面ACD的法向量为(,,),n x y z=则.(,,).(1,0,1)0,.(,,1)0,n AD x y zn AC x y z⎧=--=⎪⎨=-=⎪⎩0,0.x zz+=⎧⎪∴-=令1,y=得(3,1n=-是平面ACD的一个法向量。

又1(2EC=-∴点E 到平面ACD的距离.37EC nhn===(20)本小题主要考查直线、圆、椭圆和不等式等基本知识,考查平面解析几何的基本方法,考查运算能力和综y合解题能力。

满分12分。

解:(I)222,1,1,(1,0),: 2.a b c F l x ==∴=-=-圆过点O 、F,∴圆心M 在直线12x =-上。

设1(,),2M t -则圆半径13()(2).22r =---=由,OM r =3,2=解得t =∴所求圆的方程为2219()(.24x y ++±=(II)设直线AB 的方程为(1)(0),y k x k =+≠代入221,2x y +=整理得2222(12)4220.k x k x k +++-= 直线AB 过椭圆的左焦点F,∴方程有两个不等实根,记1122(,),(,),A x y B x y AB 中点00(,),N x y则21224,21k x x k +=-+ 2012002212(),(1),22121k k x x x y k x k k =+=-=+=++线段AB 的中点N 在直线0x y +=上,∴2002220,2121k kx y k k +=-+=++ 0k ∴=,或1.2k =当直线AB 与x 轴垂直时,线段AB 的中点F 不在直线0x y +=上。

相关文档
最新文档