2013年高考数学理(福建卷)WORD解析版
2013年高考文科数学福建卷试题与答案word解析版

2013年普通高等学校夏季招生全国统一考试数学文史类(福建卷)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.答案:C解析:在复平面内,z =-1-2i 对应点的坐标为(-1,-2),故选C.2.答案:A解析:点(2,-1)在直线l :x +y -1=0上,而直线l 上的点的坐标不一定为(2,-1),故“x =2且y =-1”是“点P 在直线l 上”的充分而不必要条件.3.答案:C解析:由题知A ∩B ={1,3},故它的子集个数为22=4.4.答案:B解析:x 2-y 2=1的渐近线方程为y =±x ,顶点坐标为(±1,0),点(±1,0)到y =±x 的距离为2==. 5.答案:A解析:由f (0)=0可知函数图象经过原点.又f (-x )=f (x ),所以函数图象关于y 轴对称,故选A.6.答案:B解析:画出可行域如下图阴影部分所示.画出直线2x +y =0,并向可行域方向移动,当直线经过点(1,0)时,z 取最小值.当直线经过点(2,0)时,z 取最大值.故z max =2³2+0=4,z min =2³1+0=2.7.答案:D解析:∵2x +2y =1≥ ∴212⎛⎫ ⎪⎝⎭≥2x +y ,即2x +y ≤2-2. ∴x +y ≤-2.8.答案:B解析:若n =3,则输出S =7;若n =4,则输出S =15,符合题意.故选B.9.答案:B解析:∵f (x )的图象经过点⎛ ⎝⎭,∴sin θ又∵θ∈ππ,22⎛⎫- ⎪⎝⎭,∴π3θ=. ∴f (x )=πsin 23x ⎛⎫+ ⎪⎝⎭. 由题知g (x )=f (x -φ)=πsin 23x ϕ⎡⎤(-)+⎢⎥⎣⎦,又图象经过点⎛ ⎝⎭,∴g (0)=πsin 23ϕ⎛⎫-+= ⎪⎝⎭. 当5π6ϕ=时满足g (0)B. 10.答案:C解析:∵AC ²BD =-4³1+2³2=0,∴AC ⊥BD .S 四边形ABCD =12|AC ||BD |=152=. 11.答案:C 解析:123456762x +++++==, 021*******y +++++==, 122157n i ii n i i x y nx y b xnx ==-==-∑∑, 13a y bx =-=-,b ′=2021--=2>b ,a ′=-2<a . 12.答案:D解析:由函数极大值的概念知A 错误;因为函数f (x )的图象与f (-x )的图象关于y 轴对称,所以-x 0是f (-x )的极大值点.B 选项错误;因为f (x )的图象与-f (x )的图象关于x 轴对称,所以x 0是-f (x )的极小值点.故C 选项错误;因为f (x )的图象与-f (-x )的图象关于原点成中心对称,所以-x 0是-f (-x )的极小值点.故D 正确.第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置.13.答案:-2解析:∵ππtan 144f ⎛⎫=-=-⎪⎝⎭,π4f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭=f (-1)=2³(-1)3=-2. 14.答案:13 解析:由3a -1<0,得a <13. ∵0≤a ≤1,∴0≤a <13.根据几何概型知所求概率为11313=. 15.1解析:∵由y x +c )知直线的倾斜角为60°, ∴∠MF 1F 2=60°,∠MF 2F 1=30°.∴∠F 1MF 2=90°.∴MF 1=c ,MF 2.又MF 1+MF 2=2a ,∴c =2a ,即1e ==. 16.答案:①②③解析:①若y =x +1是从A 到B 的一个函数,且x ∈A ,则满足(ⅰ)B ={f (x )|x ∈A }.又f (x )=x +1是单调递增的,所以也满足(ⅱ);②若f (x )=92x -72时,满足(ⅰ)B ={f (x )|x ∈A },又f (x )=92x -72是单调递增的,所以也满足(ⅱ); ③若1tan π2y x ⎡⎤⎛⎫=- ⎪⎢⎥⎝⎭⎣⎦(0<x <1)时,满足(ⅰ)B ={f (x )|x ∈A }.又()1tan π2f x x ⎡⎤⎛⎫=- ⎪⎢⎥⎝⎭⎣⎦在(0,1)上是单调递增的,所以也满足(ⅱ).故填①②③.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.解:(1)因为数列{an }的公差d =1,且1,a 1,a 3成等比数列,所以a 12=1³(a 1+2),即a 12-a 1-2=0,解得a 1=-1或a 1=2.(2)因为数列{a n }的公差d =1,且S 5>a 1a 9,所以5a 1+10>a 12+8a 1,即a 12+3a 1-10<0,解得-5<a 1<2.18.解法一:(1)在梯形ABCD 中,过点C 作CE ⊥AB ,垂足为E ,由已知得,四边形ADCE 为矩形,AE =CD =3,在Rt △BEC 中,由BC =5,CE =4,依勾股定理得BE =3,从而AB =6.又由PD ⊥平面ABCD 得,PD ⊥AD ,从而在Rt △PDA 中,由AD =4,∠PAD =60°,得PD =正视图如图所示:正视图(2)取PB 中点N ,连结MN ,CN .在△PAB 中,∵M 是PA 中点,∴MN ∥AB ,MN =12AB =3. 又CD ∥AB ,CD =3,∴MN ∥CD ,MN =CD .∴四边形MNCD 为平行四边形.∴DM ∥CN .又DM ⊄平面PBC ,CN ⊂平面PBC ,∴DM ∥平面PBC .(3)V D -PBC =V P -DBC =13S △DBC ²PD ,又S △DBC =6,PD =V D -PBC =解法二:(1)同解法一.(2)取AB 的中点E ,连结ME ,DE .在梯形ABCD 中,BE ∥CD ,且BE =CD ,∴四边形BCDE 为平行四边形.∴DE ∥BC .又DE ⊄平面PBC ,BC ⊂平面PBC ,∴DE ∥平面PBC .又在△PAB 中,ME ∥PB ,ME ⊄平面PBC ,PB ⊂平面PBC ,∴ME ∥平面PBC .又DE ∩ME =E ,∴平面DME ∥平面PBC .又DM ⊂平面DME ,∴DM ∥平面PBC .(3)同解法一.19.解:(1)由已知得,样本中有25周岁以上组工人60名,25周岁以下组工人40名.所以,样本中日平均生产件数不足60件的工人中,25周岁以上组工人有60³0.05=3(人),记为A 1,A 2,A 3;25周岁以下组工人有40³0.05=2(人),记为B 1,B 2.从中随机抽取2名工人,所有的可能结果共有10种,它们是:(A 1,A 2),(A 1,A 3),(A 2,A 3),(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(B 1,B 2).其中,至少有1名“25周岁以下组”工人的可能结果共有7种,它们是:(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(B 1,B 2).故所求的概率P =710. (2)由频率分布直方图可知,在抽取的100名工人中,“25周岁以上组”中的生产能手60³0.25=15(人),“25所以得K 2=n ad bc a b c d a c bd (-)(+)(+)(+)(+)=1001525154560403070⨯(⨯-⨯)⨯⨯⨯=2514≈1.79. 因为1.79<2.706,所以没有90%的把握认为“生产能手与工人所在的年龄组有关”.20.解:(1)抛物线y 2=4x 的准线l 的方程为x =-1.由点C 的纵坐标为2,得点C 的坐标为(1,2),所以点C 到准线l 的距离d =2,又|CO |所以|MN |== 2.(2)设C 200,4y y ⎛⎫ ⎪⎝⎭,则圆C 的方程为2204y x ⎛⎫- ⎪⎝⎭+(y -y 0)2=4016y +y 02,即x 2-202y x +y 2-2y 0y =0. 由x =-1,得y 2-2y 0y +1+202y =0,设M (-1,y 1),N (-1,y 2),则2220002012441240,21.2y y y y y y ⎧⎛⎫∆=-+=->⎪ ⎪⎪⎝⎭⎨⎪=+⎪⎩ 由|AF |2=|AM |²|AN |,得|y 1y 2|=4, 所以202y +1=4,解得0y =Δ>0. 所以圆心C 的坐标为32⎛ ⎝或3,2⎛ ⎝.从而|CO |2=334,|CO |,即圆C. 21. 解:(1)在△OMP 中,∠OPM =45°,OMOP=由余弦定理得,OM 2=OP 2+MP 2-2³OP ³MP ³cos 45°,得MP 2-4MP +3=0,解得MP =1或MP =3.(2)设∠POM =α,0°≤α≤60°,在△OMP 中,由正弦定理,得sin sin OM OP OPM OMP=∠∠, 所以OM =sin45sin 45OP α︒(︒+). 同理ON =sin45sin 75OP α︒(︒+). 故S △OMN =12³OM ³ON ³sin∠MON =221sin 454sin 45sin 75OP αα︒⨯(︒+)(︒+)=1sin 45sin 4530αα(︒+)(︒++︒)⎣⎦. 因为0°≤α≤60°,30°≤2α+30°≤150°,所以当α=30°时,sin(2α+30°)的最大值为1,此时△OMN 的面积取到最小值,即∠POM =30°时,△OMN的面积的最小值为8-22.解法一:(1)由f (x )=x -1+e x a ,得f ′(x )=1-e xa , 又曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,得f ′(1)=0,即1-e a =0,解得a =e. (2)f ′(x )=1-e xa , ①当a ≤0时,f ′(x )>0,f (x )为(-∞,+∞)上的增函数,所以函数f (x )无极值.②当a >0时,令f ′(x )=0,得e x =a ,x =ln a .x ∈(-∞,ln a ),f ′(x )<0;x ∈(ln a ,+∞),f ′(x )>0,所以f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增,故f (x )在x =ln a 处取得极小值,且极小值为f (ln a )=ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,f (x )在x =ln a 处取得极小值ln a ,无极大值.(3)当a =1时,f (x )=x -1+1ex . 令g (x )=f (x )-(kx -1)=(1-k )x +1e x , 则直线l :y =kx -1与曲线y =f (x )没有公共点,等价于方程g (x )=0在R 上没有实数解.假设k >1,此时g (0)=1>0,11111<01e k g k -⎛⎫=-+ ⎪-⎝⎭, 又函数g (x )的图象连续不断,由零点存在定理,可知g (x )=0在R 上至少有一解,与“方程g (x )=0在R 上没有实数解”矛盾,故k ≤1.又k =1时,g (x )=1e x>0,知方程g (x )=0在R 上没有实数解. 所以k 的最大值为1.解法二:(1)(2)同解法一.(3)当a =1时,f (x )=x -1+1e x. 直线l :y =kx -1与曲线y =f (x )没有公共点,等价于关于x 的方程kx -1=x -1+1e x 在R 上没有实数解,即关于x 的方程:(k -1)x =1e x(*) 在R 上没有实数解. ①当k =1时,方程(*)可化为10e x=,在R 上没有实数解. ②当k ≠1时,方程(*)化为11k -=x e x . 令g (x )=x e x ,则有g ′(x )=(1+x )e x.令g ′(x )=0,得x当x =-1时,g (x )min =e-,同时当x 趋于+∞时,g (x )趋于+∞, 从而g (x )的取值范围为1,e ⎡⎫-+∞⎪⎢⎣⎭. 所以当11k -∈1,e ⎛⎫-∞- ⎪⎝⎭时,方程(*)无实数解,解得k 的取值范围是(1-e,1). 综上①②,得k 的最大值为1.。
2013年福建省高考数学试卷(理科)答案与解析

2013年福建省高考数学试卷(理科)参考答案与试题解析一、选择题:本题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项符合题目的要求的.1.(5分)(2013•福建)已知复数z的共轭复数(i为虚数单位),则z在复平面内,3.(5分)(2013•福建)双曲线的顶点到渐近线的距离等于()B由对称性可取双曲线的顶点(,渐近线的顶点(,渐近线d=4.(5分)(2013•福建)某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图.已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为()5.(5分)(2013•福建)满足a,b∈{﹣1,0,1,2},且关于x的方程ax2+2x+b=0有实数解6.(5分)(2013•福建)阅读如图所示的程序框图,若输入的k=10,则该算法的功能是()7.(5分)(2013•福建)在四边形ABCD中,=(1,2),=(﹣4,2),则该四边形的B中,,的对角线互相垂直,又该四边形的面积:8.(5分)(2013•福建)设函数f(x)的定义域为R,x0(x0≠0)是f(x)的极大值点,以9.(5分)(2013•福建)已知等比数列{a n}的公比为q,记b n=a m(n﹣1)+1+a m(n﹣1)+2+…+a m(n*①=①,当时,,,此时,∴==,10.(5分)(2013•福建)设S,T是R的两个非空子集,如果存在一个从S到T的函数y=f (x)满足:(i)T={f(x)|x∈S};(ii)对任意x1,x2∈S,当x1<x2时,恒有f(x1)<f(x2),)二、填空题:本大题共5小题,每小题4分,共20分.把答案填写在答题卡的相应位置.11.(4分)(2013•福建)利用计算机产生0~1之间的均匀随机数a,则事件“3a﹣1>0”发生的概率为.>=故答案为:.12.(4分)(2013•福建)已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图、俯视图、均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是12π.2r=r=13.(4分)(2013•福建)如图,在△ABC中,已知点D在BC边上,AD⊥AC,sin∠BAC=,AB=3,AD=3,则BD的长为.BAD=AB=3.故答案为:14.(4分)(2013•福建)椭圆Γ:=1(a>b>0)的左右焦点分别为F1,F2,焦距为2c,若直线y=与椭圆Γ的一个交点M满足∠MF1F2=2∠MF2F1,则该椭圆的离心率等于.可知斜率为可得进而与斜率有关系,,则,解得故答案为15.(4分)(2013•福建)当x∈R,|x|<1时,有如下表达式:1+x+x2+…+x n+…=两边同时积分得:dx+xdx+x2dx+…+x n dx+…=dx从而得到如下等式:1×+×()2+×()3+…+×()n+1+…=ln2请根据以上材料所蕴含的数学思想方法,计算:×+×()2+×()3+…+×()n+1=.=故答案为:三、解答题:本大题共5小题,共80分.解答应写出文字说明、证明过程或演算步骤. 16.(13分)(2013•福建)某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为,中奖可以获得2分;方案乙的中奖率为,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为x,求x≤3的概率;(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?,小红中奖的概率为,且两人抽奖中奖与否互不影响,先,)由题意知,小明中奖的概率为,小红中奖的概率为,∴=的概率为.))×=×=,,17.(13分)(2013•福建)已知函数f(x)=x﹣alnx(a∈R)(1)当a=2时,求曲线y=f(x)在点A(1,f(1))处的切线方程;(2)求函数f(x)的极值.,)由,18.(13分)(2013•福建)如图,在正方形OABC中,O为坐标原点,点A的坐标为(10,0),点C的坐标为(0,10),分别将线段OA和AB十等分,分点分别记为A1,A2,…,A9和B1,B2,…,B9,连接OB i,过A i作x轴的垂线与OB i,交于点.(1)求证:点都在同一条抛物线上,并求抛物线E的方程;(2)过点C作直线l与抛物线E交于不同的两点M,N,若△OCM与△OCN的面积之比为4:1,求直线l的方程.)由题意,求出过且与的方程为.联立方程)证明:由题意,过且与的方程为,解得,即都在同一条抛物线上,抛物线消去,解得的方程为19.(13分)(2013•福建)如图,在四棱柱ABCD﹣A1B1C1D1中,侧棱AA1⊥底面ABCD,AB∥DC,AA1=1,AB=3k,AD=4k,BC=5k,DC=6k,(k>0)(1)求证:CD⊥平面ADD1A1(2)若直线AA1与平面AB1C所成角的正弦值为,求k的值(3)现将与四棱柱ABCD﹣A1B1C1D1形状和大小完全相同的两个四棱柱拼成一个新的四棱柱,规定:若拼成的新四棱柱形状和大小完全相同,则视为同一种拼接方案,问共有几种不同的拼接方案?在这些拼接成的新四棱柱中,记其中最小的表面积为f(k),写出f(k)的解析式.(直接写出答案,不必说明理由)、、的方向为,的一个法向量为=,取.∴==20.(14分)(2013•福建)已知函数f(x)=sin(wx+φ)(w>0,0<φ<π)的周期为π,图象的一个对称中心为(,0),将函数f(x)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将得到的图象向右平移个单位长度后得到函数g(x)的图象.(1)求函数f(x)与g(x)的解析式(2)是否存在x0∈(),使得f(x0),g(x0),f(x0)g(x0)按照某种顺序成等差数列?若存在,请确定x0的个数,若不存在,说明理由;(3)求实数a与正整数n,使得F(x)=f(x)+ag(x)在(0,nπ)内恰有2013个零点.=(,)时,<<在(,)在(,)内单调递增,而(,=2)×+=个单位长度后得到函数)的图象,,)时,,<,)内是否有解.(,())在(,)内单调递增,)﹣(>)在(,)内存在唯一零点,,,或,,(,),本题设有(21)、(22)、(23)三个选考题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题计分.21.(7分)(2013•福建)选修4﹣2:矩阵与变换已知直线l:ax+y=1在矩阵对应的变换作用下变为直线l′:x+by=1(I)求实数a,b的值(II)若点P(x0,y0)在直线l上,且,求点P的坐标.得,则有=,,又点,解得得22.(7分)(2013•福建)选修4﹣4:坐标系与参数方程在直角坐标系中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.已知点A的极坐标为,直线l的极坐标方程为,且点A在直线l上.(Ⅰ)求a的值及直线l的直角坐标方程;(Ⅱ)圆C的参数方程为,试判断直线l与圆C的位置关系.A上,得,<23.(2013•福建)设不等式|x﹣2|<a(a∈N*)的解集为A,且(Ⅰ)求a的值(Ⅱ)求函数f(x)=|x+a|+|x﹣2|的最小值.且。
2013年高考理科数学福建卷word解析版

2013年普通高等学校夏季招生全国统一考试数学理工农医类(福建卷)第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013福建,理1)已知复数z 的共轭复数z =1+2i(i 为虚数单位),则z 在复平面内对应的点位于( ).A .第一象限B .第二象限C .第三象限D .第四象限2.(2013福建,理2)已知集合A ={1,a },B ={1,2,3},则“a =3”是“A B ”的( ).A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件3.(2013福建,理3)双曲线24x -y 2=1的顶点到其渐近线的距离等于( ).A .25B .45 C. D.4.(2013福建,理4)某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图.已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为( ).A .588B .480C .450D .1205.(2013福建,理5)满足a ,b ∈{-1,0,1,2},且关于x 的方程ax 2+2x +b =0有实数解的有序数对(a ,b )的个数为( ).A .14B .13C .12D .106.(2013福建,理6)阅读如图所示的程序框图,若输入的k =10,则该算法的功能是( ).A .计算数列{2n -1}的前10项和B .计算数列{2n -1}的前9项和C .计算数列{2n -1}的前10项和D .计算数列{2n -1}的前9项和 7.(2013福建,理7)在四边形ABCD 中,AC =(1,2),BD =(-4,2),则该四边形的面积为( ).A..5 D .108.(2013福建,理8)设函数f (x )的定义域为R ,x 0(x 0≠0)是f (x )的极大值点,以下结论一定正确的是( ).A .∀x ∈R ,f(x)≤f(x0)B .-x0是f(-x)的极小值点C .-x0是-f(x)的极小值点D .-x0是-f(-x)的极小值点 9.(2013福建,理9)已知等比数列{a n }的公比为q ,记b n =a m (n -1)+1+a m (n -1)+2+…+a m (n -1)+m ,c n =a m (n -1)+1·a m (n-1)+2·…·a m (n -1)+m (m ,n ∈N *),则以下结论一定正确的是( ).A .数列{bn}为等差数列,公差为qmB .数列{bn}为等比数列,公比为q2mC .数列{cn}为等比数列,公比为qm2D .数列{cn}为等比数列,公比为qmm10.(2013福建,理10)设S ,T 是R 的两个非空子集,如果存在一个从S 到T 的函数y =f (x )满足:(1)T ={f (x )|x ∈S };(2)对任意x 1,x 2∈S ,当x 1<x 2时,恒有f (x 1)<f (x 2),那么称这两个集合“保序同构”.以2下集合对不是“保序同构”的是( ).A .A =N*,B =NB .A ={x|-1≤x≤3},B ={x|x =-8或0<x≤10}C .A ={x|0<x <1},B =RD .A =Z ,B =Q第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题4分,共20分.把答案填在答题卡的相应位置.11.(2013福建,理11)利用计算机产生0~1之间的均匀随机数a ,则事件“3a -1>0”发生的概率为________.12.(2013福建,理12)已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图、侧视图、俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是________.13.(2013福建,理13)如图,在△ABC 中,已知点D 在BC 边上,AD ⊥AC ,sin ∠BAC=,AB=AD =3,则BD 的长为________.14.(2013福建,理14)椭圆Γ:22221x y a b +=(a >b >0)的左、右焦点分别为F1,F2,焦距为2C .若直线yx +c )与椭圆Γ的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________.15.(2013福建,理15)当x ∈R ,|x|<1时,有如下表达式: 1+x +x 2+…+x n+…=11x-. 两边同时积分得:11111222222011d d d d d 1nx x x x x x x x x+++++=-⎰⎰⎰⎰⎰, 从而得到如下等式:23111111111ln 22223212n n +⎛⎫⎛⎫⎛⎫⨯+⨯+⨯++⨯+= ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭.请根据以上材料所蕴含的数学思想方法,计算:2310121111111C C C C 2223212n n nn n n n +⎛⎫⎛⎫⎛⎫⨯+⨯+⨯++⨯= ⎪ ⎪⎪+⎝⎭⎝⎭⎝⎭________. 三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.16.(2013福建,理16)(本小题满分13分)某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为23,中奖可以获得2分;方案乙的中奖率为25,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X ,求X ≤3的概率;(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?17.(2013福建,理17)(本小题满分13分)已知函数f(x)=x-a ln x(a∈R).(1)当a=2时,求曲线y=f(x)在点A(1,f(1))处的切线方程;(2)求函数f(x)的极值.2013 福建理科数学第3页18.(2013福建,理18)(本小题满分13分)如图,在正方形OABC中,O为坐标原点,点A的坐标为(10,0),点C的坐标为(0,10).分别将线段OA和AB十等分,分点分别记为A1,A2,…,A9和B1,B2,…,B9.连结OB i,过A i作x轴的垂线与OB i交于点P i(i∈N*,1≤i≤9).(1)求证:点P i(i∈N*,1≤i≤9)都在同一条抛物线上,并求该抛物线E的方程;(2)过点C作直线l与抛物线E交于不同的两点M,N,若△OCM与△OCN的面积比为4∶1,求直线l的方程.419.(2013福建,理19)(本小题满分13分)如图,在四棱柱ABCD-A1B1C1D1中,侧棱AA1⊥底面ABCD,AB ∥DC,AA1=1,AB=3k,AD=4k,BC=5k,DC=6k(k>0).(1)求证:CD⊥平面ADD1A1;(2)若直线AA1与平面AB1C所成角的正弦值为67,求k的值;(3)现将与四棱柱ABCD-A1B1C1D1形状和大小完全相同的两个四棱柱拼接成一个新的四棱柱.规定:若拼接成的新四棱柱形状和大小完全相同,则视为同一种拼接方案.问:共有几种不同的拼接方案?在这些拼接成的新四棱柱中,记其中最小的表面积为f(k),写出f(k)的解析式.(直接写出答案,不必说明理由).20.(2013福建,理20)(本小题满分14分)已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的周期为π,图象的一个对称中心为π,04⎛⎫⎪⎝⎭.将函数f(x)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得到的图象向右平移π2个单位长度后得到函数g(x)的图象.(1)求函数f(x)与g(x)的解析式;(2)是否存在x0∈ππ,64⎛⎫⎪⎝⎭,使得f(x0),g(x0),f(x0)g(x0)按照某种顺序成等差数列?若存在,请确定x0的个数;若不存在,说明理由;(3)求实数a与正整数n,使得F(x)=f(x)+ag(x)在(0,nπ)内恰有2 013个零点.2013 福建理科数学第5页621.(2013福建,理21)本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题计分.作答时,先用2B 铅笔在答题卡上把所选题目对应题号右边的方框涂黑,并将所选题号填入括号中.(1)(本小题满分7分)选修4—2:矩阵与变换 已知直线l :ax +y =1在矩阵 1 20 1A ⎛⎫= ⎪⎝⎭对应的变换作用下变为直线l ′:x +by =1. ①求实数a ,b 的值;②若点P (x 0,y 0)在直线l 上,且0000x x A y y ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭,求点P 的坐标. (2)(本小题满分7分)选修4—4:坐标系与参数方程在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系.已知点A 的极坐标为π4⎫⎪⎭,,直线l 的极坐标方程为ρπcos 4θ⎛⎫- ⎪⎝⎭=a ,且点A 在直线l 上. ①求a 的值及直线l 的直角坐标方程; ②圆C 的参数方程为1cos ,sin x y αα=+⎧⎨=⎩(α为参数),试判断直线l 与圆C 的位置关系.(3)(本小题满分7分)选修4—5:不等式选讲 设不等式|x -2|<a (a ∈N *)的解集为A ,且32∈A ,12∉A . ①求a 的值;②求函数f (x )=|x +a |+|x -2|的最小值.2013年普通高等学校夏季招生全国统一考试数学理工农医类(福建卷)第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.答案:D解析:由z=1+2i,得z=1-2i,故复数z对应的点(1,-2)在第四象限.2.答案:A解析:若a=3,则A={1,3}⊆B,故a=3是A⊆B的充分条件;而若A⊆B,则a不一定为3,当a=2时,也有A⊆B.故a=3不是A⊆B的必要条件.故选A.3.答案:C解析:双曲线24x-y2=1的顶点为(±2,0),渐近线方程为12y x=±,即x-2y=0和x+2y=0.故其顶点到渐近线的距离d===.4.答案:B解析:由频率分布直方图知40~60分的频率为(0.005+0.015)×10=0.2,故估计不少于60分的学生人数为600×(1-0.2)=480.5.答案:B解析:a=0时,方程变为2x+b=0,则b为-1,0,1,2都有解;a≠0时,若方程ax2+2x+b=0有实数解,则Δ=22-4ab≥0,即ab≤1.当a=-1时,b可取-1,0,1,2.当a=1时,b可取-1,0,1.当a=2时,b 可取-1,0,故满足条件的有序对(a,b)的个数为4+4+3+2=13.6.答案:A解析:当k=10时,执行程序框图如下:S=0,i=1;S=1,i=2;S=1+2,i=3;S=1+2+22,i=4;……S=1+2+22+…+28,i=10;S=1+2+22+…+29,i=11.7.解析:∵AC·BD=1×(-4)+2×2=0,∴AC⊥BD.又|AC|=,|BD|==S四边形ABCD=12|AC||BD|=5.8.答案:D解析:选项A,由极大值的定义知错误;对于选项B,函数f(x)与f(-x)的图象关于y轴对称,-x0应是f(-x)的极大值点,故不正确;对于C选项,函数f(x)与-f(x)图象关于x轴对称,x0应是-f(x)的极小值点,故不正确;而对于选项D,函数f(x)与-f(-x)的图象关于原点成中心对称,故正确.9.答案:C解析:∵{a n}是等比数列,∴1mn mm n maa+(-)+=q mn+m-m(n-1)-m=q m,∴1nncc+=1211121··mn mn mn mm n m n m n ma a aa a a+++(-)+(-)+(-)+⋅⋅⋅⋅=(q m)m=qm2.10.答案:D解析:由题意(1)可知,S为函数y=f(x)的定义域,T为函数y=f(x)的值域.由(2)可知,函数y=f(x)在定义域内单调递增,对于A,可构造函数y=x-1,x∈N*,y∈N,满足条件;2013 福建理科数学第7页对于B,构造函数8,1,51,13,2xyx x-=-⎧⎪=⎨(+)-<≤⎪⎩满足条件;对于C,构造函数ππtan22y x⎛⎫=-⎪⎝⎭,x∈(0,1),满足条件;对于D,无法构造函数其定义域为Z,值域为Q且递增的函数,故选D.第Ⅱ卷(非选择题共100分)二、填空题:本大题共5小题,每小题4分,共20分.把答案填在答题卡的相应位置.11.答案:2 3解析:由3a-1>0得13a>,由几何概型知112313P-==.12.答案:12π解析:由题意知该几何体是一个正方体内接于球构成的组合体,球的直径2r==,所以r=S球=4πr2=4π×3=12π. 13.解析:∵AD⊥AC,∴∠DAC=π2.∵sin∠BAC=3,∴πsin23BAD⎛⎫∠+=⎪⎝⎭,∴cos∠BAD=3.由余弦定理得BD2=AB2+AD2-2AB·AD·cos∠BAD=2+32-2×3=3.∴BD14.1解析:由直线yx+c)知其倾斜角为60°,由题意知∠MF1F2=60°,则∠MF2F1=30°,∠F1MF2=90°.故|MF1|=c,|MF2|.又|MF1|+|MF2|=2a,∴1)c=2a,即1e==.15.答案:113112nn+⎡⎤⎛⎫-⎢⎥⎪+⎝⎭⎢⎥⎣⎦解析:由0122C C C C n nn n n nx x x++++…=(1+x)n,两边同时积分得:1111012222220000C1d C d C d C dn nn n n nx x x x x x x++++⎰⎰⎰⎰12(1)d nx x=+⎰,2310121111111C C C C2223212nnn n n nn+⎛⎫⎛⎫⎛⎫++++⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭8=111121111131|11112112n nnxn n n n+++⎡⎤⎡⎤⎛⎫⎛⎫(+)=+-=-⎢⎥⎪ ⎪⎢⎥++++⎣⎦⎝⎭⎝⎭⎢⎥⎣⎦.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.16.解法一:(1)由已知得,小明中奖的概率为23,小红中奖的概率为25,且两人中奖与否互不影响.记“这2人的累计得分X≤3”的事件为A,则事件A的对立事件为“X=5”,因为P(X=5)=2243515⨯=,所以P(A)=1-P(X=5)=1115,即这2人的累计得分X≤3的概率为11 15.(2)设小明、小红都选择方案甲抽奖中奖次数为X1,都选择方案乙抽奖中奖次数为X2,则这两人选择方案甲抽奖累计得分的数学期望为E(2X1),选择方案乙抽奖累计得分的数学期望为E(3X2).由已知可得,X1~B22,3⎛⎫⎪⎝⎭,X2~B22,5⎛⎫⎪⎝⎭,所以E(X1)=24233⨯=,E(X2)=24255⨯=,从而E(2X1)=2E(X1)=83,E(3X2)=3E(X2)=125.因为E(2X1)>E(3X2),所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.解法二:(1)由已知得,小明中奖的概率为23,小红中奖的概率为25,且两人中奖与否互不影响.记“这2人的累计得分X≤3”的事件为A,则事件A包含有“X=0”,“X=2”,“X=3”三个两两互斥的事件,因为P(X=0)=22111355⎛⎫⎛⎫-⨯-=⎪ ⎪⎝⎭⎝⎭,P(X=2)=2221355⎛⎫⨯-=⎪⎝⎭,P(X=3)=22213515⎛⎫-⨯=⎪⎝⎭,所以P(A)=P(X=0)+P(X=2)+P(X=3)=11 15,即这2人的累计得分X≤3的概率为11 15.(2)设小明、小红都选择方案甲所获得的累计得分为X1,都选择方案乙所获得的累计得分为X2,则X1,X2的分布列如下:所以E(X1)=0×19+2×49+4×49=3,E(X2)=0×25+3×25+6×425=125.因为E(X1)>E(X2),所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.17.解:函数f(x)的定义域为(0,+∞),f′(x)=1-ax.2013 福建理科数学第9页10(1)当a =2时,f (x )=x -2ln x ,f ′(x )=1-2x(x >0), 因而f (1)=1,f ′(1)=-1,所以曲线y =f (x )在点A (1,f (1))处的切线方程为y -1=-(x -1), 即x +y -2=0. (2)由f ′(x )=1-a x =x a x-,x >0知: ①当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f (x )无极值;②当a >0时,由f ′(x )=0,解得x =A .又当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0,从而函数f (x )在x =a 处取得极小值,且极小值为f (a )=a -a ln a ,无极大值. 综上,当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =a 处取得极小值a -a ln a ,无极大值.18.解法一:(1)依题意,过A i (i ∈N *,1≤i ≤9)且与x 轴垂直的直线方程为x =i ,B i 的坐标为(10,i ),所以直线OB i 的方程为y =10i x . 设P i 的坐标为(x ,y ),由,,10x i i y x =⎧⎪⎨=⎪⎩得y =110x 2,即x 2=10y .所以点P i (i ∈N *,1≤i ≤9)都在同一条抛物线上,且抛物线E 的方程为x 2=10y . (2)依题意,直线l 的斜率存在,设直线l 的方程为y =kx +10. 由210.10.y kx x y =+⎧⎨=⎩得x 2-10kx -100=0, 此时Δ=100k 2+400>0,直线l 与抛物线E 恒有两个不同的交点M ,N . 设M (x 1,y 1),N (x 2,y 2),则121210,100,x x k x x +=⎧⎨⋅=-⎩①②因为S △OCM =4S △OCN ,所以|x 1|=4|x 2|. 又x 1·x 2<0,所以x 1=-4x 2,分别代入①和②,得222310,4100,x k x -=⎧⎨-=-⎩解得32k =±. 所以直线l 的方程为y =32±x +10,即3x -2y +20=0或3x +2y -20=0.解法二:(1)点P i (i ∈N *,1≤i ≤9)都在抛物线E :x 2=10y 上.证明如下:过A i (i ∈N *,1≤i ≤9)且与x 轴垂直的直线方程为x =i ,B i 的坐标为(10,i ),所以直线OB i 的方程为y =10i x . 由,,10x i i y x =⎧⎪⎨=⎪⎩解得P i 的坐标为2,10i i ⎛⎫ ⎪⎝⎭,因为点P i 的坐标都满足方程x 2=10y ,所以点P i (i ∈N *,1≤i ≤9)都在同一条抛物线上,且抛物线E 的方程为x 2=10y . (2)同解法一. 19.解:(1)取CD 的中点E ,连结BE .2013 福建理科数学 第11页∵AB ∥DE ,AB =DE =3k ,∴四边形ABED 为平行四边形,∴BE ∥AD 且BE =AD =4k .在△BCE 中,∵BE =4k ,CE =3k ,BC =5k ,∴BE 2+CE 2=BC 2,∴∠BEC =90°,即BE ⊥CD ,又∵BE ∥AD ,∴CD ⊥AD .∵AA 1⊥平面ABCD ,CD ⊂平面ABCD ,∴AA 1⊥CD .又AA 1∩AD =A ,∴CD ⊥平面ADD 1A 1.(2)以D 为原点,DA ,DC ,1DD 的方向为x ,y ,z 轴的正方向建立如图所示的空间直角坐标系,则A (4k,0,0),C (0,6k,0),B 1(4k,3k,1),A 1(4k,0,1),所以AC =(-4k,6k,0),1AB =(0,3k,1),1AA =(0,0,1).设平面AB 1C 的法向量n =(x ,y ,z ),则由10,0,AC AB ⎧⋅=⎪⎨⋅=⎪⎩n n得460,30.kx ky ky z -+=⎧⎨+=⎩取y =2,得n =(3,2,-6k ).设AA 1与平面AB 1C 所成角为θ,则 sin θ=|cos 〈1AA ,n〉|=11||||AA AA ⋅⋅n n 67=, 解得k =1,故所求k 的值为1.(3)共有4种不同的方案.f (k )=2257226,0,1853636,.18k k k k k k ⎧+<≤⎪⎪⎨⎪+>⎪⎩20.解法一:(1)由函数f (x )=sin(ωx +φ)的周期为π,ω>0,得ω=2πT=2. 又曲线y =f (x )的一个对称中心为π,04⎛⎫⎪⎝⎭,φ∈(0,π), 故ππsin 2044f ϕ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,得π2ϕ=,所以f (x )=cos 2x . 将函数f (x )图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)后可得y =cos x 的图象,再将y =cos x 的图象向右平移π2个单位长度后得到函数π()=cos 2g x x ⎛⎫- ⎪⎝⎭的图象,所以g (x )=sin x .(2)当x ∈ππ,64⎛⎫ ⎪⎝⎭时,12<sin x <2,0<cos 2x <12, 所以sin x >cos 2x >sin x cos 2x .问题转化为方程2cos 2x =sin x +sin x cos 2x 在ππ,64⎛⎫ ⎪⎝⎭内是否有解.12设G (x )=sin x +sin x cos 2x -2cos 2x ,x ∈ππ,64⎛⎫ ⎪⎝⎭, 则G ′(x )=cos x +cos x cos 2x +2sin 2x (2-sin x ).因为x ∈ππ,64⎛⎫⎪⎝⎭,所以G ′(x )>0,G (x )在ππ,64⎛⎫ ⎪⎝⎭内单调递增. 又π1<064G ⎛⎫=- ⎪⎝⎭,π>042G ⎛⎫= ⎪⎝⎭, 且函数G (x )的图象连续不断,故可知函数G (x )在ππ,64⎛⎫ ⎪⎝⎭内存在唯一零点x 0, 即存在唯一的x 0∈ππ,64⎛⎫ ⎪⎝⎭满足题意. (3)依题意,F (x )=a sin x +cos 2x ,令F (x )=a sin x +cos 2x =0.当sin x =0,即x =k π(k ∈Z )时,cos 2x =1,从而x =k π(k ∈Z )不是方程F (x )=0的解,所以方程F (x )=0等价于关于x 的方程cos2sin x a x =-,x ≠k π(k ∈Z ).现研究x ∈(0,π)∪(π,2π)时方程cos2sin x a x=-的解的情况. 令()cos2sin x h x x=-,x ∈(0,π)∪(π,2π), 则问题转化为研究直线y =a 与曲线y =h (x ),x ∈(0,π)∪(π,2π)的交点情况.22cos (2sin 1)()sin x x h x x+'=,令h ′(x )=0,得π2x =或3π2x =. 当x当x >0且x 当x <π且x 趋近于π时,h (x )趋向于-∞,当x >π且x 趋近于π时,h (x )趋向于+∞,当x <2π且x 趋近于2π时,h (x )趋向于+∞.故当a >1时,直线y =a 与曲线y =h (x )在(0,π)内无交点,在(π,2π)内有2个交点;当a <-1时,直线y =a 与曲线y =h (x )在(0,π)内有2个交点,在(π,2π)内无交点;当-1<a <1时,直线y =a 与曲线y =h (x )在(0,π)内有2个交点,在(π,2π)内有2个交点.由函数h (x )的周期性,可知当a ≠±1时,直线y =a 与曲线y =h (x )在(0,n π)内总有偶数个交点,从而不存在正整数n ,使得直线y =a 与曲线y =h (x )在(0,n π)内恰有2 013个交点;又当a =1或a =-1时,直线y =a 与曲线y =h (x )在(0,π)∪(π,2π)内有3个交点,由周期性,2 013=3×671,所以依题意得n =671×2=1 342.综上,当a =1,n =1 342或a =-1,n =1 342时,函数F (x )=f (x )+ag (x )在(0,n π)内恰有2 013个零点.解法二:(1)、(2)同解法一.(3)依题意,F (x )=a sin x +cos 2x =-2sin 2x +a sin x +1.现研究函数F (x )在(0,2π]上的零点的情况.设t =sin x ,p (t )=-2t 2+at +1(-1≤t ≤1),则函数p (t )的图象是开口向下的抛物线,又p (0)=1>0,p (-1)=-a -1,p (1)=a -1.当a >1时,函数p (t )有一个零点t 1∈(-1,0)(另一个零点t 2>1,舍去),F (x )在(0,2π]上有两个零点x 1,x 2,且x 1,x 2∈(π,2π);当a <-1时,函数p (t )有一个零点t 1∈(0,1)(另一个零点t 2<-1,舍去),F (x )在(0,2π]上有两个零点2013 福建理科数学 第13页 x 1,x 2,且x 1,x 2∈(0,π);当-1<a <1时,函数p (t )有一个零点t 1∈(-1,0),另一个零点t 2∈(0,1),F (x )在(0,π)和(π,2π)分别有两个零点.由正弦函数的周期性,可知当a ≠±1时,函数F (x )在(0,n π)内总有偶数个零点,从而不存在正整数n 满足题意.当a =1时,函数p (t )有一个零点t 1∈(-1,0),另一个零点t 2=1;当a =-1时,函数p (t )有一个零点t 1=-1,另一个零点t 2∈(0,1),从而当a =1或a =-1时,函数F (x )在(0,2π]有3个零点.由正弦函数的周期性,2 013=3×671,所以依题意得n =671×2=1 342.综上,当a =1,n =1 342或a =-1,n =1 342时,函数F (x )=f (x )+ag (x )在(0,n π)内恰有2 013个零点.21.解:①设直线l :ax +y =1上任意点M (x ,y )在矩阵A 对应的变换作用下的像是M ′(x ′,y ′). 由 1 220 1x x x y y y y '+⎛⎫⎛⎫⎛⎫⎛⎫==⎪ ⎪⎪ ⎪'⎝⎭⎝⎭⎝⎭⎝⎭, 得2,.x x y y y '=+⎧⎨'=⎩又点M ′(x ′,y ′)在l ′上,所以x ′+by ′=1,即x +(b +2)y =1,依题意得=1,2=1,a b ⎧⎨+⎩解得=1,1.a b ⎧⎨=-⎩ ②由0000x x A y y ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,得000002,,x x y y y =+⎧⎨=⎩解得y 0=0. 又点P (x 0,y 0)在直线l 上,所以x 0=1.故点P 的坐标为(1,0).(2)选修4—4:坐标系与参数方程本小题主要考查极坐标与直角坐标的互化、圆的参数方程等基础知识,考查运算求解能力,考查化归与转化思想.满分7分.解:①由点A π4⎫⎪⎭在直线ρπcos 4θ⎛⎫- ⎪⎝⎭=a上,可得a =所以直线l 的方程可化为ρcos θ+ρsin θ=2,从而直线l 的直角坐标方程为x +y -2=0.②由已知得圆C 的直角坐标方程为(x -1)2+y 2=1,所以圆C 的圆心为(1,0),半径r =1,因为圆心C 到直线l 的距离d=2<1, 所以直线l 与圆C 相交.(3)选修4—5:不等式选讲本小题主要考查绝对值不等式等基础知识,考查运算求解能力,考查化归与转化思想.满分7分.解:①因为32∈A ,且12∉A ,所以32<2a -,且122a -≥, 解得12<a ≤32.又因为a ∈N *,所以a =1. ②因为|x +1|+|x -2|≥|(x +1)-(x -2)|=3,当且仅当(x +1)(x -2)≤0,即-1≤x ≤2时取到等号.所以f (x )的最小值为3.。
2013年福建省高考(理科)数学试卷及答案(Word解析版)

2013年福建省高考数学试卷及解析(理工农医类)一.选择题1.已知复数z 的共轭复数12z i =+(i 为虚数单位)、则z 在复平面内对应的点位于( ) A . 第一象限 B .第二象限 C .第三象限 D .第四象限 【答案】D【解析】z 的共轭复数12z i =+、则12z i =-、对应点的坐标为(1,2)-、故答案为D . 2.已知集合{}1,A a =,{}1,2,3B =,则“3a =”是“A B ⊆”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A【解析】3,a A B =⇒⊆2A B a ⊆⇒=、或3.因此是充分不必要条件.3.双曲线2214x y -=的顶点到其渐近线的距离等于( ) A .25 B .45 CD【答案】C【解析】 2214x y -=的顶点坐标为(2,0)±、渐近线为2204x y -=、即20x y ±=.带入点到直线距离公式d ==. 4.某校从高一年级学生中随机抽取部分学生、将他们的模块测试成绩分为6组:[40,50), [50,60), [60,70), [70,80), [80,90), [90,100)加以统计、得到如图所示的频率分布直方图、已知高一年级共有学生600名、据此估计、该模块测试成绩不少于60分的学生人数为( ) A .588 B .480 C .450 D .120【答案】B【解析】由图知道60分以上人员的频率为后4项频率的和、由图知道(0.030.0250.0150.01)*P =+++=故分数在60以上的人数为600*0.8=480人.5.满足{},1,0,1,2a b ∈-、且关于x 的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为( )A .14B .13C .12D .10 【答案】B【解析】方程220ax x b ++=有实数解、分析讨论①当0a =时、很显然为垂直于x 轴的直线方程、有解.此时b 可以取4个值.故有4种有序数对②当0a ≠时、需要440ab ∆=-≥、即1ab ≤.显然有3个实数对不满足题意、分别为(1,2)、(2,1)、(2,2).(,)a b 共有4*4=16中实数对、故答案应为16-3=13.6.阅读如图所示的程序框图、若输入的10k =、则该算法的功能是( )A .计算数列{}12n -的前10项和 B .计算数列{}12n -的前9项和C .计算数列{}21n -的前10项和D .计算数列{}21n-的前9项和【答案】C【解析】第一循环:1,2S i ==、10i <第二条:3,3,10S i i ==<第三条:7,4,10S i i ==<…..第九循环:921,10,10S i i =-==.第十循环:1021,11,10S i i =-=>、输出S .根据选项、101(12)12S -=-、故为数列12n -的前10项和.故答案A .7.在四边形ABCD 中、(1,2)AC =、(4,2)BD =-、则四边形的面积为( )A B . C .5 D .10【答案】C【解析】由题意、容易得到AC BD ⊥.设对角线交于O 点、则四边形面积等于四个三角形面积之和 即S=11(****)(*)22AO DO AO BO CO DO CO BO AC BD +++=.容易算出AC BD ==、则算出S=5.故答案C8.设函数()f x 的定义域为R 、00(0)x x ≠是()f x 的极大值点、以下结论一定正确的是( )A .0,()()x R f x f x ∀∈≤B .0x -是()f x -的极小值点C .0x -是()f x -的极小值点D .0x -是()f x --的极小值点 【答案】D【解析】A .0,()()x R f x f x ∀∈≤、错误.00(0)x x ≠是()f x 的极大值点、并不是最大值点.B .0x -是()f x -的极小值点.错误.()f x -相当于()f x 关于y 轴的对称图像、故0x -应是()f x -的极大值点C .0x -是()f x -的极小值点.错误.()f x -相当于()f x 关于x 轴的对称图像、故0x 应是()f x -的极小值点.跟0x -没有关系.D .0x -是()f x --的极小值点.正确.()f x --相当于()f x 先关于y 轴的对象、再关于x 轴的对称图像.故D 正确9.已知等比数列{}n a 的公比为q 、记(1)1(1)2(1)...,n m n m n m n m b a a a -+-+-+=+++*(1)1(1)2(1)...(,),n m n m n m n m c a a a m n N -+-+-+=∙∙∙∈则以下结论一定正确的是( )A .数列{}n b 为等差数列、公差为mq B .数列{}n b 为等比数列、公比为2mq C .数列{}n c 为等比数列、公比为2m q D .数列{}n c 为等比数列、公比为mm q【答案】C【解析】等比数列{}n a 的公比为q,同理可得2222222,m m m mm m m a a a a a a ++++=∙=∙112...m c a a a =∙∙∙,212...,m m m m c a a a +++=∙∙∙321222...,m m m m c a a a +++=∙∙∙2213c c c ∴=∙∴数列{}n c 为等比数列、2221212211212............m m m m m m m m m ma a a a a a q c q q c a a a a a a +++∙∙∙∙∙∙∙====∙∙∙∙∙∙故选C10.设S 、T 、是R 的两个非空子集、如果存在一个从S 到T 的函数()y f x =满足:(){()|};()i T f x x S ii =∈对任意12,,x x S ∈当12x x <时、恒有12()()f x f x <、那么称这两个集合“保序同构”.以下集合对不是“保序同构”的是( )A .*,A NB N == B .{|13},{|8010}A x x B x x x =-≤≤==-<≤或C .{|01},A x x B R =<<=D .,A Z B Q == 【答案】D【解析】根据题意可知、令()1f x x =-、则A 选项正确;令55(13)()228(1)x x f x x ⎧+-<≤⎪=⎨⎪-=-⎩、则B 选项正确; 令1()tan ()2f x x π=-、则C 选项正确;故答案为D .二.填空题11.利用计算机产生0~1之间的均匀随机数a 、则时间“310a ->”发生的概率为________ 【答案】23【解析】13103a a ->∴>a 产生0~1之间的均匀随机数1(,1)3a ∴∈112313p -∴==12.已知某一多面体内接于一个简单组合体、如果该组合体的正视图.测试图.俯视图均如图所示、且图中的四边形是边长为2的正方形、则该球的表面积是_______________【答案】12π【解析】由图可知、图形为一个球中间是内接一个棱长为2的正方体、24122R S R ππ∴====球表13.如图ABC ∆中、已知点D 在BC 边上、AD ⊥AC、sin 33BAC AB AD ∠===则BD 的长为_______________【解析】sin sin()cos 23BAC BAD BAD π∠=∠+=∠=∴根据余弦定理可得222cos 2AB AD BD BAD AB AD+-∠=∙BD ==14.椭圆2222:1(0)x y a b a bΓ+=>>的左.右焦点分别为12,F F 、焦距为2c 、若直线)y x c =+与椭圆Γ的一个交点M 满足12212MF F MF F ∠=∠、则该椭圆的离心率等于__________1【解析】由直线方程)y x c +⇒直线与x 轴的夹角12233MF F ππ∠=或、且过点1-F (c,0)12212MF F MF F ∠=∠∴122123MF F MF F π∠=∠=即12F M F M ⊥12RT F MF ∴∆在中,12122,,F F c FM c F M ===∴由椭圆的第一定义可得21c a c a =∴== 15.当,1x R x ∈<时、有如下表达式:211.......1nx x x x+++++=- 两边同时积分得:1111122222200011.......1ndx xdx x dx x dx dx x+++++=-⎰⎰⎰⎰⎰从而得到如下等式:23111111111()()...()...ln 2.2223212n n +⨯+⨯+⨯++⨯+=+ 请根据以下材料所蕴含的数学思想方法、计算:122311111111()()...()_____2223212nn n n n n n C C C C +⨯+⨯+⨯++⨯=+ 【答案】113[()1]12n n +-+【解析】由01221......(1)n nn n n n n C C x C x C x x +++++=+两边同时积分得:111112222220001......(1).nn n n n n C dx C xdx C x dx C x dx x dx +++++=+⎰⎰⎰⎰⎰从而得到如下等式:122311*********()()...()[()1]222321212n n n n n n n n n C C C C ++⨯+⨯+⨯++⨯=-++ 三.解答题 16.(本小题满分13分)某联欢晚会举行抽奖活动、举办方设置了甲.乙两种抽奖方案、方案甲的中奖率为23、中将可以获得2分;方案乙的中奖率为25、中将可以得3分;未中奖则不得分.每人有且只有一次抽奖机会、每次抽奖中将与否互不影响、晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖、小红选择方案乙抽奖、记他们的累计得分为,X Y 、求3X ≤的概率;(2)若小明.小红两人都选择方案甲或方案乙进行抽奖、问:他们选择何种方案抽奖、累计的得分的数学期望较大?本小题主要考查古典概型.离散型随机变量的分布列.数学期望等基础知识、考查数据处理能力.运算求解能力.应用意识、考查必然和或然思想、满分13分. 解:(Ⅰ)由已知得:小明中奖的概率为23、小红中奖的概率为25、两人中奖与否互不影响、记“这2人的累计得分3≤X ”的事件为A 、则A 事件的对立事件为“5=X ”、224(5)3515==⨯=P X 、11()1(5)15∴=-==P A P X ∴这两人的累计得分3≤X 的概率为1115. (Ⅱ)设小明.小红都选择方案甲抽奖中奖的次数为1X 、都选择方案乙抽奖中奖的次数为2X 、则这两人选择方案甲抽奖累计得分的数学期望为1(2)E X 、选择方案乙抽奖累计得分的数学期望为2(3)E X由已知:12~(2,)3X B 、22~(2,)5X B124()233∴=⨯=E X 、224()255=⨯=E X118(2)2()3∴==E X E X 、2212(3)3()5==E X E X12(2)(3)>E X E X∴他们都在选择方案甲进行抽奖时、累计得分的数学期望最大.17.(本小题满分13分)已知函数()ln ()f x x a x a R =-∈ (1)当2a =时、求曲线()y f x =在点(1,(1))A f 处的切线方程; (2)求函数()f x 的极值.本小题主要考查函数.函数的导数.不等式等基础知识、考查运算求解能力、考查函数与方程思想.分类与整合思想、数形结合思想.化归与转化思想.满分13分. 解:函数()f x 的定义域为(0,)+∞、()1'=-a f x x. (Ⅰ)当2=a 时、()2ln =-f x x x 、2()1(0)'=->f x x x、 (1)1,(1)1'∴==-f f 、()∴=y f x 在点(1,(1))A f 处的切线方程为1(1)-=--y x 、即20+-=x y .(Ⅱ)由()1,0-'=-=>a x a f x x x x可知: ①当0≤a 时、()0'>f x 、函数()f x 为(0,)+∞上的增函数、函数()f x 无极值; ②当0>a 时、由()0'=f x 、解得=x a ;(0,)∈x a 时、()0'<f x 、(,)∈+∞x a 时、()0'>f x()∴f x 在=x a 处取得极小值、且极小值为()ln =-f a a a a 、无极大值.综上:当0≤a 时、函数()f x 无极值当0>a 时、函数()f x 在=x a 处取得极小值ln -a a a 、无极大值.18.(本小题满分13分)如图、在正方形OABC 中、O 为坐标原点、点A 的坐标为(10,0)、点C 的坐标为(0,10).分别将线段OA 和AB 十等分、分点分别记为129,,....A A A 和129,,....B B B 、连结i OB 、过i A 做x 轴的垂线与i OB 交于点*(,19)i P i N i ∈≤≤. (1)求证:点*(,19)iP i N i ∈≤≤都在同一条抛物线上、并求该抛物线E 的方程; (2)过点C 做直线l 与抛物线E 交于不同的两点,M N 、若OCM ∆与OCN ∆的面积比为4:1、求直线l 的方程.本小题主要考查抛物线的性质.直线与抛物线的位置关系等基础知识、考查运算求解能力.推理论证能力、考查化归与转化思想、数形结合思想.函数与方程思想.满分13分.解:(Ⅰ)依题意、过*(,19)∈≤≤i A i N i 且与x 轴垂直的直线方程为=x i(10,)i B i 、∴直线i OB 的方程为10=iy x 设i P 坐标为(,)x y 、由10=⎧⎪⎨=⎪⎩x iiy x 得:2110=y x 、即210=x y 、 ∴*(,19)∈≤≤i P i N i 都在同一条抛物线上、且抛物线E 方程为210=x y(Ⅱ)依题意:直线l 的斜率存在、设直线l 的方程为10=+y kx由21010=+⎧⎨=⎩y kx x y得2101000--=x kx 此时2100+4000∆=>k 、直线l 与抛物线E 恒有两个不同的交点,M N 设:1122(,)(,)M x y N x y 、则121210100+=⎧⎨⋅=-⎩x x kx x4∆∆=OCM OCN S S ∴124=x x又120⋅<x x 、∴124=-x x分别带入21010=+⎧⎨=⎩y kx x y、解得32=±k 直线l 的方程为3+102=±y x 、即32200-+=x y 或3+2200-=x y 19.(本小题满分13分)如图、在四棱柱1111ABCD A B C D -中、侧棱1AA ABCD ⊥底面、//AB DC 、11AA =、3AB k =、4AD k =、5BC k =、6DC k =(0)k >.(1)求证:11;CD ADD A ⊥平面(2)若直线1AA 与平面1AB C 所成角的正弦值为67、求k 的值; (3)现将与四棱柱1111ABCD A B C D -形状和大小完全相同的两个四棱柱拼接成一个新的棱柱、规定:若拼接成的新的四棱柱形状和大小完全相同、则视为同一种拼接方案.问:共有几种不同的方案?在这些拼接成的新四棱柱中、记其中最小的表面积为()f k 、写出()f k 的表达式(直接写出答案、不必要说明理由)本小题主要考查直线与直线.直线与平面的位置关系.柱体的概念及表面积等基础知识、考查空间想象能力.推理论证能力.运算求解能力、考查数形结合思想.分类与整合思想.化归与转化思想、满分13分. 解:(Ⅰ)取CD 中点E 、连接BE//AB DE Q 、3AB DE k == ∴四边形ABED 为平行四边形//BE AD ∴且4BE AD k ==在BCE V 中、4,3,5BE k CE k BC k ===Q222BE CE BC ∴+=90BEC ∴∠=︒,即BE CD ⊥、又//BE AD Q 、所以CD AD ⊥1AA ⊥Q 平面ABCD 、CD ⊂平面ABCD 1AA CD ∴⊥、又1AA AD A =I 、CD ∴⊥平面11ADD A(Ⅱ)以D 为原点、1,,DA DC DD u u u r u u u r u u u r的方向为,,x y z 轴的正方向建立如图所示的空间直角坐标系(4,0,0)A k 、(0,6,0)C k 、1(4,3,1)B k k 、1(4,0,1)A k所以(4,6,0)AC k k =-u u u r 、1(0,3,1)AB k =u u u r 、1(0,0,1)AA =u u u r设平面1AB C 的法向量(,,)n x y z =、则由10AC n AB n ⎧⋅=⎪⎨⋅=⎪⎩uuu r uuu r得46030kx ky ky z -+=⎧⎨+=⎩取2y =、得(3,2,6)n k =-设1AA 与平面1AB C 所成角为θ、则111,sin |cos ,|||||AA nAA n AA n θ=〈〉=⋅uuu ruuu r uuu r67==、解得1k =.故所求k 的值为1 (Ⅲ)共有4种不同的方案2257226,018()53636,18k k k f k k k k ⎧+<≤⎪⎪=⎨⎪+>⎪⎩20.(本小题满分14分)已知函数()sin()(0,0)f x x ωϕωϕπ=+><<的周期为π、图像的一个对称中心为(,0)4π、将函数()f x 图像上的所有点的横坐标伸长为原来的2倍(纵坐标不变)、在将所得图像向右平移2π个单位长度后得到函数()g x 的图像. (1)求函数()f x 与()g x 的解析式; (2)是否存在0(,)64x ππ∈、使得0000(),(),()()f x g x f x g x 按照某种顺序成等差数列?若存在、请确定0x 的个数; 若不存在、说明理由.(3)求实数a 与正整数n 、使得()()()F x f x ag x =+在(0,)n π内恰有2013个零点. 本小题主要考查同角三角函数的基本关系.三角恒等变换.三角函数的图像与性质.函数.函数的导数.函数的零点.不等式等基础知识、考查运算求解能力.抽象概括能力、考查函数与方程思想、数形结合思想、分类与整合思想.化归与转化思想、满分14分. 解:(Ⅰ)由函数()sin()f x x ωϕ=+的周期为π、0ω>、得2ω= 又曲线()y f x =的一个对称中心为(,0)4π、(0,)ϕπ∈故()sin(2)044f ππϕ=⨯+=、得2πϕ=、所以()cos 2f x x =将函数()f x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)后可得cos y x =的图象、再将cos y x =的图象向右平移2π个单位长度后得到函数()sin g x x =(Ⅱ)当(,)64x ππ∈时、1sin 2x <<、10cos 22x << 所以sin cos 2sin cos 2x x x x >>问题转化为方程2cos 2sin sin cos 2x x x x =+在(,)64ππ内是否有解 设()sin sin cos 22cos 2G x x x x x =+-、(,)64x ππ∈则()cos cos cos 22sin 2(2sin )G x x x x x x '=++- 因为(,)64x ππ∈、所以()0G x '>、()G x 在(,)64ππ内单调递增又1()064G π=-<、()04G π=> 且函数()G x 的图象连续不断、故可知函数()G x 在(,)64ππ内存在唯一零点0x 、 即存在唯一的0(,)64x ππ∈满足题意 (Ⅲ)依题意、()sin cos 2F x a x x =+、令()sin cos 20F x a x x =+=当sin 0x =、即()x k k Z π=∈时、cos 21x =、从而()x k k Z π=∈不是方程()0F x =的解、所以方程()0F x =等价于关于x 的方程cos 2sin xa x=-、()x k k Z π≠∈ 现研究(0,)(,2)x πππ∈U 时方程解的情况 令cos 2()sin xh x x=-、(0,)(,2)x πππ∈U 则问题转化为研究直线y a =与曲线()y h x =在(0,)(,2)x πππ∈U 的交点情况22cos (2sin 1)()sin x x h x x+'=、令()0h x '=、得2x π=或32x π= 当x 变化时、()h x 和()h x '变化情况如下表当0x >且x 趋近于0时、()h x 趋向于-∞ 当x π<且x 趋近于π时、()h x 趋向于-∞ 当x π>且x 趋近于π时、()h x 趋向于+∞ 当2x π<且x 趋近于2π时、()h x 趋向于+∞故当1a >时、直线y a =与曲线()y h x =在(0,)π内有无交点、在(,2)ππ内有2个交点; 当1a <-时、直线y a =与曲线()y h x =在(0,)π内有2个交点、在(,2)ππ内无交点; 当11a -<<时、直线y a =与曲线()y h x =在(0,)π内有2个交点、在(,2)ππ内有2个交点由函数()h x 的周期性、可知当1a ≠±时、直线y a =与曲线()y h x =在(0,)n π内总有偶数个交点、从而不存在正整数n 、使得直线y a =与曲线()y h x =在(0,)n π内恰有2013个交点;当1a =±时、直线y a =与曲线()y h x =在(0,)(,2)πππU 内有3个交点、由周期性、20133671=⨯、所以67121342n =⨯=综上、当1a =±、1342n =时、函数()()()F x f x ag x =+在(0,)n π内恰有2013个零点 21.(本题满分14分) (1)(本小题满分7分)矩阵与变换已知直线:1l ax y +=在矩阵1201A ⎡⎤=⎢⎥⎣⎦对应的变换作用下变为直线':1l x by +=. (1)求实数,a b 的值;(2)若点00(,)p x y 在直线l 上、且0000x x A y y ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭、求点p 的坐标.本小题主要考查矩阵.矩阵与变换等基础知识、考查运算求解能力.考查化归与转化思想.满分7分.解:解:(Ⅰ)设直线:1l ax y +=上任意一点(,)M x y 在矩阵A 对应的变换作用下的像是(,)M x y '''由12201x x x y y y y '+⎛⎫⎛⎫⎛⎫⎛⎫==⎪ ⎪⎪ ⎪'⎝⎭⎝⎭⎝⎭⎝⎭、得2x x y y y '=+⎧⎨'=⎩ 又点(,)M x y '''在l '上、所以1x by ''+=、即(2)1x b y ++=依题意121a b =⎧⎨+=⎩、解得11a b =⎧⎨=-⎩(Ⅱ)由0000x x A y y ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭、得000002x x y y y =+⎧⎨=⎩解得00y = 又点00(,)P x y 在直线l 上、所以01x = 故点P 的坐标为(1,0)(2)(本小题满分7分)坐标系与参数方程在平面直角坐标系中、以坐标原点为极点、x 轴的非负半轴为极轴建立坐标系.已知点A 的极坐标为)4π、直线l 的极坐标方程为cos()4a πρθ-=、且点A 在直线l 上.(1)求a 的值及直线l 的直角坐标方程;(2)圆c 的参数方程为1cos sin x y αα=+⎧⎨=⎩、(α为参数)、试判断直线l 与圆的位置关系.本小题主要考查极坐标与直角坐标的互化.圆的参数方程等基础知识.考查运算求解能力、考查化归与转化思想、满分7分.解:(Ⅰ)由点)4A π在直线cos()4a πρθ-=上、可得a =所以直线l 的方程可化为cos sin 2ρθρθ+= 从而直线l 的直角坐标方程为20x y +-=(Ⅱ)由已知得圆C 的直角坐标方程为22(1)1x y -+= 所以圆心为(1,0)、半径1r =以为圆心到直线的距离12d =<、所以直线与圆相交 (3)(本小题满分7分)不等式选讲 设不等式*2()x a a N -<∈的解集为A 、且32A ∈、12A ∉. (1)求a 的值;(2)求函数()2f x x a x =++-的最小值.本小题主要考查绝对猪不等式等基础知识、考查运算求解能力、考查化归与转化思想、满分7分. 解:(Ⅰ)因为32A ∈、且12A ∉、所以322a -<、且122a -≥解得1322a <≤、又因为*a N ∈、所以1a = (Ⅱ)因为|1||2||(1)(2)|3x x x x ++-≥+--=当且仅当(1)(2)0x x +-≤、即12x -≤≤时取得等号、所以()f x 的最小值为3。
2013年高考真题解析分类汇编(理科数学)含解析

2013高考试题解析分类汇编(理数)5:平面向量一、选择题1 .(2013年高考上海卷(理))在边长为1的正六边形ABCDEF中,记以A为起点,其余顶点为终点的向量分别为;以D为起点,其余顶点为终点的向量分别为.若分别为的最小值、最大值,其中,,则满足()A. B. C. D.D.【解答】作图知,只有,其余均有,故选D.2 .(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD版))已知点()A. B. C. D.A,所以,所以同方向的单位向量是,选A.3 .(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD版))设是边上一定点,满足,且对于边上任一点,恒有.则()A. B. C. D.D以AB所在的直线为x轴,以AB的中垂线为y轴建立直角坐标系,设AB=4,C(a,b),P(x,0)则BP0=1,A(﹣2,0),B(2,0),P0(1,0)所以=(1,0),=(2﹣x,0),=(a﹣x,b),=(a﹣1,b)因为恒有所以(2﹣x)(a﹣x)≥a﹣1恒成立整理可得x2﹣(a+2)x+a+1≥0恒成立所以△=(a+2)2﹣4(a+1)≤0即△=a2≤0所以a=0,即C在AB的垂直平分线上所以AC=BC故△ABC为等腰三角形故选D4 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD版))在四边形ABCD中,,,则四边形的面积为()A. B. C.5 D.10C由题意,容易得到.设对角线交于O点,则四边形面积等于四个三角形面积之和即S= .容易算出,则算出S=5.故答案C5 .(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD版))在平面直角坐标系中,是坐标原点,两定点满足则点集所表示的区域的面积是()A. B. C. D.D.在本题中,.建立直角坐标系,设A(2,0),所以选D6 .(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))在平面上,,,.若,则的取值范围是()A. B. C. D.D【命题立意】本题考查平面向量的应用以及平面向量的基本定理。
2013年福建省高考理科数学试卷及答案(word解析版)

2013年福建省高考数学试卷及解析(理工农医类)一.选择题1.已知复数z 的共轭复数12z i =+(i 为虚数单位),则z 在复平面内对应的点位于( ) A . 第一象限 B .第二象限 C .第三象限 D .第四象限 【答案】D【解析】z 的共轭复数12z i =+,则12z i =-,对应点的坐标为(1,2)-,故答案为D . 2.已知集合{}1,A a =,{}1,2,3B =,则“3a =”是“A B ⊆”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A【解析】3,a A B =⇒⊆2A B a ⊆⇒=,或3.因此是充分不必要条件.3.双曲线2214x y -=的顶点到其渐近线的距离等于( ) A .25 B .45【答案】C【解析】 2214x y -=0=.带入点到直线距离公式d ==4[40,50), [50,60), [60,70), [70,80), [80,90), [90,100)加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为( )A .588B .480C .450D .120【答案】B【解析】由图知道60分以上人员的频率为后4项频率的和,由图知道(0.030.0250.0150.01)*100.8P =+++= 故分数在60以上的人数为600*0.8=480人.5.满足{},1,0,1,2a b ∈-,且关于x 的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为( )A .14B .13C .12D .10【答案】B【解析】方程220ax x b ++=有实数解,分析讨论①当0a =时,很显然为垂直于x 轴的直线方程,有解.此时b 可以取4个值.故有4种有序数对 ②当0a ≠时,需要440ab ∆=-≥,即1ab ≤.显然有3个实数对不满足题意,分别为(1,2),(2,1),(2,2).(,)a b 共有4*4=16中实数对,故答案应为16-3=13.6.阅读如图所示的程序框图,若输入的10k =,则该算法的功能是( )A .计算数列{}12n -的前10项和 B .计算数列{}12n -的前9项和C .计算数列{}21n -的前10项和D .计算数列{}21n-的前9项和【答案】C【解析】第一循环:1,2S i ==,10i <第二条:3,3,10S i i ==<第三条:7,4,10S i i ==< …..第九循环:921,10,10S i i =-==.第十循环:1021,11,10S i i =-=>,输出S .根据选项,101(12)S -=,故为数列12n -的前10项和.故答案A .7.在四边形中,(1,2)AC =,(4,2)BD =-,则四边形的面积为( )A C .5 D .10【答案】C.设对角线交于O 点,则四边形面积等于四个三角形面积之和即S=11(****)(*)22AO DO AO BO CO DO CO BO AC BD +++=.容易算出AC BD ==,则算出S=5.故答案C8.设函数()f x 的定义域为R ,00(0)x x ≠是()f x 的极大值点,以下结论一定正确的是( )A .0,()()x R f x f x ∀∈≤B .0x -是()f x -的极小值点C .0x -是()f x -的极小值点D .0x -是()f x --的极小值点 【答案】D【解析】A .0,()()x R f x f x ∀∈≤,错误.00(0)x x ≠是()f x 的极大值点,并不是最大值点.B .0x -是()f x -的极小值点.错误.()f x -相当于()f x 关于y 轴的对称图像,故0x -应是()f x -的极大值点C .0x -是()f x -的极小值点.错误.()f x -相当于()f x 关于x 轴的对称图像,故0x 应是()f x -的极小值点.跟0x -没有关系.D .0x -是()f x --的极小值点.正确.()f x --相当于()f x 先关于y 轴的对象,再关于x 轴的对称图像.故D 正确9.已知等比数列{}n a 的公比为q ,记(1)1(1)2(1)...,n m n m n m n m b a a a -+-+-+=+++*(1)1(1)2(1)...(,),n m n m n m n m c a a a m n N -+-+-+=∙∙∙∈则以下结论一定正确的是( )A .数列{}n b 为等差数列,公差为mq B .数列{}n b 为等比数列,公比为2mq C .数列{}n c 为等比数列,公比为2m q D .数列{}n c 为等比数列,公比为mm q【答案】C【解析】等比数列{}n a 的公比为q,同理可得2222222,m m m mm m m a a a a a a ++++=∙=∙112...m c a a a =∙∙∙,212...,m m m m c a a a +++=∙∙∙321222...,m m m m c a a a +++=∙∙∙2213c c c ∴=∙∴数列{}n c 为等比数列,2221212211212............m m m m m m m m m ma a a a a a q c q q c a a a a a a +++∙∙∙∙∙∙∙====∙∙∙∙∙∙故选C 10.设S ,T ,是R 的两个非空子集,如果存在一个从S 到T 的函数()y f x =满足:(){()|};()i T f x x S ii =∈对任意12,,x x S ∈当12x x <时,恒有12()()f x f x <,那么称这两个集合“保序同构”.以下集合对不是“保序同构”的是( )A .*,A N B N == B .{|13},{|8010}A x x B x x x =-≤≤==-<≤或 C .{|01},A x x B R =<<= D .,A Z B Q == 【答案】D【解析】根据题意可知,令()1f x x =-,则A 选项正确;令55(13)()228(1)x x f x x ⎧+-<≤⎪=⎨⎪-=-⎩,则B 选项正确; 令1()tan ()2f x x π=-,则C 选项正确;故答案为D . 二.填空题11.利用计算机产生0~1之间的均匀随机数a ,则时间“310a ->”发生的概率为________ 【答案】23【解析】13103a a ->∴>a 产生0~1之间的均匀随机数1(,1)3a ∴∈112313p -∴==12.已知某一多面体内接于一个简单组合体,如果该组合体的正视图.测试图.俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是_______________【答案】12π【解析】由图可知,图形为一个球中间是内接一个棱长为2的正方体,212R R ππ∴==球13.如图ABC ∆中,已知点D 在3AD ==则BD 的长为_______________【解析】sin sin(BAC BAD ∠=∠∴3∴=14.椭圆2222:1(0)x y a b a bΓ+=>>的左.右焦点分别为12,F F ,焦距为2c ,若直线)y x c =+与椭圆Γ的一个交点M 满足12212MF F MF F ∠=∠,则该椭圆的离心率等于__________ 1【解析】由直线方程()y x c =+⇒直线与x 轴的夹角12233MF F ππ∠=或,且过点1-F (c,0)1222M F F M F F ∠=∠∴122123M F F M F F π∠=∠=即12F M F M ⊥12RT F MF ∴∆在中,12122,,F F c FM c F M ===∴由椭圆的第一定义可得21c a c a =∴==15.当,1x R x ∈<时,有如下表达式:211.......1nx x x x+++++=- 两边同时积分得:1111122222200011.......1ndx xdx x dx x dx dx x+++++=-⎰⎰⎰⎰⎰从而得到如下等式:23111111111()()...()...ln 2.2223212n n +⨯+⨯+⨯++⨯+=+ 请根据以下材料所蕴含的数学思想方法,计算:122311111111()()...()_____2223212nn n n n n n C C C C +⨯+⨯+⨯++⨯=+ 【答案】113[()1]12n n +-+ 【解析】由01221......(1)n nn n n n n C C x C x C x x +++++=+两边同时积分得:111112222220001......(1).nn nnnnC dx C xdx C x dx C x dx x dx +++++=+⎰⎰⎰⎰⎰从而得到如下等式:122311*********()()...()[()1]222321212n n n n n n nn n C C C C ++⨯+⨯+⨯++⨯=-++ 三.解答题16.(本小题满分13分)某联欢晚会举行抽奖活动,举办方设置了甲.乙两种抽奖方案,方案甲的中奖率为23,中将可以获得2分;方案乙的中奖率为25,中将可以得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中将与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为,X Y ,求3X ≤的概率;(2)若小明.小红两人都选择方案甲或方案乙进行抽奖,问:他们选择何种方案抽奖,累计的得分的数学期望较大?本小题主要考查古典概型.离散型随机变量的分布列.数学期望等基础知识,考查数据处理能力.运算求解能力.应用意识,考查必然和或然思想,满分13分. 解:(Ⅰ)由已知得:小明中奖的概率为23,小红中奖的概率为25,两人中奖与否互不影响,记“这2人的累计得分3≤X ”的事件为A ,则A 事件的对立事件为“5=X ”,224(5)3515==⨯=P X ,11()1(5)15∴=-==P A P X∴这两人的累计得分3≤X 的概率为1115.(Ⅱ)设小明.小红都选择方案甲抽奖中奖的次数为1X ,都选择方案乙抽奖中奖的次数为2X ,则这两人选择方案甲抽奖累计得分的数学期望为1(2)E X ,选择方案乙抽奖累计得分的数学期望为2(3)E X 由已知:12~(2,)3X B ,22~(2,)5X B124()233∴=⨯=E X ,224()255=⨯=E X 118(2)2()3∴==E X E X ,2212(3)3()5==E X E X12(2)(3)>E X E X∴他们都在选择方案甲进行抽奖时,累计得分的数学期望最大.17.(本小题满分13分)已知函数()ln ()f x x a x a R =-∈(1)当2a =时,求曲线()y f x =(2)求函数()f x 的极值.解:函数()f x 的定义域为(0,)+∞,(Ⅰ)当2=a 时,()2ln =-f x x (1)1,(1)1'∴==-f f ,()∴=y f x 在点(1,(1))A f 处的切线方程为1(1)-=--y x ,即20+-=x y .(Ⅱ)由()1,0-'=-=>a x a f x x x x可知: ①当0≤a 时,()0'>f x ,函数()f x 为(0,)+∞上的增函数,函数()f x 无极值; ②当0>a 时,由()0'=f x ,解得=x a ;(0,)∈x a 时,()0'<f x ,(,)∈+∞x a 时,()0'>f x()∴f x 在=x a 处取得极小值,且极小值为()ln =-f a a a a ,无极大值.综上:当0≤a 时,函数()f x 无极值当0>a 时,函数()f x 在=x a 处取得极小值ln -a a a ,无极大值.18.(本小题满分13分)如图,在正方形OABC 中,O 为坐标原点,点A 的坐标为(10,0),点C 的坐标为(0,10).分别将线段OA 和AB 十等分,分点分别记为129,,....A A A 和129,,....B B B ,连结i OB ,过i A 做x 轴的垂线与i OB 交于点*(,19)iP i N i ∈≤≤. (1)求证:点*(,19)i P i N i ∈≤≤都在同一条抛物线上,并求该抛物线E 的方程;(2)过点C 做直线l 与抛物线E 交于不同的两点,M N ,若OCM ∆与OCN ∆的面积比为4:1,求直线l 的方程.本小题主要考查抛物线的性质.直线与抛物线的位置关系等基础知识,考查运算求解能力.推理论证能力,考查化归与转化思想,数形结合思想.函数与方程思想.满分13分.解:(Ⅰ)依题意,过*(,19)∈≤≤i A i N i 且与x 轴垂直的直线方程为=x i(10,)i B i ,∴直线i OB 的方程为10=iy x 设i P 坐标为(,)x y ,由10=⎧⎪⎨=⎪⎩x iiy x 得:2110=y x ,即210=x y , ∴*(,19)∈≤≤i P i N i 都在同一条抛物线上,且抛物线E 方程为210=x y(Ⅱ)依题意:直线l 的斜率存在,设直线l 的方程为10=+y kx由21010=+⎧⎨=⎩y kx x y得2101000--=x kx 此时2100+4000∆=>k ,直线l 与抛物线E 恒有两个不同的交点,M N 设:1122(,)(,)M x y N x y ,则121210100+=⎧⎨⋅=-⎩x x kx x4∆∆=OCM OCN S S ∴124=x x又120⋅<x x ,∴124=-x x分别带入21010=+⎧⎨=⎩y kx x y,解得32=±k 直线l 的方程为3+102=±y x ,即32200-+=x y 或3+2200-=x y19.(本小题满分13分)如图,在四棱柱1111ABCD A B C D -中,侧棱1AA ABCD ⊥底面,//AB DC ,11AA =,3AB k =,4AD k =,5BC k =,6DC k =(0)k >.(1)求证:11;CD ADD A ⊥平面(2)若直线1AA 与平面1AB C 所成角的正弦值为67,求k 的值; (3)现将与四棱柱1111ABCD A B C D -形状和大小完全相同的两个四棱柱拼接成一个新的棱柱,规定:若拼接成的新的四棱柱形状和大小完全相同,则视为同一种拼接方案.问:共有几种不同的方案?在这些拼接成的新四棱柱中,记其中最小的表面积为()f k ,写出()f k 的表达式(直接写出答案,不必要说明理由)本小题主要考查直线与直线.直线与平面的位置关系.柱体的概念及表面积等基础知识,考查空间想象能力.推理论证能力.运算求解能力,考查数形结合思想.分类与整合思想.化归与转化思想,满分13分. 解:(Ⅰ)取CD 中点E ,连接BE//AB DE Q ,3AB DE k == ∴四边形ABED 为平行四边形//BE AD ∴且4BE AD k ==在BCE V 中,4,3,5BE k CE k BC k ===Q222BE CE BC ∴+=90BEC ∴∠=︒,即BE CD ⊥,又//BE AD Q ,所以CD AD ⊥1AA ⊥Q 平面ABCD ,CD ⊂平面ABCD 1AA CD ∴⊥,又1AA AD A =I ,CD ∴⊥平面11ADD A(Ⅱ)以D 为原点,1,,DA DC DD u u u r u u u r u u u r的方向为,,x y z 轴的正方向建立如图所示的空间直角坐标系(4,0,0)A k ,(0,6,0)C k ,1(4,3,1)B k k ,1(4,0,1)A k所以(4,6,0)AC k k =-u u u r ,1(0,3,1)AB k =u u u r ,1(0,0,1)AA =u u u r 设平面1AB C 的法向量(,,)n x y z =,则由10AC n AB n ⎧⋅=⎪⎨⋅=⎪⎩uuu r uuu r得46030kx ky ky z -+=⎧⎨+=⎩取2y =,得(3,2,6)n k =-设1AA 与平面1AB C 所成角为θ,则111,sin |cos ,|||||AA nAA n AA n θ=〈〉=⋅uuu ruuu r uuu r67==,解得1k =.故所求k 的值为1 (Ⅲ)共有4种不同的方案2257226,018()53636,18k k k f k k k k ⎧+<≤⎪⎪=⎨⎪+>⎪⎩20.(本小题满分14分)已知函数()sin()(0,0)f x x ωϕωϕπ=+><<的周期为π,图像的一个对称中心为(,0)4π,将函数()f x 图像上的所有点的横坐标伸长为原来的2倍(纵坐标不变),在将所得图像向右平移2π个单位长度后得到函数()g x 的图像. (1)求函数()f x 与()g x 的解析式; (2)是否存在0(,)64x ππ∈,使得0000(),(),()()f x g x f x g x 按照某种顺序成等差数列?若存在,请确定0x 的个数;若不存在,说明理由.(3)求实数a 与正整数n ,使得()()()F x f x ag x =+在(0,)n π内恰有2013个零点.本小题主要考查同角三角函数的基本关系.三角恒等变换.三角函数的图像与性质.函数.函数的导数.函数的零点.不等式等基础知识,考查运算求解能力.抽象概括能力,考查函数与方程思想,数形结合思想,分类与整合思想.化归与转化思想,满分14分.解:(Ⅰ)由函数()sin()f x x ωϕ=+的周期为π,0ω>,得2ω= 又曲线()y f x =的一个对称中心为(,0)4π,(0,)ϕπ∈故()sin(2)044f ππϕ=⨯+=,得2πϕ=,所以()cos 2f x x =将函数()f x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)后可得cos y x =的图象,再将cos y x =的图象向右平移2π个单位长度后得到函数()sin g x x = (Ⅱ)当(,)64x ππ∈时,1sin 2x <<,10cos 22x << 所以sin cos 2sin cos 2x x x x >>问题转化为方程2cos 2sin sin cos 2x x x x =+在(,)64ππ内是否有解设()sin sin cos 22cos 2G x x x x x =+-,(,)64x ππ∈ 则()cos cos cos 22sin 2(2sin )G x x x x x x '=++- 因为(,)64x ππ∈,所以()0G x '>,()G x 在(,)64ππ内单调递增又1()064G π=-<,()042G π=> 且函数()G x 的图象连续不断,故可知函数()G x 在(,)64ππ内存在唯一零点0x , 即存在唯一的0(,)64x ππ∈满足题意 (Ⅲ)依题意,()sin cos 2F x a x x =+,令()sin cos 20F x a x x =+=当sin 0x =,即()x k k Z π=∈时,cos 21x =,从而()x k k Z π=∈不是方程()0F x =的解,所以方程()0F x =等价于关于的方程cos 2x当0x >且x 趋近于0时,()h x 趋向于-∞ 当x π<且x 趋近于π时,()h x 趋向于-∞ 当x π>且x 趋近于π时,()h x 趋向于+∞ 当2x π<且x 趋近于2π时,()h x 趋向于+∞故当1a >时,直线y a =与曲线()y h x =在(0,)π内有无交点,在(,2)ππ内有2个交点; 当1a <-时,直线y a =与曲线()y h x =在(0,)π内有2个交点,在(,2)ππ内无交点;当11a -<<时,直线y a =与曲线()y h x =在(0,)π内有2个交点,在(,2)ππ内有2个交点由函数()h x 的周期性,可知当1a ≠±时,直线y a =与曲线()y h x =在(0,)n π内总有偶数个交点,从而不存在正整数n ,使得直线y a =与曲线()y h x =在(0,)n π内恰有2013个交点;当1a =±时,直线y a =与曲线()y h x =在(0,)(,2)πππU 内有3个交点,由周期性,20133671=⨯,所以67121342n =⨯=综上,当1a =±,1342n =时,函数()()()F x f x ag x =+在(0,)n π内恰有2013个零点21.(本题满分14分)(1)(本小题满分7分)矩阵与变换已知直线:1l ax y +=在矩阵1201A ⎡⎤=⎢⎥⎣⎦对应的变换作用下变为直线':1l x by +=. (1)求实数,a b 的值;(2)若点00(,)p x y 在直线l 上,且0000x x A y y ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,求点p 的坐标. 本小题主要考查矩阵.矩阵与变换等基础知识,考查运算求解能力.考查化归与转化思想.满分7分. 解:解:(Ⅰ)设直线:1l ax y +=上任意一点(,)M x y 在矩阵A 对应的变换作用下的像是(,)M x y '''由12201x x x y y y y '+⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪⎪ ⎪'⎝⎭⎝⎭⎝⎭⎝⎭,得2x x y y y '=+⎧⎨'=⎩ 又点(,)M x y '''在l '上,所以1x by ''+=,即(2)1x b y ++=依题意121a b =⎧⎨+=⎩,解得11a b =⎧⎨=-⎩ (Ⅱ)由0000x x A y y ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,得000002x x y y y =+⎧⎨=⎩解得00y = 又点00(,)P x y 在直线l 上,所以01x =故点P 的坐标为(1,0)(2)(本小题满分7分)坐标系与参数方程在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立坐标系.已知点A的极坐标为)4π,直线l 的极坐标方程为cos()4a πρθ-=,且点A 在直线l 上.(1)求a 的值及直线l 的直角坐标方程;(2)圆c 的参数方程为1cos sin x y αα=+⎧⎨=⎩,(α为参数),试判断直线l 与圆的位置关系. 本小题主要考查极坐标与直角坐标的互化.圆的参数方程等基础知识.考查运算求解能力,考查化归与转化思想,满分7分.解:(Ⅰ)由点)4A π在直线cos()4a πρθ-=上,可得a =所以直线l 的方程可化为cos sin 2ρθρθ+=从而直线l 的直角坐标方程为20x y +-=(Ⅱ)由已知得圆C 的直角坐标方程为22(1)1x y -+=所以圆心为(1,0),半径1r =以为圆心到直线的距离1d =<,所以直线与圆相交 (3)(本小题满分7分)不等式选讲 设不等式*2()x a a N -<∈的解集为A ,且32A ∈,12A ∉. (1)求a 的值;(2)求函数()2f x x a x =++-7分. 解:(Ⅰ)因为32A ∈,且12A ∉解得1322a <≤,又因为*a N ∈(Ⅱ)因为|1||2||(1)x x x ++-≥+当且仅当(1)(2)0x x +-≤,即1-≤。
2013年全国高考理科数学试题分类汇编11:概率与统计 Word版含答案

2013年全国高考理科数学试题分类汇编11:概率与统计一、选择题错误!未指定书签。
.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD版))某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[)[)60,80,820,100.若低于60分的人数是15人,则该班的学生人数20,40,40,60,[)[)是()A.45B.50C.55D.60【答案】B错误!未指定书签。
.(2013年高考陕西卷(理))某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人按1, 2, , 840随机编号, 则抽取的42人中, 编号落入区间[481, 720]的人数为()A.11 B.12 C.13 D.14【答案】B错误!未指定书签。
.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD版))某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是()A.这种抽样方法是一种分层抽样B.这种抽样方法是一种系统抽样C.这五名男生成绩的方差大于这五名女生成绩的方差D.该班级男生成绩的平均数小于该班女生成绩的平均数【答案】C错误!未指定书签。
.(2013年高考湖南卷(理))某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是()A.抽签法B.随机数法C.系统抽样法D.分层抽样法【答案】D错误!未指定书签。
.(2013年高考陕西卷(理))如图, 在矩形区域ABCD的A, C两点处各有一个通信基站, 假设其信号覆盖范围分别是扇形区域ADE和扇形区域CBF(该矩形区域内无其他信号来源, 基站工作正常). 若在该矩形区域内随机地选一地点, 则该地点无.信号的概率是( )A .14π-B .12π-C .22π-D .4π 【答案】A错误!未指定书签。
2013年福建省高考试题数学试卷答案及解析

2013年普通高等学校招生全国统一考试(福建卷)数学试题(理工农医类)第Ⅰ卷(选择题 共50分)一.选择题1.已知复数z 的共轭复数12z i =+(i 为虚数单位),则z 在复平面内对应的点位于( ) A . 第一象限 B .第二象限 C .第三象限 D .第四象限 【答案】D【解析】z 的共轭复数12z i =+,则12z i =-,对应点的坐标为(1,2)-,故答案为D . 2.已知集合{}1,A a =,{}1,2,3B =,则“3a =”是“A B ⊆”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A【解析】3,a A B =⇒⊆2A B a ⊆⇒=,或3.因此是充分不必要条件.3.双曲线2214x y -=的顶点到其渐近线的距离等于( ) A .25 B .45CD 【答案】C【解析】 2214x y -=的顶点坐标为(2,0)±,渐近线为2204x y -=,即20x y ±=.带入点到直线距离公式d ==. 4.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组:[40,50), [50,60), [60,70), [70,80), [80,90), [90,100)加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为( ) A .588 B .480 C .450D .120【答案】B【解析】由图知道60分以上人员的频率为后4项频率的和,由图知道(0.030.0250.0150.01)*100.8P =+++=故分数在60以上的人数为600*0.8=480人.5.满足{},1,0,1,2a b ∈-,且关于x 的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为( )A .14B .13C .12D .10 【答案】B【解析】方程220ax x b ++=有实数解,分析讨论①当0a =时,很显然为垂直于x 轴的直线方程,有解.此时b 可以取4个值.故有4种有序数对②当0a ≠时,需要440ab ∆=-≥,即1ab ≤.显然有3个实数对不满足题意,分别为(1,2),(2,1),(2,2).(,)a b 共有4*4=16中实数对,故答案应为16-3=13.6.阅读如图所示的程序框图,若输入的10k =,则该算法的功能是( )A .计算数列{}12n -的前10项和 B .计算数列{}12n -的前9项和 C .计算数列{}21n -的前10项和 D .计算数列{}21n -的前9项和【答案】C【解析】第一循环:1,2S i ==,10i <第二条:3,3,10S i i ==<第三条:7,4,10S i i ==< …..第九循环:921,10,10S i i =-==.第十循环:1021,11,10S i i =-=>,输出S .根据选项,101(12)12S -=-,故为数列12n -的前10项和.故答案A .7.在四边形ABCD 中,(1,2)AC = ,(4,2)BD =-,则四边形的面积为( )A B . C .5 D .10【答案】C【解析】由题意,容易得到AC BD ⊥.设对角线交于O 点,则四边形面积等于四个三角形面积之和 即S=11(****)(*)22AO DO AO BO CO DO CO BO AC BD +++=.容易算出AC BD ==,则算出S=5.故答案C8.设函数()f x 的定义域为R ,00(0)x x ≠是()f x 的极大值点,以下结论一定正确的是( )A .0,()()x R f x f x ∀∈≤B .0x -是()f x -的极小值点C .0x -是()f x -的极小值点D .0x -是()f x --的极小值点 【答案】D【解析】A .0,()()x R f x f x ∀∈≤,错误.00(0)x x ≠是()f x 的极大值点,并不是最大值点. B .0x -是()f x -的极小值点.错误.()f x -相当于()f x 关于y 轴的对称图像,故0x -应是()f x -的极大值点C .0x -是()f x -的极小值点.错误.()f x -相当于()f x 关于x 轴的对称图像,故0x 应是()f x -的极小值点.跟0x -没有关系.D .0x -是()f x --的极小值点.正确.()f x --相当于()f x 先关于y 轴的对象,再关于x 轴的对称图像.故D 正确9.已知等比数列{}n a 的公比为q ,记(1)1(1)2(1)...,n m n m n m n m b a a a -+-+-+=+++*(1)1(1)2(1)...(,),n m n m n m n m c a a a m n N -+-+-+=∙∙∙∈则以下结论一定正确的是( )A .数列{}n b 为等差数列,公差为mq B .数列{}n b 为等比数列,公比为2mq C .数列{}n c 为等比数列,公比为2m q D .数列{}n c 为等比数列,公比为mm q【答案】C【解析】等比数列{}n a 的公比为q,同理可得2222222,m m m mm m m a a a a a a ++++=∙=∙112...m c a a a =∙∙∙,212...,m m m m c a a a +++=∙∙∙321222...,m m m m c a a a +++=∙∙∙2213c c c ∴=∙∴数列{}n c 为等比数列,2221212211212............mm m m m m m m m ma a a a a a q c q q c a a a a a a +++∙∙∙∙∙∙∙====∙∙∙∙∙∙ 故选C 10.设S ,T ,是R 的两个非空子集,如果存在一个从S 到T 的函数()y f x =满足:(){()|};()i T f x x S ii =∈对任意12,,x x S ∈当12x x <时,恒有12()()f x f x <,那么称这两个集合“保序同构”.以下集合对不是“保序同构”的是( )A .*,A N B N == B .{|13},{|8010}A x x B x x x =-≤≤==-<≤或 C .{|01},A x x B R =<<= D .,A Z B Q == 【答案】D【解析】根据题意可知,令()1f x x =-,则A 选项正确;令55(13)()228(1)x x f x x ⎧+-<≤⎪=⎨⎪-=-⎩,则B 选项正确; 令1()tan ()2f x x π=-,则C 选项正确;故答案为D .二.填空题11.利用计算机产生0~1之间的均匀随机数a ,则时间“310a ->”发生的概率为________ 【答案】23【解析】13103a a ->∴> a 产生0~1之间的均匀随机数1(,1)3a ∴∈112313p -∴== 12.已知某一多面体内接于一个简单组合体,如果该组合体的正视图.测试图.俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是_______________【答案】12π【解析】由图可知,图形为一个球中间是内接一个棱长为2的正方体,24122R S R ππ∴====球表13.如图ABC ∆中,已知点D 在BC 边上,AD ⊥AC,sin 33BAC AB AD ∠===则BD 的长为_______________【解析】sin sin()cos 2BAC BAD BAD π∠=∠+=∠=∴根据余弦定理可得222cos 2AB AD BD BAD AB AD +-∠=∙BD ==14.椭圆2222:1(0)x y a b a b Γ+=>>的左.右焦点分别为12,F F ,焦距为2c ,若直线)y x c =+与椭圆Γ的一个交点M 满足12212MF F MF F ∠=∠,则该椭圆的离心率等于__________1【解析】由直线方程)y x c =+⇒直线与x 轴的夹角12233MF F ππ∠=或,且过点1-F (c,0)12212MF F MF F ∠=∠∴122123MF F MF F π∠=∠=即12F M F M ⊥12RT F MF ∴∆在中,12122,,F F c F M c F M ===∴由椭圆的第一定义可得21c a c a =∴==15.当,1x R x ∈<时,有如下表达式:211.......1n x x x x+++++=- 两边同时积分得:1111122222200011.......1ndx xdx x dx x dx dx x+++++=-⎰⎰⎰⎰⎰从而得到如下等式:23111111111()()...()...ln 2.2223212n n +⨯+⨯+⨯++⨯+=+ 请根据以下材料所蕴含的数学思想方法,计算:122311111111()()...()_____2223212nn n n n nn C C C C +⨯+⨯+⨯++⨯=+【答案】113[()1]12n n +-+ 【解析】由01221......(1)n nn n n n n C C x C x C x x +++++=+两边同时积分得:111112222220001......(1).nn n n n n C dx C xdx C x dx C x dx x dx +++++=+⎰⎰⎰⎰⎰从而得到如下等式:122311*********()()...()[()1]222321212n n n n n n nn n C C C C ++⨯+⨯+⨯++⨯=-++ 三.解答题16.(本小题满分13分)某联欢晚会举行抽奖活动,举办方设置了甲.乙两种抽奖方案,方案甲的中奖率为23,中将可以获得2分;方案乙的中奖率为25,中将可以得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中将与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为,X Y ,求3X ≤的概率;(2)若小明.小红两人都选择方案甲或方案乙进行抽奖,问:他们选择何种方案抽奖,累计的得分的数学期望较大?本小题主要考查古典概型.离散型随机变量的分布列.数学期望等基础知识,考查数据处理能力.运算求解能力.应用意识,考查必然和或然思想,满分13分. 解:(Ⅰ)由已知得:小明中奖的概率为23,小红中奖的概率为25,两人中奖与否互不影响,记“这2人的累计得分3≤X ”的事件为A ,则A 事件的对立事件为“5=X ”,224(5)3515==⨯= P X ,11()1(5)15∴=-==P A P X∴这两人的累计得分3≤X 的概率为1115. (Ⅱ)设小明.小红都选择方案甲抽奖中奖的次数为1X ,都选择方案乙抽奖中奖的次数为2X ,则这两人选择方案甲抽奖累计得分的数学期望为1(2)E X ,选择方案乙抽奖累计得分的数学期望为2(3)E X由已知:12~(2,)3X B ,22~(2,)5X B124()233∴=⨯=E X ,224()255=⨯=E X 118(2)2()3∴==E X E X ,2212(3)3()5==E X E X12(2)(3)> E X E X∴他们都在选择方案甲进行抽奖时,累计得分的数学期望最大.17.(本小题满分13分)已知函数()ln ()f x x a x a R =-∈ (1)当2a =时,求曲线()y f x =在点(1,(1))A f 处的切线方程; (2)求函数()f x 的极值.本小题主要考查函数.函数的导数.不等式等基础知识,考查运算求解能力,考查函数与方程思想.分类与整合思想,数形结合思想.化归与转化思想.满分13分. 解:函数()f x 的定义域为(0,)+∞,()1'=-a f x x. (Ⅰ)当2=a 时,()2ln =-f x x x ,2()1(0)'=->f x x x, (1)1,(1)1'∴==-f f ,()∴=y f x 在点(1,(1))A f 处的切线方程为1(1)-=--y x ,即20+-=x y .(Ⅱ)由()1,0-'=-=>a x a f x x x x可知: ①当0≤a 时,()0'>f x ,函数()f x 为(0,)+∞上的增函数,函数()f x 无极值; ②当0>a 时,由()0'=f x ,解得=x a ;(0,)∈ x a 时,()0'<f x ,(,)∈+∞x a 时,()0'>f x()∴f x 在=x a 处取得极小值,且极小值为()ln =-f a a a a ,无极大值.综上:当0≤a 时,函数()f x 无极值当0>a 时,函数()f x 在=x a 处取得极小值ln -a a a ,无极大值.18.(本小题满分13分)如图,在正方形OABC 中,O 为坐标原点,点A 的坐标为(10,0),点C 的坐标为(0,10).分别将线段OA 和AB 十等分,分点分别记为129,,....A A A 和129,,....B B B ,连结i OB ,过i A 做x 轴的垂线与i OB 交于点*(,19)i P i N i ∈≤≤.(1)求证:点*(,19)i P i N i ∈≤≤都在同一条抛物线上,并求该抛物线E 的方程;(2)过点C 做直线l 与抛物线E 交于不同的两点,M N ,若OCM ∆与OCN ∆的面积比为4:1,求直线l 的方程.本小题主要考查抛物线的性质.直线与抛物线的位置关系等基础知识,考查运算求解能力.推理论证能力,考查化归与转化思想,数形结合思想.函数与方程思想.满分13分. 解:(Ⅰ)依题意,过*(,19)∈≤≤i A i N i 且与x 轴垂直的直线方程为=x i(10,) i B i ,∴直线i OB 的方程为10=iy x 设i P 坐标为(,)x y ,由10=⎧⎪⎨=⎪⎩x ii y x 得:2110=y x ,即210=x y ,∴*(,19)∈≤≤i P i N i 都在同一条抛物线上,且抛物线E 方程为210=x y(Ⅱ)依题意:直线l 的斜率存在,设直线l 的方程为10=+y kx由21010=+⎧⎨=⎩y kx x y得2101000--=x kx 此时2100+4000∆=>k ,直线l 与抛物线E 恒有两个不同的交点,M N设:1122(,)(,)M x y N x y ,则121210100+=⎧⎨⋅=-⎩x x kx x4∆∆= OCM OCN S S ∴124=x x又120⋅< x x ,∴124=-x x分别带入21010=+⎧⎨=⎩y kx x y,解得32=±k直线l 的方程为3+102=±y x ,即32200-+=x y 或3+2200-=x y19.(本小题满分13分)如图,在四棱柱1111ABCD A B C D -中,侧棱1AA ABCD ⊥底面,//AB DC ,11AA =,3AB k =,4AD k =,5BC k =,6DC k =(0)k >.(1)求证:11;CD ADD A ⊥平面(2)若直线1AA 与平面1AB C 所成角的正弦值为67,求k 的值; (3)现将与四棱柱1111ABCD A B C D -形状和大小完全相同的两个四棱柱拼接成一个新的棱柱,规定:若拼接成的新的四棱柱形状和大小完全相同,则视为同一种拼接方案.问:共有几种不同的方案?在这些拼接成的新四棱柱中,记其中最小的表面积为()f k ,写出()f k 的表达式(直接写出答案,不必要说明理由)本小题主要考查直线与直线.直线与平面的位置关系.柱体的概念及表面积等基础知识,考查空间想象能力.推理论证能力.运算求解能力,考查数形结合思想.分类与整合思想.化归与转化思想,满分13分. 解:(Ⅰ)取CD 中点E ,连接BE//AB DE Q ,3AB DE k == ∴四边形ABED 为平行四边形 //BE AD ∴且4BE AD k ==在BCE V 中,4,3,5BE k CE k BC k ===Q222BE CE BC ∴+=90BEC ∴∠=︒,即BE CD ⊥,又//BE AD Q ,所以CD AD ⊥1AA ⊥Q 平面ABCD ,CD ⊂平面ABCD 1AA CD ∴⊥,又1AA AD A =I ,CD ∴⊥平面11ADD A(Ⅱ)以D 为原点,1,,DA DC DD uu u r uuu r uuur的方向为,,x y z 轴的正方向建立如图所示的空间直角坐标系(4,0,0)A k ,(0,6,0)C k ,1(4,3,1)B k k ,1(4,0,1)A k所以(4,6,0)AC k k =-uuu r ,1(0,3,1)AB k =uuu r ,1(0,0,1)AA =uuu r设平面1AB C 的法向量(,,)n x y z =,则由100AC n AB n ⎧⋅=⎪⎨⋅=⎪⎩uuu r uuu r得46030kx ky ky z -+=⎧⎨+=⎩取2y =,得(3,2,6)n k =-设1AA 与平面1AB C 所成角为θ,则111,sin |cos ,|||||AA nAA n AA n θ=〈〉=⋅uuu ruuur uuu r67==,解得1k =.故所求k 的值为1 (Ⅲ)共有4种不同的方案2257226,018()53636,18k k k f k k k k ⎧+<≤⎪⎪=⎨⎪+>⎪⎩20.(本小题满分14分)已知函数()sin()(0,0)f x x ωϕωϕπ=+><<的周期为π,图像的一个对称中心为(,0)4π,将函数()f x 图像上的所有点的横坐标伸长为原来的2倍(纵坐标不变),在将所得图像向右平移2π个单位长度后得到函数()g x 的图像. (1)求函数()f x 与()g x 的解析式; (2)是否存在0(,)64x ππ∈,使得0000(),(),()()f x g x f x g x 按照某种顺序成等差数列?若存在,请确定0x 的个数; 若不存在,说明理由.(3)求实数a 与正整数n ,使得()()()F x f x ag x =+在(0,)n π内恰有2013个零点. 本小题主要考查同角三角函数的基本关系.三角恒等变换.三角函数的图像与性质.函数.函数的导数.函数的零点.不等式等基础知识,考查运算求解能力.抽象概括能力,考查函数与方程思想,数形结合思想,分类与整合思想.化归与转化思想,满分14分. 解:(Ⅰ)由函数()sin()f x x ωϕ=+的周期为π,0ω>,得2ω= 又曲线()y f x =的一个对称中心为(,0)4π,(0,)ϕπ∈故()sin(2)044f ππϕ=⨯+=,得2πϕ=,所以()cos 2f x x =将函数()f x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)后可得cos y x =的图象,再将cos y x =的图象向右平移2π个单位长度后得到函数()sin g x x =(Ⅱ)当(,)64x ππ∈时,1sin 22x <<,10cos 22x << 所以sin cos2sin cos2x x x x >>问题转化为方程2cos2sin sin cos2x x x x =+在(,)64ππ内是否有解设()sin sin cos 22cos 2G x x x x x =+-,(,)64x ππ∈ 则()cos cos cos 22sin 2(2sin )G x x x x x x '=++- 因为(,)64x ππ∈,所以()0G x '>,()G x 在(,)64ππ内单调递增又1()064G π=-<,()042G π=> 且函数()G x 的图象连续不断,故可知函数()G x 在(,)64ππ内存在唯一零点0x ,即存在唯一的0(,)64x ππ∈满足题意 (Ⅲ)依题意,()sin cos 2F x a x x =+,令()sin cos 20F x a x x =+=当sin 0x =,即()x k k Z π=∈时,cos21x =,从而()x k k Z π=∈不是方程()0F x =的解,所以方程()0F x =等价于关于x 的方程cos 2sin xa x=-,()x k k Z π≠∈ 现研究(0,)(,2)x πππ∈U 时方程解的情况 令cos 2()sin xh x x=-,(0,)(,2)x πππ∈U 则问题转化为研究直线y a =与曲线()y h x =在(0,)(,2)x πππ∈U 的交点情况22cos (2sin 1)()sin x x h x x +'=,令()0h x '=,得2x π=或32x π=当x 变化时,()h x 和()h x '变化情况如下表当0x >且x 趋近于0时,()h x 趋向于-∞ 当x π<且x 趋近于π时,()h x 趋向于-∞ 当x π>且x 趋近于π时,()h x 趋向于+∞ 当2x π<且x 趋近于2π时,()h x 趋向于+∞故当1a >时,直线y a =与曲线()y h x =在(0,)π内有无交点,在(,2)ππ内有2个交点; 当1a <-时,直线y a =与曲线()y h x =在(0,)π内有2个交点,在(,2)ππ内无交点; 当11a -<<时,直线y a =与曲线()y h x =在(0,)π内有2个交点,在(,2)ππ内有2个交点 由函数()h x 的周期性,可知当1a ≠±时,直线y a =与曲线()y h x =在(0,)n π内总有偶数个交点,从而不存在正整数n ,使得直线y a =与曲线()y h x =在(0,)n π内恰有2013个交点;当1a =±时,直线y a =与曲线()y h x =在(0,)(,2)πππU 内有3个交点,由周期性,20133671=⨯,所以67121342n =⨯=综上,当1a =±,1342n =时,函数()()()F x f x ag x =+在(0,)n π内恰有2013个零点 21.(本题满分14分) (1)(本小题满分7分)矩阵与变换已知直线:1l ax y +=在矩阵1201A ⎡⎤=⎢⎥⎣⎦对应的变换作用下变为直线':1l x by +=. (1)求实数,a b 的值;(2)若点00(,)p x y 在直线l 上,且0000x x A y y ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭,求点p 的坐标. 本小题主要考查矩阵.矩阵与变换等基础知识,考查运算求解能力.考查化归与转化思想.满分7分.解:解:(Ⅰ)设直线:1l ax y +=上任意一点(,)M x y 在矩阵A 对应的变换作用下的像是(,)M x y '''由12201x x x y y y y '+⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪⎪ ⎪'⎝⎭⎝⎭⎝⎭⎝⎭,得2x x y y y '=+⎧⎨'=⎩又点(,)M x y '''在l '上,所以1x by ''+=,即(2)1x b y ++=依题意121a b =⎧⎨+=⎩,解得11a b =⎧⎨=-⎩(Ⅱ)由0000x x A y y ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,得000002x x y y y =+⎧⎨=⎩解得00y =又点00(,)P x y 在直线l 上,所以01x = 故点P 的坐标为(1,0)(2)(本小题满分7分)坐标系与参数方程在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立坐标系.已知点A 的极坐标为)4π,直线l 的极坐标方程为cos()4a πρθ-=,且点A 在直线l 上. (1)求a 的值及直线l 的直角坐标方程;(2)圆c 的参数方程为1cos sin x y αα=+⎧⎨=⎩,(α为参数),试判断直线l 与圆的位置关系.本小题主要考查极坐标与直角坐标的互化.圆的参数方程等基础知识.考查运算求解能力,考查化归与转化思想,满分7分.解:(Ⅰ)由点)4A π在直线cos()4aπρθ-=上,可得a =所以直线l 的方程可化为cos sin 2ρθρθ+= 从而直线l 的直角坐标方程为20x y +-=(Ⅱ)由已知得圆C 的直角坐标方程为22(1)1x y -+= 所以圆心为(1,0),半径1r =以为圆心到直线的距离12d =<,所以直线与圆相交 (3)(本小题满分7分)不等式选讲 设不等式*2()x a a N -<∈的解集为A ,且32A ∈,12A ∉. (1)求a 的值;(2)求函数()2f x x a x =++-的最小值.本小题主要考查绝对猪不等式等基础知识,考查运算求解能力,考查化归与转化思想,满分7分.解:(Ⅰ)因为32A ∈,且12A ∉,所以322a -<,且122a -≥解得1322a <≤,又因为*a N ∈,所以1a = (Ⅱ)因为|1||2||(1)(2)|3x x x x ++-≥+--=当且仅当(1)(2)0x x +-≤,即12x -≤≤时取得等号,所以()f x 的最小值为3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年福建省高考数学试卷及解析(理工农医类)一.选择题1.已知复数z 的共轭复数12z i =+(i 为虚数单位),则z 在复平面内对应的点位于( ) A . 第一象限 B .第二象限 C .第三象限 D .第四象限 【答案】D【解析】z 的共轭复数12z i =+,则12z i =-,对应点的坐标为(1,2)-,故答案为D . 2.已知集合{}1,A a =,{}1,2,3B =,则“3a =”是“A B ⊆”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A【解析】3,a A B =⇒⊆2A B a ⊆⇒=,或3.因此是充分不必要条件.3.双曲线2214x y -=的顶点到其渐近线的距离等于( ) A .25 B .45 CD【答案】C【解析】 2214x y -=的顶点坐标为(2,0)±,渐近线为2204x y -=,即20x y ±=.带入点到直线距离公式d ==. 4.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组:[40,50), [50,60), [60,70), [70,80), [80,90), [90,100)加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为( ) A .588 B .480 C .450 D .120【答案】B【解析】由图知道60分以上人员的频率为后4项频率的和,由图知道(0.030.0250.0150.01)*100.8P =+++=故分数在60以上的人数为600*0.8=480人.5.满足{},1,0,1,2a b ∈-,且关于x 的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为( )A .14B .13C .12D .10 【答案】B【解析】方程220ax x b ++=有实数解,分析讨论①当0a =时,很显然为垂直于x 轴的直线方程,有解.此时b 可以取4个值.故有4种有序数对②当0a ≠时,需要440ab ∆=-≥,即1ab ≤.显然有3个实数对不满足题意,分别为(1,2),(2,1),(2,2).(,)a b 共有4*4=16中实数对,故答案应为16-3=13.6.阅读如图所示的程序框图,若输入的10k =,则该算法的功能是( )A .计算数列{}12n -的前10项和 B .计算数列{}12n -的前9项和C .计算数列{}21n -的前10项和D .计算数列{}21n-的前9项和【答案】C【解析】第一循环:1,2S i ==,10i <第二条:3,3,10S i i ==<第三条:7,4,10S i i ==<…..第九循环:921,10,10S i i =-==.第十循环:1021,11,10S i i =-=>,输出S .根据选项,101(12)12S -=-,故为数列12n -的前10项和.故答案A .7.在四边形ABCD 中,(1,2)AC =,(4,2)BD =-,则四边形的面积为( )A B . C .5 D .10【答案】C【解析】由题意,容易得到AC BD ⊥.设对角线交于O 点,则四边形面积等于四个三角形面积之和 即S=11(****)(*)22AO DO AO BO CO DO CO BO AC BD +++=.容易算出AC BD ==,则算出S=5.故答案C8.设函数()f x 的定义域为R ,00(0)x x ≠是()f x 的极大值点,以下结论一定正确的是( )A .0,()()x R f x f x ∀∈≤B .0x -是()f x -的极小值点C .0x -是()f x -的极小值点D .0x -是()f x --的极小值点 【答案】D【解析】A .0,()()x R f x f x ∀∈≤,错误.00(0)x x ≠是()f x 的极大值点,并不是最大值点.B .0x -是()f x -的极小值点.错误.()f x -相当于()f x 关于y 轴的对称图像,故0x -应是()f x -的极大值点C .0x -是()f x -的极小值点.错误.()f x -相当于()f x 关于x 轴的对称图像,故0x 应是()f x -的极小值点.跟0x -没有关系.D .0x -是()f x --的极小值点.正确.()f x --相当于()f x 先关于y 轴的对象,再关于x 轴的对称图像.故D 正确9.已知等比数列{}n a 的公比为q ,记(1)1(1)2(1)...,n m n m n m n m b a a a -+-+-+=+++*(1)1(1)2(1)...(,),n m n m n m n m c a a a m n N -+-+-+=∙∙∙∈则以下结论一定正确的是( )A .数列{}n b 为等差数列,公差为mq B .数列{}n b 为等比数列,公比为2mq C .数列{}n c 为等比数列,公比为2m q D .数列{}n c 为等比数列,公比为mm q【答案】C【解析】等比数列{}n a 的公比为q,同理可得2222222,m m m mm m m a a a a a a ++++=∙=∙112...m c a a a =∙∙∙,212...,m m m m c a a a +++=∙∙∙321222...,m m m m c a a a +++=∙∙∙2213c c c ∴=∙∴数列{}n c 为等比数列,2221212211212............m m m m m m m m m ma a a a a a q c q q c a a a a a a +++∙∙∙∙∙∙∙====∙∙∙∙∙∙故选C10.设S ,T ,是R 的两个非空子集,如果存在一个从S 到T 的函数()y f x =满足:(){()|};()i T f x x S ii =∈对任意12,,x x S ∈当12x x <时,恒有12()()f x f x <,那么称这两个集合“保序同构”.以下集合对不是“保序同构”的是( )A .*,A NB N == B .{|13},{|8010}A x x B x x x =-≤≤==-<≤或C .{|01},A x x B R =<<=D .,A Z B Q == 【答案】D【解析】根据题意可知,令()1f x x =-,则A 选项正确;令55(13)()228(1)x x f x x ⎧+-<≤⎪=⎨⎪-=-⎩,则B 选项正确; 令1()tan ()2f x x π=-,则C 选项正确;故答案为D .二.填空题11.利用计算机产生0~1之间的均匀随机数a ,则时间“310a ->”发生的概率为________ 【答案】23【解析】13103a a ->∴>a 产生0~1之间的均匀随机数1(,1)3a ∴∈112313p -∴==12.已知某一多面体内接于一个简单组合体,如果该组合体的正视图.测试图.俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是_______________【答案】12π【解析】由图可知,图形为一个球中间是内接一个棱长为2的正方体,24122R S R ππ∴====球表13.如图ABC ∆中,已知点D 在BC 边上,AD ⊥AC,sin 33BAC AB AD ∠===则BD 的长为_______________【解析】sin sin()cos 23BAC BAD BAD π∠=∠+=∠=∴根据余弦定理可得222cos 2AB AD BD BAD AB AD+-∠=∙BD ==14.椭圆2222:1(0)x y a b a bΓ+=>>的左.右焦点分别为12,F F ,焦距为2c ,若直线)y x c =+与椭圆Γ的一个交点M 满足12212MF F MF F ∠=∠,则该椭圆的离心率等于__________1【解析】由直线方程)y x c +⇒直线与x 轴的夹角12233MF F ππ∠=或,且过点1-F (c,0)12212MF F MF F ∠=∠∴122123MF F MF F π∠=∠=即12F M F M ⊥12RT F MF ∴∆在中,12122,,F F c FM c F M ===∴由椭圆的第一定义可得21c a c a =∴== 15.当,1x R x ∈<时,有如下表达式:211.......1nx x x x+++++=- 两边同时积分得:1111122222200011.......1ndx xdx x dx x dx dx x+++++=-⎰⎰⎰⎰⎰从而得到如下等式:23111111111()()...()...ln 2.2223212n n +⨯+⨯+⨯++⨯+=+ 请根据以下材料所蕴含的数学思想方法,计算:122311111111()()...()_____2223212nn n n n n n C C C C +⨯+⨯+⨯++⨯=+ 【答案】113[()1]12n n +-+【解析】由01221......(1)n nn n n n n C C x C x C x x +++++=+两边同时积分得:111112222220001......(1).nn n n n n C dx C xdx C x dx C x dx x dx +++++=+⎰⎰⎰⎰⎰从而得到如下等式:122311*********()()...()[()1]222321212n n n n n n n n n C C C C ++⨯+⨯+⨯++⨯=-++ 三.解答题 16.(本小题满分13分)某联欢晚会举行抽奖活动,举办方设置了甲.乙两种抽奖方案,方案甲的中奖率为23,中将可以获得2分;方案乙的中奖率为25,中将可以得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中将与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为,X Y ,求3X ≤的概率;(2)若小明.小红两人都选择方案甲或方案乙进行抽奖,问:他们选择何种方案抽奖,累计的得分的数学期望较大?本小题主要考查古典概型.离散型随机变量的分布列.数学期望等基础知识,考查数据处理能力.运算求解能力.应用意识,考查必然和或然思想,满分13分. 解:(Ⅰ)由已知得:小明中奖的概率为23,小红中奖的概率为25,两人中奖与否互不影响,记“这2人的累计得分3≤X ”的事件为A ,则A 事件的对立事件为“5=X ”,224(5)3515==⨯=P X ,11()1(5)15∴=-==P A P X∴这两人的累计得分3≤X 的概率为1115. (Ⅱ)设小明.小红都选择方案甲抽奖中奖的次数为1X ,都选择方案乙抽奖中奖的次数为2X ,则这两人选择方案甲抽奖累计得分的数学期望为1(2)E X ,选择方案乙抽奖累计得分的数学期望为2(3)E X由已知:12~(2,)3X B ,22~(2,)5X B124()233∴=⨯=E X ,224()255=⨯=E X118(2)2()3∴==E X E X ,2212(3)3()5==E X E X12(2)(3)>E X E X∴他们都在选择方案甲进行抽奖时,累计得分的数学期望最大.17.(本小题满分13分)已知函数()ln ()f x x a x a R =-∈ (1)当2a =时,求曲线()y f x =在点(1,(1))A f 处的切线方程; (2)求函数()f x 的极值.本小题主要考查函数.函数的导数.不等式等基础知识,考查运算求解能力,考查函数与方程思想.分类与整合思想,数形结合思想.化归与转化思想.满分13分. 解:函数()f x 的定义域为(0,)+∞,()1'=-a f x x. (Ⅰ)当2=a 时,()2ln =-f x x x ,2()1(0)'=->f x x x, (1)1,(1)1'∴==-f f ,()∴=y f x 在点(1,(1))A f 处的切线方程为1(1)-=--y x ,即20+-=x y .(Ⅱ)由()1,0-'=-=>a x af x x x x可知: ①当0≤a 时,()0'>f x ,函数()f x 为(0,)+∞上的增函数,函数()f x 无极值; ②当0>a 时,由()0'=f x ,解得=x a ;(0,)∈x a 时,()0'<f x ,(,)∈+∞x a 时,()0'>f x()∴f x 在=x a 处取得极小值,且极小值为()ln =-f a a a a ,无极大值.综上:当0≤a 时,函数()f x 无极值当0>a 时,函数()f x 在=x a 处取得极小值ln -a a a ,无极大值.18.(本小题满分13分)如图,在正方形OABC 中,O 为坐标原点,点A 的坐标为(10,0),点C 的坐标为(0,10).分别将线段OA 和AB 十等分,分点分别记为129,,....A A A 和129,,....B B B ,连结i OB ,过i A 做x 轴的垂线与i OB 交于点*(,19)i P i N i ∈≤≤. (1)求证:点*(,19)iP i N i ∈≤≤都在同一条抛物线上,并求该抛物线E 的方程; (2)过点C 做直线l 与抛物线E 交于不同的两点,M N ,若OCM ∆与OCN ∆的面积比为4:1,求直线l 的方程.本小题主要考查抛物线的性质.直线与抛物线的位置关系等基础知识,考查运算求解能力.推理论证能力,考查化归与转化思想,数形结合思想.函数与方程思想.满分13分.解:(Ⅰ)依题意,过*(,19)∈≤≤i A i N i 且与x 轴垂直的直线方程为=x i(10,)i B i ,∴直线i OB 的方程为10=iy x 设i P 坐标为(,)x y ,由10=⎧⎪⎨=⎪⎩x iiy x 得:2110=y x ,即210=x y , ∴*(,19)∈≤≤i P i N i 都在同一条抛物线上,且抛物线E 方程为210=x y(Ⅱ)依题意:直线l 的斜率存在,设直线l 的方程为10=+y kx由21010=+⎧⎨=⎩y kx x y得2101000--=x kx 此时2100+4000∆=>k ,直线l 与抛物线E 恒有两个不同的交点,M N 设:1122(,)(,)M x y N x y ,则121210100+=⎧⎨⋅=-⎩x x kx x4∆∆=OCM OCN S S ∴124=x x又120⋅<x x ,∴124=-x x分别带入21010=+⎧⎨=⎩y kx x y,解得32=±k 直线l 的方程为3+102=±y x ,即32200-+=x y 或3+2200-=x y 19.(本小题满分13分)如图,在四棱柱1111ABCD A B C D -中,侧棱1AA ABCD ⊥底面,//AB DC ,11AA =,3AB k =,4AD k =,5BC k =,6DC k =(0)k >.(1)求证:11;CD ADD A ⊥平面(2)若直线1AA 与平面1AB C 所成角的正弦值为67,求k 的值; (3)现将与四棱柱1111ABCD A B C D -形状和大小完全相同的两个四棱柱拼接成一个新的棱柱,规定:若拼接成的新的四棱柱形状和大小完全相同,则视为同一种拼接方案.问:共有几种不同的方案?在这些拼接成的新四棱柱中,记其中最小的表面积为()f k ,写出()f k 的表达式(直接写出答案,不必要说明理由)本小题主要考查直线与直线.直线与平面的位置关系.柱体的概念及表面积等基础知识,考查空间想象能力.推理论证能力.运算求解能力,考查数形结合思想.分类与整合思想.化归与转化思想,满分13分. 解:(Ⅰ)取CD 中点E ,连接BE//AB DE Q ,3AB DE k == ∴四边形ABED 为平行四边形//BE AD ∴且4BE AD k ==在BCE V 中,4,3,5BE k CE k BC k ===Q222BE CE BC ∴+=90BEC ∴∠=︒,即BE CD ⊥,又//BE AD Q ,所以CD AD ⊥1AA ⊥Q 平面ABCD ,CD ⊂平面ABCD 1AA CD ∴⊥,又1AA AD A =I ,CD ∴⊥平面11ADD A(Ⅱ)以D 为原点,1,,DA DC DD u u u r u u u r u u u r的方向为,,x y z 轴的正方向建立如图所示的空间直角坐标系(4,0,0)A k ,(0,6,0)C k ,1(4,3,1)B k k ,1(4,0,1)A k所以(4,6,0)AC k k =-u u u r ,1(0,3,1)AB k =u u u r ,1(0,0,1)AA =u u u r设平面1AB C 的法向量(,,)n x y z =,则由10AC n AB n ⎧⋅=⎪⎨⋅=⎪⎩uuu r uuu r得46030kx ky ky z -+=⎧⎨+=⎩取2y =,得(3,2,6)n k =-设1AA 与平面1AB C 所成角为θ,则111,sin |cos ,|||||AA nAA n AA n θ=〈〉=⋅uuu ruuu r uuu r67==,解得1k =.故所求k 的值为1 (Ⅲ)共有4种不同的方案2257226,018()53636,18k k k f k k k k ⎧+<≤⎪⎪=⎨⎪+>⎪⎩20.(本小题满分14分)已知函数()sin()(0,0)f x x ωϕωϕπ=+><<的周期为π,图像的一个对称中心为(,0)4π,将函数()f x 图像上的所有点的横坐标伸长为原来的2倍(纵坐标不变),在将所得图像向右平移2π个单位长度后得到函数()g x 的图像. (1)求函数()f x 与()g x 的解析式; (2)是否存在0(,)64x ππ∈,使得0000(),(),()()f x g x f x g x 按照某种顺序成等差数列?若存在,请确定0x 的个数; 若不存在,说明理由.(3)求实数a 与正整数n ,使得()()()F x f x ag x =+在(0,)n π内恰有2013个零点. 本小题主要考查同角三角函数的基本关系.三角恒等变换.三角函数的图像与性质.函数.函数的导数.函数的零点.不等式等基础知识,考查运算求解能力.抽象概括能力,考查函数与方程思想,数形结合思想,分类与整合思想.化归与转化思想,满分14分. 解:(Ⅰ)由函数()sin()f x x ωϕ=+的周期为π,0ω>,得2ω= 又曲线()y f x =的一个对称中心为(,0)4π,(0,)ϕπ∈故()sin(2)044f ππϕ=⨯+=,得2πϕ=,所以()cos 2f x x =将函数()f x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)后可得cos y x =的图象,再将cos y x =的图象向右平移2π个单位长度后得到函数()sin g x x =(Ⅱ)当(,)64x ππ∈时,1sin 2x <<,10cos 22x << 所以sin cos 2sin cos 2x x x x >>问题转化为方程2cos 2sin sin cos 2x x x x =+在(,)64ππ内是否有解 设()sin sin cos 22cos 2G x x x x x =+-,(,)64x ππ∈则()cos cos cos 22sin 2(2sin )G x x x x x x '=++- 因为(,)64x ππ∈,所以()0G x '>,()G x 在(,)64ππ内单调递增又1()064G π=-<,()04G π=> 且函数()G x 的图象连续不断,故可知函数()G x 在(,)64ππ内存在唯一零点0x , 即存在唯一的0(,)64x ππ∈满足题意 (Ⅲ)依题意,()sin cos 2F x a x x =+,令()sin cos 20F x a x x =+=当sin 0x =,即()x k k Z π=∈时,cos 21x =,从而()x k k Z π=∈不是方程()0F x =的解,所以方程()0F x =等价于关于x 的方程cos 2sin xa x=-,()x k k Z π≠∈ 现研究(0,)(,2)x πππ∈U 时方程解的情况 令cos 2()sin xh x x=-,(0,)(,2)x πππ∈U 则问题转化为研究直线y a =与曲线()y h x =在(0,)(,2)x πππ∈U 的交点情况22cos (2sin 1)()sin x x h x x+'=,令()0h x '=,得2x π=或32x π= 当x 变化时,()h x 和()h x '变化情况如下表当0x >且x 趋近于0时,()h x 趋向于-∞ 当x π<且x 趋近于π时,()h x 趋向于-∞ 当x π>且x 趋近于π时,()h x 趋向于+∞ 当2x π<且x 趋近于2π时,()h x 趋向于+∞故当1a >时,直线y a =与曲线()y h x =在(0,)π内有无交点,在(,2)ππ内有2个交点; 当1a <-时,直线y a =与曲线()y h x =在(0,)π内有2个交点,在(,2)ππ内无交点; 当11a -<<时,直线y a =与曲线()y h x =在(0,)π内有2个交点,在(,2)ππ内有2个交点由函数()h x 的周期性,可知当1a ≠±时,直线y a =与曲线()y h x =在(0,)n π内总有偶数个交点,从而不存在正整数n ,使得直线y a =与曲线()y h x =在(0,)n π内恰有2013个交点;当1a =±时,直线y a =与曲线()y h x =在(0,)(,2)πππU 内有3个交点,由周期性,20133671=⨯,所以67121342n =⨯=综上,当1a =±,1342n =时,函数()()()F x f x ag x =+在(0,)n π内恰有2013个零点 21.(本题满分14分) (1)(本小题满分7分)矩阵与变换已知直线:1l ax y +=在矩阵1201A ⎡⎤=⎢⎥⎣⎦对应的变换作用下变为直线':1l x by +=. (1)求实数,a b 的值;(2)若点00(,)p x y 在直线l 上,且0000x x A y y ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,求点p 的坐标.本小题主要考查矩阵.矩阵与变换等基础知识,考查运算求解能力.考查化归与转化思想.满分7分.解:解:(Ⅰ)设直线:1l ax y +=上任意一点(,)M x y 在矩阵A 对应的变换作用下的像是(,)M x y '''由12201x x x y y y y '+⎛⎫⎛⎫⎛⎫⎛⎫==⎪ ⎪⎪ ⎪'⎝⎭⎝⎭⎝⎭⎝⎭,得2x x y y y '=+⎧⎨'=⎩ 又点(,)M x y '''在l '上,所以1x by ''+=,即(2)1x b y ++=依题意121a b =⎧⎨+=⎩,解得11a b =⎧⎨=-⎩(Ⅱ)由0000x x A y y ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭,得000002x x y y y =+⎧⎨=⎩解得00y = 又点00(,)P x y 在直线l 上,所以01x = 故点P 的坐标为(1,0)(2)(本小题满分7分)坐标系与参数方程在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立坐标系.已知点A 的极坐标为)4π,直线l 的极坐标方程为cos()4a πρθ-=,且点A 在直线l 上. (1)求a 的值及直线l 的直角坐标方程;(2)圆c 的参数方程为1cos sin x y αα=+⎧⎨=⎩,(α为参数),试判断直线l 与圆的位置关系.本小题主要考查极坐标与直角坐标的互化.圆的参数方程等基础知识.考查运算求解能力,考查化归与转化思想,满分7分.解:(Ⅰ)由点)4A π在直线cos()4a πρθ-=上,可得a =所以直线l 的方程可化为cos sin 2ρθρθ+= 从而直线l 的直角坐标方程为20x y +-=(Ⅱ)由已知得圆C 的直角坐标方程为22(1)1x y -+= 所以圆心为(1,0),半径1r =以为圆心到直线的距离12d =<,所以直线与圆相交 (3)(本小题满分7分)不等式选讲 设不等式*2()x a a N -<∈的解集为A ,且32A ∈,12A ∉. (1)求a 的值;(2)求函数()2f x x a x =++-的最小值.本小题主要考查绝对猪不等式等基础知识,考查运算求解能力,考查化归与转化思想,满分7分. 解:(Ⅰ)因为32A ∈,且12A ∉,所以322a -<,且122a -≥解得1322a <≤,又因为*a N ∈,所以1a = (Ⅱ)因为|1||2||(1)(2)|3x x x x ++-≥+--=当且仅当(1)(2)0x x +-≤,即12x -≤≤时取得等号,所以()f x 的最小值为3。