集合基础知识和单元测试卷(含答案)

合集下载

集合基础知识和单元测试卷(含答案)

集合基础知识和单元测试卷(含答案)

集合基础知识和单元测试卷(含答案)集合单元测试卷重点:集合的概念及其表示法;理解集合间的包含与相等的含义;交集与并集,全集与补集的理解。

难点:选择恰当的方法表示简单的集合;理解空集的含义;理解交集与并集的概念及其区别联系。

基础知识:一、理解集合中的有关概念1)集合中元素的特征:确定性,互异性,无序性。

集合元素的互异性:例如下列经典例题中的例2.2)常用数集的符号表示:自然数集N;正整数集Z+、N+;整数集Z;有理数集Q;实数集R。

3)集合的表示法:列举法,描述法,区间法,集合构造法。

注意:区分集合中元素的形式及意义,例如:2A={x|y=x^2+2x+1};B={y|y=x^2+2x+1};C={(x,y)|y=x+2x+1};D={x|x=x^2+2x+1};E={(x,y)|y=x^2+2x+1,x∈Z,y∈Z};4)空集是指不含任何元素的集合。

({}、∅和{∅}的区别;与三者间的关系)空集是任何集合的子集,是任何非空集合的真子集。

注意:条件为A⊆B,在讨论的时候不要遗忘了A=∅的情况。

二、集合间的关系及其运算1)元素与集合之间关系用符号“∈”来表示。

集合与集合之间关系用符号“⊆”来表示。

A;A ⊆ A;并集A∪B={x|x∈A或x∈B};交集A∩B={x|x∈A且x∈B};补集CA={x|x∉A};2)对于任意集合A,B,则:①A∩B=B∩A;A∪B=B∪A;A∩B=A∪B②A∩CA=∅;A∪CA=U③(C∪A)∩(C∪B)=C∪(A∩B);(C∩A)∪(C∩B)=C∩(A∪B)④A∩B=A⇔A⊆B;A∪B=A⇔B⊆A三、集合中元素的个数的计算:1)若集合A中有n个元素,则集合A的所有不同的子集个数为2^n,所有真子集的个数是2^n-1,所有非空真子集的个数是2^n-1.2) A∪B中元素的个数为A和B中元素个数之和减去A∩B中元素的个数。

已知集合A为自然数集合中所有满足6-x是8的正约数的数,求A的所有子集。

集合》单元测试卷

集合》单元测试卷

集合》单元测试卷集合》单元测试卷一、选择题1.已知集合 $A=\{x|x^2-4x+3=0\}$,则 $A=$()A。

$\{1,3\}$B。

$\{1,-3\}$C。

$\{2,3\}$D。

$\{2,-1\}$2.已知集合 $A=\{x|x>-1\}$,$B=\{x|x<2\}$,则 $A\cap B=$()A。

$(–1,+\infty)$B。

$(-\infty,2)$C。

$(-1,2)$XXX3.下列关系中,正确的是A。

$(-\infty,1)\subseteq[0,1]$B。

$\{1,2\}\subseteq\{1,2,3\}$C。

$\{x|x>0\}\subseteq\{x|x\geq 0\}$D。

$\{x|x\in\mathbb{Z}\}\subseteq\{x|x\in\mathbb{R}\}$ 4.已知集合 $A=\{x|x^2-2x-3=0\}$,则A。

$A=\{3,-1\}$B。

$A=\{3,1\}$C。

$A=\{2,-1\}$D。

$A=\{2,1\}$5.不等式 $x^2-4x+3>0$ 的解集用区间可表示为()A。

$(–\infty,1)\cup(3,+\infty)$B。

$(-\infty,1)\cup[3,+\infty)$C。

$(–\infty,1)\cup(3,+\infty]$D。

$(-\infty,1)\cup[3,+\infty]$6.已知集合 $A=\{x|x>0\}$,$B=\{x|-1<x<1\}$,则 $A\cup B=$()A。

$(-1,1)$B。

$(-1,+\infty)$C。

$(0,1)$D。

$(0,+\infty)$7.若集合 $M=\{x|x\leq 6\}$,$a=2$,则下面结论中正确的是()A。

$a\in M$XXXXXX^c$D。

$a\notin M^c$8.已知集合 $A=\{x|x^2-4x+3=0\}$,则 $A=$()A。

第一章 集合与常用逻辑用语 单元测试卷(Word版含答案)

第一章  集合与常用逻辑用语 单元测试卷(Word版含答案)

《第一章集合与常用逻辑用语》单元测试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合U={1,2,3,4,5,6},A={1,3,4},B={1,3,5},则(∁U A)∪B=()A.{5}B.{1,3}C.{1,2,3,5,6}D.⌀2.命题“∀x∈Q,3x2+2x+1∈Q”的否定为()A.∀x∉Q,3x2+2x+1∉QB.∀x∈Q,3x2+2x+1∉QC.∃x∉Q,3x2+2x+1∉QD.∃x∈Q,3x2+2x+1∉Q3.已知集合A={0,1,2},B={1,m}.若B⊆A,则m=()A.0B.0或1C.0或2D.1或24.设全集U=R,M={x|x<-3或x>3},N={x|2≤x≤4},如图,阴影部分所表示的集合为()A.{x|-3≤x<2}B.{x|-3≤x≤4}C.{x|x≤2或x>3}D.{x|-3≤x≤3}5. “|x|≠|y|”是“x≠y”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.设集合A={x|2a<x<a+2},B={x|x<-3或x>5},若A∩B=⌀,则实数a的取值范围为()A.{a|a≥-32} B.{a|a>-32}C.{a|a≤-32} D.{a|a<-32}7.若p:x2+x-6=0是q:ax-1=0(a≠0)的必要不充分条件,则实数a的值为()A.-12B.-12或13C.-13D.12或-138.已知集合A中有10个元素,B中有6个元素,全集U有18个元素,A∩B≠⌀.设集合(∁U A)∩(∁U B)中有x个元素,则x的取值范围是()A.{x|3≤x≤8,且x∈N}B.{x|2≤x≤8,且x∈N}C.{x|8≤x≤12,且x∈N}D.{x|10≤x≤15,且x∈N}二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知命题p:∃x∈R,x2+2x+2-a=0为真命题,则实数a的值可以是()A.1B.0C.3D.-310.图中阴影部分表示的集合是()A.N∩(∁U M)B.M∩(∁U N)C.[∁U(M∩N)]∩ND.(∁U M)∩(∁U N)11.设全集为U,下列选项中,是“B⊆A”的充要条件的是()A.A∪B=AB.A∩B=AC.(∁U A)⊆(∁U B)D.A∪(∁U B)=U12.整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},其中k∈{0,1,2,3,4}.以下判断正确的是()A.2 022∈[2]B.-2∈[2]C.Z=[0]∪[1]∪[2]∪[3]∪[4]D.若a-b∈[0],则整数a,b属于同一“类”三、填空题:本题共4小题,每小题5分,共20分.13.设集合M={2,3,a2+1},N={a2+a,a+2,-1},且M∩N={2},则实数a的值为.14.写出一个使得命题“∀x∈R,ax2-2x+3>0恒成立”是假命题的实数a的值:.15.若p:m-1≤x≤2m+1,q:2≤x≤3,q是p的充分不必要条件,则实数m的取值范围是.16.已知有限集合A={a1,a2,a3,…,a n},定义集合B={a i+a j|1≤i<j≤n,i,j∈N*}中的元素的个数为集合A的“容量”,记为L(A).若集合A={x∈N*|1≤x≤3},则L(A)=;若集合A={x∈N*|1≤x≤n},且L(A)=4 041,则正整数n的值是.(本题第一空2分,第二空3分.)四、解答题:本题共2小题,共20分.解答应写出文字说明、证明过程或演算步骤.≤x≤2}.17.(10分)已知集合A={x|2-b≤ax≤2b-2}(a>0),B={x|-12(1)当a=1,b=3时,求A∪B和∁R B.(2)是否存在实数a,b,使得A=B?若存在,求出a,b的值;若不存在,请说明理由.18.(10分)在①A∪B=B,②“x∈A”是“x∈B”的充分条件,③“x∈∁R A”是“x∈∁R B”的必要条件这三个条件中任选一个,补充到本题第(2)问的横线处,并求解下列问题.问题:已知集合A={x|a≤x≤a+2},B={x|-1<x<3}.(1)当a=2时,求A∩B;(2)若,求实数a的取值范围.注:如果选择多个条件分别解答,按第一个解答计分.参考答案一、单项选择题1.C2.D3.C4.A5.A6.A7.D8.A二、多项选择题9.AC 10.AC 11.ACD 12.ACD三、填空题13.-2或014.-1(答案不唯一)15.{m|1≤m≤3}16.3 2 022四、解答题17. 解:(1)当a =1,b =3时,A ={x |-1≤x ≤4}.又B ={x |-12≤x ≤2},所以 A ∪B ={x |-1≤x ≤4},(2分) ∁R B ={x |x <-12或x >2}.(4分)(2)假设存在实数a ,b 满足条件.因为a >0,所以由2-b ≤ax ≤2b -2,得2−b a ≤x ≤2b−2a .(6分) 由A =B ,得{2−b a =−12,2b−2a =2, 解得{a =2,b =3.(9分) 故存在a =2,b =3,使得A =B.(10分)18. 解:(1)当a =2时,A ={x |2≤x ≤4}, 所以A ∩B ={x |2≤x <3}.(4分)(2)方案一 选条件①.因为A ∪B =B ,所以A ⊆B ,(7分)所以{a >−1,a +2<3,解得-1<a <1.(10分) 方案二 选条件②.因为“x ∈A ”是“x ∈B ”的充分条件, 所以A ⊆B ,(7分)所以{a >−1,a +2<3,解得-1<a <1.(10分) 方案三 选条件③.因为“x ∈∁R A ”是“x ∈∁R B ”的必要条件,所以A ⊆B ,(7分)所以{a >−1,a +2<3,解得-1<a <1.(10分)。

集合单元测试题含答案

集合单元测试题含答案

集合单元测试题含答案 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】高一数学集合测试题 总分150分第一卷一、选择题(共10题,每题5分)1.下列集合的表示法正确的是( )A .实数集可表示为R ;B .第二、四象限内的点集可表示为{}(,)0,,x y xy x R y R ≤∈∈;C .集合{}1,2,2,5,7;D .不等式14x -<的解集为{}5x <2.对于{,(3)0,(4)0,x x Q N ≤∈∉∅其中正确的个数是( )A . 4 B. 3 C. 2 D. 13.集合{},,a b c 的子集共有 ( )A .5个B .6个C .7个 D.8个4.设集合{}{}1,2,3,4,|2P Q x x ==≤,则P Q =( )A .{}1,2B .{}3,4C .{}1D .{}2,1,0,1,2--5.下列五个写法:①{}{}00,1,2;∈②{}0;∅⊆③{}{}0,1,21,2,0;⊆ ④0;∈∅⑤0⋂∅.=∅其中错误..写法的个数为 ( )A .1B .2C .3D .46.已知全集{}{}|09,|1U x x A x x a =<<=<<,若非空集合A U ⊆,则实数a 的取值范围是( )A .{}|9a a <B .{}|9a a ≤C .{}|19a a <<D .{}|19a a <≤7.已知全集{}{}1,2,3,4,5,6,7,8,3,4,5U A ==,{}1,3,6B =,则集合{}2,7,8C =是( )A .AB B .A BC .()()U U C A C BD .()()U U C A C B8.设集合(]{}2,,|1,M m P y y x x R =-∞==-∈,若MP =∅,则实数m 的取值范围是( )A .1m ≥-B .1m >-C .1m ≤-D .1m <-9.定义A-B={},,x x A x B ∈∉且若A={}1,2,4,6,8,10,B={}1,4,8,则A-B= ( )A.{}4,8 B.{}1,2,6,10 C.{}1 D.{}2,6,1010.集合{}{}22,1,1,21,2,34,A a a B a a a =+-=--+{}1,A B ⋂=-则a 的值是( )A .1-B .0或1C .0D . 2第二卷 总分150分11.满足{}{}1,21,2,3B =的所有集合B 的集合为 。

第一章 集合与常用逻辑用语 单元测验(含答案)

第一章 集合与常用逻辑用语 单元测验(含答案)

第一章 集合与常用逻辑用语 单元测验时间:100分钟 分值:100分一、选择题(本大题共10小题,每题3分,共30分)1、已知全集R U =,集合}{Z x x x A ∈≤=,1,{}022=-=x x x B ,则图中的阴影部分表示的集合为( )A. {}1-B. {}2C.{}2,1 D. {}2,02、设集合{}2430A x x x =-+<,{}230x x ->,则A B = ( )A.33,2⎛⎫--⎪⎝⎭ B.33,2⎛⎫- ⎪⎝⎭ C.31,2⎛⎫ ⎪⎝⎭D.3,32⎛⎫⎪⎝⎭3、下列四个集合中,是空集的是( )A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-=C .}0|{2≤x x D .},01|{2R x x x x ∈=+-4、已知集合{}Z s t s t A ∈+=,22,且x ∈A ,y ∈A ,则下列结论正确的是( ) A .A y x ∈+ B .A y x ∈- C .A xy ∈ D .A yx∈ 5、设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则( )A .N M =B .MN C .N M D .M N =∅6、用()C A 表示非空集合A 中的元素的个数,定义()()A B C A C B *=-,若{}1,1A =-,()(){}22320B x ax x x ax =+++=,若1A B *=,设实数a 的所有可能取值构成集合S . 则()C S =( )A .1B .2C .3D .57、已知集合{}2|20,A x ax x a a R =++=∈,若集合A 有且仅有两个子集,则a 的值是( ) A .1 B .1- C .0,1 D .1-,0,18、已知集合{}2|1,M y y x x R ==-∈,集合2{|3}N x y x ==-,则MN =( )A .{(2,1),(2,1)}-B .{2,2,1}-C .[1,3]-D .∅9、已知集合}{10,3,2,1 =M ,A 是M 的子集,且A 中各元素和为8,则满足条件的子集A 共有( )A .6个B .7个C .8个D .9个10、设S 是整数集Z 的非空子集,如果,a b S ∀∈,有S ab ∈,则称S 关于数的乘法是封闭的.若T,V 是Z 的两个不相交的非空子集,T V Z =,且,,a b c T ∀∈,有,,,abc T x y z V ∈∀∈有V xyz ∈,则下列结论恒成立的是( )A .,T V 中至少有一个关于乘法是封闭的B .,T V 中至多有一个关于乘法是封闭的C .,T V 中有且只有一个关于乘法是封闭的D .,T V 中每一个关于乘法都是封闭的二、填空题(本大题共5小题,每小题4分,共20分)11、若{}A x x a =>,{}6B x x =>,且A B ⊆,则实数a 的取值范围是______.12、50名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30名,参加乙项的学生有25名,则仅参加了一项活动的学生人数为 。

人教A版数学必修一第一章集合与常用逻辑用语 单元测试(含答案)

人教A版数学必修一第一章集合与常用逻辑用语 单元测试(含答案)

人教A版数学必修一第一章一、单选题1.设集合A={x|x2―4x+3≤0},B={x|2<x<4},则A∪B=( )A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}D.{x|1<x<4}2.集合A={x∈N|―1<x<3}的真子集的个数为( )A.3B.4C.7D.83.下列式子中,不正确的是( )A.3∈{x|x≤4}B.{―3}∩R={―3}C.{0}∪∅=∅D.{―1}⊆{x|x<0} 4.已知集合M={1,4,2x},N={1,x2},若N⊆M,则实数x=( )A.-2或2B.0或2C.-2或0D.-2或0或25.下列四个条件中,使a>b成立的必要而不充分的条件是( )A.a>b﹣1B.a>b+1C.|a|>|b|D.2a>2b6.在平面直角坐标系xOy中,设Ω为边长为1的正方形内部及其边界的点构成的集合.从Ω中的任意点P作x轴、y轴的垂线,垂足分别为M P,N p.所有点M P构成的集合为M,M中所有点的横坐标的最大值与最小值之差记为x(Ω);所有点N P构成的集合为N,N中所有点的纵坐标的最大值与最小值之差记为y(Ω).给出以下命题:①x(Ω)的最大值为2:②x(Ω)+y(Ω)的取值范围是[2,22];③x(Ω)―y(Ω)恒等于0.其中所有正确结论的序号是( )A.①②B.②③C.①③D.①②③7.已知M={(x,y)|y―3x―2=3},N={(x,y)|ax+2y+a=0}且M∩N=∅,则a=( )A.-6或-2B.-6C.2或-6D.-28.设集合A={x|(x+2)(x―3)⩽0},B={a},若A∪B=A,则a的最大值为( )A.-2B.2C.3D.4二、多选题9.已知命题p:关于x的不等式2x―1≥0,命题q:a<x<a+1,若p是q的必要非充分条件,则实数a 的取值可以为( )A.a≥0B.a≥1C.a≥2D.a≥310.已知集合M={x∣x=kπ4+π4,k∈Z},集合N={x∣x=kπ8―π4,k∈Z},则( )A.M∩N≠ϕB.M⊆N C.N⊆M D.M∪N=M11.已知正实数m,n满足9n2―24n+17―4m2+1=2m+3n―4,若方程1m +1n=t有解,则实数t的值可以为( )A.5+264B.2+32C.1D.11412.1872年德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数(史称“戴德金分割”),并把实数理论建立在严格的科学基础上,从而结束了无理数被认为“无理”的时代,也结束了数学史上的第一次大危机.将有理数集Q划分为两个非空的子集M与N,且满足M∪N=Q,M∩N=∅,M中的每一个元素都小于N中的每一个元素,则称(M,N)为戴德金分割.试判断下列选项中,可能成立的是( )A.M={x∈Q|x<2},N={x∈Q|x≥2}满足戴德金分割B.M没有最大元素,N有一个最小元素C.M没有最大元素,N没有最小元素D.M有一个最大元素,N有一个最小元素三、填空题13.已知集合A={x|x2+2x-3≤0},集合B={x||x-1|<1},则A∩B= .14.设集合M={x|a1x2+b1x+c1=0},N={x|a2x2+b2x+c2=0},则方程a1x2+b1x+c1a2x2+b2x+c2=0的解集用集合M、N可表示为 .15.若规定集合M={a1,a2,…,a n}(n∈N*)的子集{ a i1,a i2,… a in}(m∈N*)为M的第k个子集,其中k= 2i1―1+ 2i2―1+…+ 2i n―1,则M的第25个子集是 16.记关于x的方程a x2―2ax+1=0在区间(0,3]上的解集为A,若A有2个不同的子集,则实数a的取值范围为 .四、解答题17.已知集合M={x|―2<x<4},N={x|x+a―1>0}.(1)若M∪N={x|x>―2},求实数a的取值范围;(2)若x∈N的充分不必要条件是x∈M,求实数a的取值范围.18.已知命题p:∀x∈R,|x|+x≥0;q:关于x的方程x2+mx+1=0有实数根.(1)写出命题p的否定,并判断命题p的否定的真假;(2)若命题“p∧q”为假命题,求实数m的取值范围.19.设全集为R,集合A={x|x2―7x―8>0},B={x|a+1<x<2a―3}.(1)若a=6,求A∩∁R B;(2)在①A∪B=A;②A∩B=B;③(∁R A)∩B=∅,这三个条件中任选一个作为已知条件,求实数a的取值范围.20.已知集合A={x|-3≤x≤4},B={x|2m-1≤x≤m+1}.(Ⅰ)当m=-3时,求( ∁R A)∩B;(Ⅱ)当A∩B=B时,求实数m的取值范围.21.已知集合A={―1,1},B={x|x2―2ax+b=0},若B≠∅,且A∪B=A求实数a,b的值。

《集合》单元测试卷(解析版)

《集合》单元测试卷(解析版)

《集合》单元测试卷一、选择题1.(2021年新课标I 卷文)已知集合,,则( )A .B .C .D .【答案】A【解析】根据集合交集中元素的特征,可以求得,故选A .2.(2021年新课标Ⅱ文)已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B =( ) A .(–1,+∞) B .(–∞,2) C .(–1,2) D .∅ 【答案】C【解析】由题知,(1,2)A B =-,故选C . 3.下列关系中,正确的是 A .B .C .D . 【答案】C 【解析】选项A :,错误;选项B ,,错误;选项C ,,正确;选项D ,与是元素与集合的关系,应该满足,故错误;故选:C .4.已知集合是,则A .B .C .D .【答案】A 【解析】集合,.本题正确选项:5.不等式的解集用区间可表示为( )A .(–∞,)B .(–∞,]C .(,+∞)D .[,+∞) 【答案】D【解析】解不等式2x –1≥0,得x ≥,所以其解集用区间可表示为[,+∞)故选D . 6.已知集合A={x|x >0},B={x|-1<x <1},则A ∪B=( ) A .()1,1- B .()1,-+∞ C .()0,1 D .()0,+∞ 【答案】B【解析】由题意,集合A={x|x >0},B={x|-1<x <1},根据集合的并集的运算可得A ∪B={x|x >-1}=(-1,+∞),故选:B .7.若集合M={x|x≤6},a=2,则下面结论中正确的是( ) A .B .C .D . 【答案】A【解析】由集合M={x|x≤6},a =2,知:在A 中,{a }M ,故A 正确;在B 中,a M ,故B 错误;在C 中,{a }⊆M ,故C 错误;在D 中,a M ,故D 错误.故选:A .8.(2021年新课标I 卷)已知集合,则( )A.B.C.D.【答案】B【解析】解不等式得,所以,所以可以求得,故选B.9.设集合,3,,则正确的是A.3,B.3,C.D.【答案】D【解析】集合,3,,则,选项A错误;2,3,,选项B错误;,选项C错误;,选项D正确.故选:D.10.(2021年天津卷理)设全集为R,集合,,则A.B.C.D.【答案】B【解析】由题意可得:,结合交集的定义可得:.本题选择B选项.11.已知,则实数的值为()A.B.C.D.【答案】C 【解析】,,,,由得,由,得,由得或.综上,或.当时,集合为不成立.当时,集合为不成立.当时,集合为,满足条件.故.故选:C .12.(2021年天津卷文)设集合,,,则( )A .B .C .D . 【答案】C【解析】由并集的定义可得:,结合交集的定义可知:.本题选择C 选项.二、填空题 13.已知集合,,则____.【答案】【解析】因为,,所以14.集合A ={x |x ≥0且x ≠1}用区间表示_______________. 【答案】[0,1)∪(1,+∞)【解析】集合A ={x |x ≥0且x ≠1}用区间表示为:[0,1)∪(1,+∞),故答案为:[0,1)∪(1,+∞)15.已知集合{}1,2,3A =,{2,3,4}B =,则集合A B ⋃中元素的个数为_____. 【答案】4【解析】因为集合{}1,2,3A =,{2,3,4}B =,所以{1,2,3,4}A B =.所以集合A B ⋃中元素的个数为4,故答案为4.16.已知集合{}{}21,,9,,1A m B m ==,若A B B =,则实数m =______________【答案】0,3,3-【解析】∵A ∩B =B ,A ={1,m ,9},B ={1,m 2},∴B ⊆A ,∴m =m 2或m 2=9,且m ≠1, 解得:m =1(舍去)或m =0,或m=3或-3,故答案为0,3,-3.三、解答题17.用区间表示下列数集:(1);(2);(3);(4)R;(5);(6).【答案】(1);(2);(3);(4);(5);(6).【解析】由区间的概念可得:(1);(2);(3);(4)R=;(5);(6).18.设集合或,,若是的真子集,求实数的取值范围.【答案】【解析】,因是的真子集,所以,故.19.设集合.(I)用列举法写出集合;(II)求和.【答案】(I);(II),.【解析】(I)因为x,所以,所以.(II)因为,,所以,.20.设全集为,,:(1);(2).【答案】(1)或;(2)或.【解析】(1)由画出数轴:由图得,或.(2)得,或,或.21.已知集合,,全集.当时,求;若,求实数a的取值范围.【答案】(1);(2)或.【解析】(1)当a=2时,A=,所以A∪B=,(2)因为A∩B=A,所以A⊆B,①当A=∅,即a-1≥2a+3即a≤-4时满足题意,②当A≠∅时,由A⊆B,有,解得-1,综合①②得:实数a的取值范围为:或-1,22.设全集,集合,,若,求实数的取值集合.【答案】或.【解析】当,即,时,,满足条件,当,即时,或,若,则或,即或,此时,综上:a的取值范围是或。

精选高中数学单元测试题-集合完整题库(含答案)

精选高中数学单元测试题-集合完整题库(含答案)

2019年高中数学单元测试试题 集合(含答案)学校:__________ 姓名:__________ 班级:__________ 考号:__________题号 一 二 三 总分 得分第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人 得分一、选择题1.已知全集为R ,集合112xA x ⎧⎫⎪⎪⎛⎫=≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,{}2|680B x x x =-+≤,则R A C B =( )A.{}|0x x ≤B.{}|24x x ≤≤C. {}|024x x x ≤<>或D.{}|024x x x <≤≥或 (2013年高考湖北卷(理)) 2.设集合{|20}A x x =+=,集合2{|40}B x x =-=,则AB =( )(A){2}- (B){2} (C){2,2}- (D)∅ (2013年高考四川卷(理)) 3.设集合(){}22,1,,M x y xy x R y R =+=∈∈,(){}2,0,,N x y xy x R y R =-=∈∈,则集合MN 中元素的个数为( )A.1B.2C.3D.4(2004全国3理1)4.已知 I 为全集,集合M ,N I ,若M ∩N=N ,则-------------------------------( )第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题5. 已知全集U ={1,2,3,4,5},集合{}321,,a a a A =,则满足21123+≥+≥a a a 的集合A 的个数是 .(用数字作答)6.已知集合{}(1)0P x x x =-≥,Q ={})1ln(|-=x y x ,则P Q =7.已知全集为R ,若集合{}10M x x =-≥,{}210N x x =+>,则()R M N = ▲ .8.集合A={x||x+1|=1},B={x||x|=1}则A ∪B 等于_____________ 9.设{}{}21,,21,,A x x k k Z B x x k k Z ==+∈==-∈{}2,,C x x k k Z ==∈则A B =A ,B C =∅,A C =Z ,A B =A 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集合单元测试卷重点:集合的概念及其表示法;理解集合间的包含与相等的含义;交集与并集,全集与补集的理解。

难点:选择恰当的方法表示简单的集合;理解空集的含义;理解交集与并集的概念及其区别联系。

基础知识:一、理解集合中的有关概念(1)集合中元素的特征:_________,__________,__________.集合元素的互异性:如:下列经典例题中 例2(2)常用数集的符号表示:自然数集_______ ;正整数集______、______;整数集_____;有理数集_______ ;实数集_________。

(3)集合的表示法:_________,__________,__________,_________ 。

注意:区分集合中元素的形式及意义:如:}12|{2++==x x y x A ;}12|{2++==x x y y B }12|),{(2++==x x y y x C ;}12|{2++==x x x x D ;},,12|),{(2Z y Z x x x y y x E ∈∈++==;(4)空集是指不含任何元素的集合。

(}0{、φ和}{φ的区别;0与三者间的关系) 空集是任何集合的子集,是任何非空集合的真子集。

注意:条件为B A ⊆,在讨论的时候不要遗忘了φ=A 的情况。

二、集合间的关系及其运算(1)元素与集合之间关系用符号“___________”来表示。

集合与集合之间关系用符号“___________”来表示。

(2)交集}{________________B A =⋂;并集}{________________B A =⋃; 补集_}__________{_________=AC U (3)对于任意集合B A ,,则:①A B ____ B A ⋂⋂;A B ____ B A ⋃⋃;B A ____ B A ⋃⋂②U A C A ⋂= ,U A C A ⋃= ,()U C C A = . ③()()________________B C A C U U =⋂;()()________________B C A C U U =⋃④________________B A ⇔=⋂A ;________________B A ⇔=⋃A 三、集合中元素的个数的计算:(1)若集合A 中有n 个元素,则集合A 的所有不同的子集个数为_________,所有真子集的个数是__________,所有非空真子集的个数是 。

(2)B A ⋃中元素的个数的计算公式为()______________________B A Card =⋃: (3)韦恩图的运用经典例题:例1. 已知集合8|6A x N N x ⎧⎫=∈∈⎨⎬-⎩⎭,试求集合A 的所有子集. 解:由题意可知6x -是8的正约数,所以 6x -可以是1,2,4,8;相应的x 为2,4,5,即{}2,4,5A =.∴A 的所有子集为,{2},{4},{5},{2,4},{2,5},{4,5}{2,4,5}φ.例2. 设集合2{2,3,23}U a a =+-,{|21|,2}A a =-,{5}U C A =,求实数a 的值.解:此时只可能2235a a +-=,易得2a =或4-。

当2a =时,{2,3}A =符合题意。

当4a =-时,{9,3}A =不符合题意,舍去。

故2a =。

例3. 已知集合A={x|03x 2-mx 2=+, m ∈R}. (1)若A 是空集,求m 的取值范围; (2)若A 中只有一个元素,求m 的值;(3)若A 中至多只有一个元素,求m 的取值范围.解: 集合A 是方程03x 2-mx 2=+在实数范围内的解集.(1)∵A 是空集,∴方程03x 2-mx 2=+无解.∴Δ=4-12m<0,即m>13.(2)∵A 中只有一个元素,∴方程mx2-2x+3=0只有一个解. 若m=0,方程为-2x+3=0,只有一解x=32;若m ≠0,则Δ=0,即4-12m=0,m=13.∴m=0或m=13.(3)A 中至多只有一个元素包含A 中只有一个元素和A 是空集两种含义,根据(1)、(2)的结果,得m=0或m ≥13.例4. 设全集U R =,{|M m =方程210mx x --=有实数根},{|N n =方程20x x n -+=有实数根},求()U C M N ⋂.解:当0m =时,1x =-,即0M ∈; 当0m ≠时,140,m ∆=+≥即14m ≥-,且0m ≠ ∴14m ≥-,∴1|4U C M m m ⎧⎫=<-⎨⎬⎩⎭而对于N ,140,n ∆=-≥即14n ≤,∴1|4N n n ⎧⎫=≤⎨⎬⎩⎭.∴1()|4U C M N x x ⎧⎫=<-⎨⎬⎩⎭变式训练.已知集合A=6|1,R ,1x x x ⎧⎫≥∈⎨⎬+⎩⎭B={}2|20,x x x m --< (1)当m=3时,求()R A C B ⋂; (2)若A B ⋂{}|14x x =-<<,求实数m 的值. 解: 由61,1x ≥+得50.1x x -≤+∴-1<x ≤5,∴A={}|15x x -<≤.(1)当m=3时,B={}|13x x -<<,则R C B ={}|13x x x ≤-≥或, ∴()R A C B ⋂={}|35x x ≤≤.(2)∵}{15A x x =-<<,A B ⋂{}|14x x =-<<∴24240m -⨯-=,解得m=8. 此时B={}|24x x -<<,符合题意,故实数m 的值为8. 例5. 已知{|3}A x a x a =≤≤+,{|1B x x =<-或5}x >. (1)若φ=⋂B A ,求a 的取值范围; (2) 若AB B =,求a 的取值范围.解:(1) φ=⋂B A , ∴135a a ≥-⎧⎨+≤⎩,解之得12a -≤≤.则若φ=⋂B A ,a 的取值范围是[1,2]-; (2) AB B =, ∴A B ⊆. ∴31a +<-或5a >,4a <-或5a >则若A B B ⋃=,则a 的取值范围是(,4)(5,)-∞-⋃+∞.测试练习:一、选择题1.若集合M ={a ,b ,c }中元素是△ABC 的三边长,则△ABC 一定不是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形 2.设全集U=R ,A={x ∈N ︱1≤x ≤10},B={ x ∈R ︱x 2+ x -6=0},则下图中阴影表示的集合为( )A .{2}B .{3}C .{-3,2}D .{-2,3} 3.设2{|1},{|4},P x x Q x x =<=<则P Q=⋂( ) A.{|12}x x -<<B.{|31}x x -<<-C.{|14}x x <<-D.{|21}x x -<<4.已知全集U =Z ,A ={-1,0,1,2},B ={x|x 2=x},则A∩∁U B 为 ( )A.{-1,2}B.{-1,0}C.{0,1} D .{1,2} 5. 集合{|1}P x y x ==+,集合{|1}Q y y x ==-,则P 与Q 的关系是( )A. P = QB. PQ C. P ≠⊂Q D. P ∩Q =6.设M ,P 是两个非空集合,定义M 与P 的差集为 M-P={x|x ∈M 且x ∉p}, 则M-(M-P )=( )A. PB. M ⋂PC. M ⋃PD. M7.已知{}{}2230,A x x x B x x a =--<=<, 若A /B , 则实数a 的取值范围是( ) A. (1,)-+∞ B. [3,)+∞ C. (3,)+∞ D. (,3]-∞ 8.已知集合M ={x |Z k k x ∈+=,412},N ={x │Z k k x ∈+=,214},则( )A .M =NB .M NC .M ND .M ⋂N =φ9.设全集∪={x |1≤x <9,x ∈N},则满足{}{}1,3,5,7,81,3,5,7U C B ⋂=的所有集合B的个数有 ( )A .1个B .4个C .5个D .8个10.定义集合运算:A⊙B={z ︳z =xy(x +y),x∈A,y∈B},设集合A ={0,1},B ={2,3},则集合A⊙B 的所有元素之和为( )A .0B .6C .12D .18 11.已知集合M ={(x ,y )︱y =29x -},N ={(x ,y )︱y =x +b },且M ∩N =∅,则实数b应满足的条件是( ) A .︱b ︱≥23B .0<b <2C .-3≤b ≤23 D .b >23或b <-3二、填空题12.设集合{32}A x x =-≤≤,{2121}B x k x k =-≤≤+,且A B ⊇,则实数k 的取值范围是 .13.已知集合A={}4,3,2,1,那么A 的真子集的个数是 .14.已知=U R ,集合23|02x M x x -⎧⎫=>⎨⎬+⎩⎭,则R C M = . 15.设集合A ={1,2,a },B ={1,a 2-a },若A ⊇B ,则实数a 的值为________. 16.满足{}0,1,2{0,1,2,3,4,5}A ⊆的集合A 的个数是_______个.三、解答题17.设U R =,集合{}2|320A x x x =++=,{}2|(1)0B x x m x m =+++=;若()Φ=⋂B A C u,求m 的值.18.已知集合A ={} |x x 2-5x +6=0,B ={} |x mx +1=0,且A∪B=A ,求实数m 的值组成的集合.19.已知由实数组成的集合A满足:若x∈A,则11-x∈A.(1)设A中含有3个元素,且2∈A,求A;(2)A能否是仅含一个元素的单元素集,试说明理由.20.设函数)0(3)2()(2≠+-+=axbaxxf,若不等式0)(>xf的解集为)3,1(-.(1)求ba,的值;(2)若函数)(xf在]1,[mx∈上的最小值为1,求实数m的值.集合单元测试卷答案基础知识:一、(1) 确定性,互异性 ,无序性 (2) N ;*N 、+N ;Z ;Q ;R (2)自然语言法,列举法,描述法 ,韦恩图法 二、(1)∉∈, ; ≠⊂ =⊆(2)x x A x B ∈∈且;x x A x B ∈∈或;U A x x x ∈∉或(3)① = = ⊆ ② φ U A ③ ()U C A B ⋃ ()U C A B ⋂ ④A B ⊆ A B ⊇ 三、(1)2n 21n - 22n -(2)()()()card A +card B -card A B ⋂测试练习:一、选择题 1. D 2. A 3. D 4. A5. B 提示:∵{|1}{|1}P x y x x x ==+=≥-,{|0}Q y y =≥∴PQ ,∴选B.6. B 7. B 8. C 9. D 10. D 11. D 二、填空题 12.112k -≤≤提示:2121k k -<+, ∴B ≠∅13. 1514. ]23,2[- 提示:依题意,M={x|x<-2或x>32},所以R C M =]23,2[-. 15. -1或0 16. 7 三、解答题17. 解:{}2,1A =--,由() Φ=⋂B A C u 得A B ⊆当1m =时,{}1B =-,符合B A ⊆;当1m ≠时,{}1,B m =--,而B A ⊆,∴2m -=-,即2m = ∴1m =或2.18. 解:由条件可得}{2,3A =由A B A ⋃=得B A ⊆当0m =时,B φ=,显然B A ⊆ 当0m ≠时,1B m ⎧⎫=-⎨⎬⎭⎩ 要使B A ⊆则 112=3m m -=-或11==23m m ∴--或 综上所述,实数m 的值组成的集合为⎩⎨⎧⎭⎬⎫0,-12,-1319. 解:(1)∵2∈A ,∴11-2∈A ,即-1∈A ,∴11--1∈A ,即12∈A ,∴A =⎩⎨⎧⎭⎬⎫2,-1,12.(2)假设A 中仅含一个元素,不妨设为a, 则a ∈A ,有11-a∈A ,又A 中只有一个元素, ∴a =11-a , 即a 2-a +1=0,但此方程Δ<0,即方程无实数根.∴不存在这样的实数a .故A 不可能是单元素集合. 20.解:(1)由条件得,21+3=313b aa -⎧--⎪⎪⎨⎪-⨯=⎪⎩解得14 a b =-⎧⎨=⎩ (2)32)(2++-=x x x f ,对称轴方程为1=x ,)(x f ∴在]1,[m x ∈上单调递增,m x =∴时132)(2min =++-=m m x f 解得31±=m ,又因1m <,则1m =友情提示:本资料代表个人观点,如有帮助请下载,谢谢您的浏览!。

相关文档
最新文档