北师大版七年级数学上册教案《认识一元一次方程》
北师大版七年级数学上册教学设计:5.1认识一元一次方程

7.教学方法多样化,结合讲授、讨论、实验等多种教学手段,提高学生的学习兴趣和积极性。
四、教学内容与过程
(一)导入新课
1.教学活动:教师向学生展示一个与年龄有关的实际问题,如“小华今年10岁,比小亮大3岁,小亮今年几岁?”引导学生用算术法解决问题,然后提出问题:“如果小华年龄的3倍等于小亮年龄的2倍,他们各是多少岁呢?”
1.教学内容:对本节课所学的一元一次方程的概念、一般形式、求解方法等进行总结。
2.活动过程:教师引导学生回顾本节课所学内容,让学生用自己的话总结一元一次方程的特点和求解方法,并对学生在课堂上的表现给予肯定和鼓励。
3.设计意图:通过总结归纳,帮助学生梳理所学知识,形成系统的认识,同时培养学生的概括能力和自信心。
2.设计意图:通过生活中的实际问题,让学生感受到方程的实用性和趣味性,激发学生探究一元一次方程的欲望。
(二)讲授新知
1.教学内容:一元一次方程的概念、一般形式及求解方法。
(1)概念:教师引导学生从实际问题中抽象出一元一次方程,让学生理解方程中未知数、常数和等式的含义。
(2)一般形式:ax+b=0(a,b是常数,且a≠0),教师通过实例解释一元一次方程的一般形式,并强调a≠0的条件。
(2)在实际问题中,如何将问题转化为的一元一次方程?请举例说明。
作业要求:
1.请同学们认真完成作业,确保作业的整洁、规范。
2.对于选做题,鼓励同学们积极挑战,提升自己的解题能力。
3.完成作业后,请认真检查,确保解答正确。
4.对于作业中的疑问,及时与同学或老师交流,共同解决问题。
4.通过方程求解的过程,培养学生观察、分析、归纳和总结问题的能力。
北师大版数学七年级上册《一元一次方程的认识》教学设计1

北师大版数学七年级上册《一元一次方程的认识》教学设计1一. 教材分析《一元一次方程的认识》是北师大版数学七年级上册的教学内容。
本节课的主要内容是一元一次方程的定义、性质和解法。
教材通过实例引入一元一次方程,使学生了解一元一次方程在实际生活中的应用,培养学生解决实际问题的能力。
教材还介绍了方程的解法,帮助学生掌握解一元一次方程的方法。
二. 学情分析学生在七年级上册之前已经学习了代数基础知识,对代数式、未知数等概念有一定的了解。
但他们对一元一次方程的认识尚浅,需要通过实例和练习来进一步理解。
学生应具备的数学素养包括逻辑思维能力、运算能力、问题解决能力等。
三. 教学目标1.了解一元一次方程的定义和性质。
2.掌握解一元一次方程的方法。
3.能够运用一元一次方程解决实际问题。
4.培养学生的逻辑思维能力和问题解决能力。
四. 教学重难点1.一元一次方程的定义和性质。
2.解一元一次方程的方法。
3.一元一次方程在实际问题中的应用。
五. 教学方法1.讲授法:讲解一元一次方程的定义、性质和解法。
2.案例分析法:分析实际问题,引导学生运用一元一次方程解决。
3.练习法:通过课堂练习和课后作业,巩固所学知识。
4.小组讨论法:分组讨论,培养学生的合作能力和沟通能力。
六. 教学准备1.教学PPT:制作包含实例、练习和拓展题的PPT。
2.教案:编写详细的教学过程和教学方法。
3.练习题:准备适量的课堂练习和课后作业。
4.小组讨论材料:准备相关资料,便于学生分组讨论。
七. 教学过程1.导入(5分钟)利用PPT展示实际问题,引导学生思考如何用数学方法解决。
例如,某商场举行打折活动,原价100元的商品现价80元,求打几折?2.呈现(10分钟)讲解一元一次方程的定义、性质和解法。
通过PPT展示实例,使学生了解一元一次方程在实际生活中的应用。
3.操练(10分钟)课堂练习:让学生独立完成PPT上的练习题。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)小组讨论:学生分组讨论PPT上的拓展题。
北师大版初一数学上册5.1 认识一元一次方程(第1课时)教学设计

《认识一元一次方程》教学设计(义务教育课程标准北师大版七年级上册第五章第1节第1课时)一、教材分析《认识一元一次方程》是义务教育课程标准北师大版七年级(上)第五章《认识一元一次方程》第1节,本节内容安排了两个课时,学生在小学认识方程和本册第3章字母表示数的基础上,进一步研究一元一次方程,本节课属于第一课时,研究一元一次方程概念.二、学情分析1.认知基础:在小学阶段学习过简易方程,不过与初中的要求相比,对知识的理解比较表层,大部分学生还没有真正体会到方程在解决实际问题时的优越性和重要性.2.活动经验基础:教材为学生提供了许多生动有趣的现实情境,七年级学生的思维活跃,喜欢参与探索活动,只要激发起兴趣,本课要贯彻的数学思想就能较好的实施.三、教学目标1.能根据给出的现实情境,找出其中的等量关系列出方程.2.通过观察,归纳出一元一次方程的概念.3.通过经历“建立数学模型”这一数学化的过程,提高学生的抽象概括能力.四、教学重点与难点教学重点:1.一元一次方程的概念.2.通过现实情境建立方程模型的思想.教学难点:1.对一元一次方程的概念、特征的理解.2.从现实情境中提炼等量关系.五、教法、学法1.教学方法:引导探究法2.学习方法:自主探究,合作交流3.教具准备:多媒体课件,配套学案【习得】建立方程数学模型知识点二:一元一次方程定义探究问题2:由上面得到的式子:40+5x=100; (1+147.30%)x=8930; 2[x+(2x-5=21; 2x-5=19.这些方程有什么共同点?【知识整理】定义:在一个方程中,只含有一个未知数代数式都是整式,未知数的指数都是1,这种方程叫做一元一次方程.。
北师大版七年级数学上册5.1.2认识一元一次方程教学设计

b. 5x^2 - 3x + 2 = 0
c. 2(x + 3) = 3(x - 1)
d. 4x + 5 = 2(2x + 1)
2.提高题:
(1)甲、乙两人同时从同一地点出发,甲以每小时5公里的速度向东南方向行走,乙以每小时4公里的速度向东北方向行走。两小时后,他们相距多少公里?
五、作业布置
为了巩固本章节所学知识,培养学生解决问题的能力,特布置以下作业:
1.基础题:
(1)解下列一元一次方程:
a. 3x - 7 = 11
b. 5 - 2x = 3x + 1
c. 4(x - 3) = 2(x + 1)
d. 7 - (3x + 2) = 2x - 6
(2)判断下列方程是否为一元一次方程,若是一元一次方程,请解出未知数的值:
北师大版七年级数学上册5.1.2认识一元一次方程教学设计
一、教学目标
(一)知识与技能
1.了解一元一次方程的定义,知道它是由等号连接的两个表达式组成,其中包含一个未知数。
2.能够识别一元一次方程的一般形式:ax + b = 0(a≠0),理解a、b、x的含义。
3.学会解一元一次方程的步骤,包括移项、合并同类项、系数化为1等。
(2)小华从家到学校有两条路可走,一条直接到学校,另一条需绕行。已知直接走的路程是绕行的2倍,绕行路程为4公里。请问小华家到学校的距离是多少公里?
(3)一个数字,加上5后乘以2等于24,求这个数字。
3.拓展题:
(1)已知一个一元一次方程的解为x = 3,请构造一个符合条件的一元一次方程。
(2)已知两个一元一次方程的解分别为x = 2和x = 5,请构造一个含有这两个解的一元一次方程组。
北师大版七年级上册第五章5.1认识一元一次方程教案

北师大版七年级上册第五章 5.1 认识一元一次方程教课设计第五章一元一次方程1认识一元一次方程教课目的:【知识与技术】 1.理解一元一次方程,方程的解等观点.2.掌握等式的基天性质,能利用等式的基天性质解一元一次方程.【过程与方法】经过实质问题成立方程模型,归纳一元一次方程的观点,培育学生的认知能力和归纳归纳能力,掌握等式的基天性质 .【感情态度】联合本课教课特色,向学生进行理想主义教育和热爱学习教育,激发学生学习的兴趣 .教课重难点:【教课要点】 1.一元一次方程及等式的基天性质.2.利用等式的性质解一元一次方程.【教课难点】利用等式及等式的性质解一元一次方程.教课过程:一、情境导入,初步认识教材第 130 页最上方的彩图假如设小彬的年纪为x 岁,那么“乘 2 再减 5”就是 _________,所以能够获得方程: __________________.【教课说明】学生依据两人的对话找出相等关系,列出方程,初步领会根据实质问题成立方程模型的思想.二、思虑研究,获得新知1.列方程以获得方程: __________________.(2)甲、乙两地相距 22km,张叔叔从甲地出发到乙地,每小时比原计划多行走 1km,所以提早 12min 抵达乙地,张叔叔原计划每小时行走多少千米?设张叔叔原计划每小时行走xkm,能够获得方程: __________________.(3)依据第六次全国人口普查统计表数据,截止2010 年 11 月 1 日 0 时,1 / 4北师大版七年级上册第五章 5.1 认识一元一次方程教课设计全国每 10 万人中拥有大学文化程度的人数为8930 人,与 2000年第五次全国人口普查对比增加了 147.30%.2000年第五次全国人口普查时每 10万人中约有多少人拥有大学文化程度?假如设 2000年第五次全国人口普查时每10 万人中约有 x 人拥有大学文化程度,那么能够获得方程:__________________.(4)某长方形操场上的面积是 5850m2,长和宽之差为 25m,这个操场的长与宽分别是多少米?假如设这个操场的宽为xm,那么长为 (x+25)m ,由此能够得到方程 __________________.【教课说明】学生依据题意,找出相等关系列出方程,进一步领会方程建模思想 .【归纳结论】剖析实质问题中的数目关系,利用此中的相等关系列出方程,是用数学知识解决实质问题的一种常用方法 .2.一元一次方程及方程的解(2)方程 2x-5=21,40+5x=100,x(1+147.30%)=8930 有什么共同点?【教课说明】学生经过察看,与伙伴进行沟通,找出这些方程的共同点,归纳一元一次方程的观点.【归纳结论】在一个方程中,只含有一个未知数,且未知数的指数都是1,这样的方程叫做一元一次方程.使方程左、右两边的值相等的未知数的值,叫做方程的解 .3.等式的基天性质吗?你能解方程5x=3x+4 吗?【教课说明】学生经过察看教材132 页天平均衡图,感知等式的基天性质.【归纳结论】等式两边同时加上(或减去)同一个代数式,所得结果还是等式,等式两边同时乘同一个数(或除以同一个不为0 的数),所得结果还是等式 .4.利用等式的基天性质解一元一次方程(1)x+2=5;(2)3=x-5;2 / 4北师大版七年级上册第五章 5.1 认识一元一次方程教课设计(3)-3x=15;(4)- n-2=10. 3【教课说明】学生经过计算,掌握运用等式的基天性质解一元一次方程的方法 .三、运用新知,深入理解1.依据题意列出方程:(1)在一卷公元前 1600 年左右遗留下来的古埃及厕纸书中,记录着一些数学识题 .此中一个问题翻译过来是:“啊哈,它的所有,它的 17你能求出问题中的“它”吗?(2)甲、乙两队展开足球抗衡赛,规定每队胜一场得3 分,平一场得1 分,负一场得 0 分.甲队与乙队一共竞赛了 10 场,甲队保持了不败记录,一共得了 22 分 .甲队胜了多少场?平了多少场?(1)3x+(10-x)=20;(2)2x2+6=7x.3.解以下方程:(1)x-9=8;(2)5-y=-16;(3)3x+4=-13;(4)2/3x-1=5.【教课说明】学生自主达成,加深对新学知识的理解.检测对一元一次方程和方程的求解的掌握状况,对学生的迷惑教师应实时指导.达成上述题目后,教师指引学生达成练习册中本课时练习的讲堂作业部分.(2)设甲队胜 x 场,则 3x+(10-x)=22.x=6,10-6=43 / 4北师大版七年级上册第五章 5.1 认识一元一次方程教课设计解 .(2)将 x=2 代入方程,左侧 =2×22+6=14=右侧,故 x=2 是原方程的解 .3.(1)x=17(2)y=21(3)x=-17/3(4)x=9解得 x=11,故小红有 11 岁.四、师生互动,讲堂小结1.师生共同回首一元一次方程,方程的解的观点和等式的基天性质.2.经过这节课的学习,你掌握了哪些新知识?还有哪些疑问?【教课说明】教课指引学生回首知识点,让学生勇敢讲话,踊跃与伙伴交流,加深对新学知识的理解与运用.课后作业:1.部署作业:从教材“习题 5.1, 5.2”中选用 .2.达成练习册中本课时的相应作业.教课反省:本节课学生从实质问题中找出相等关系,列出方程,要认识一元一次的观点,运用等式的性质解一元一次方程培育学生着手、动脑习惯,激发学生学习的兴趣 .4 / 4。
北师大版七年级数学上册教案-第五章第一节 认识一元一次方程

北师大版七年级数学上册教案第五章一元一次方程第一节认识一元一次方程第一课时一元一次方程【教学目标】1.归纳出方程、一元一次方程的概念.2.感受方程作为刻画现实生活有效模型的意义.【教学重难点】重点:通过丰富的实例,建立一元一次方程,展现方程是刻画现实生活的有效数学模型.难点:根据具体问题中的数量关系列一元一次方程.【教学过程】一、创设情境,导入新课出示教材第130页猜年龄的游戏.分析:小彬的年龄现在是不知道的,因此设小彬今年x岁,“小彬的年龄乘2再减5”就是2x-5,因此得到等式2x-5=21.学生对照等式解释这个等式的意义:某人的年龄x的两倍减去5等于21.教师与学生仿照小华与小彬之间的游戏规则,学生报出得数,教师迅速说出结果,连续几次练习,激发学生学习方程的好奇心.二、师生互动,探究新知1.问题探究.(1)小树慢慢长高.小颖种了一株树苗,开始时树苗高为40厘米,栽种后每周树苗长高约5厘米,大约几周后树苗长高到1米?解答:学生互相交流,分析数量关系,找出相等关系:树原高+长高=1米.设x周后小树长高到1米,得到方程:40+5x=100.(注意:1米=100厘米)(2)黑板的长和宽.教室里长方形黑板的周长是11.4米,长与宽的差是3.3米,黑板的长和宽分别是多少米?师生共同分析题中已知和未知:已知黑板的周长,长与宽之间的数量关系,而长与宽的具体数值是未知的,因此:设黑板的长为x米,则宽为(x-3.3)米.根据2(长+宽)=周长,得到方程:2[x+(x-3.3)]=11.4.鼓励学生用自己的语言表达自己的想法,学生可能列出不同的方程,只要合理都应给予鼓励.2.探究概念.学生阅读教材第130页的第4个问题的内容(组织学生先进行自主学习,再进行小组合作学习).(1)交流对题意的理解.设2000年每10万人中约有x人具有大学文化程度,则增长的人数为x·147.30%.相等关系:“2000年每10万人中的大学生人数+增长人数=2010年每10万人中的大学生人数”或简单说成:“2000年大学生人数+增长人数=2010年大学生人数”(明白是指每10万人中).因此根据这个等量关系,我们可以列出方程:x+x·147.30%=8930.(2)通过本题分析让学生感受到大学生人数在增加,受教育程度在提高,社会在不断进步.(3)由上面的问题你得到了哪些方程?其中哪些是你熟悉的方程?与同伴进行充分的交流并列出本节所列出的几个方程:2x-5=21,40+5x=100,2[x+(x-3.3)]=11.4,x+x·147.30%=8930.观察以上方程有什么共同特点?让学生进行充分的交流,各抒己见,归纳出以上方程的特点,得出一元一次方程的概念:在一个方程中,只含有一个未知数,而且方程中的代数式都是整式,未知数的指数都是1,这样的方程叫做一元一次方程(linear equation with one unknown).使方程左、右两边的值相等的未知数的值,叫做方程的解.三、运用新知,解决问题1.根据题意列出方程:(1)在一卷公元前1600年左右遗留下来的古埃及纸草书中,记载着一些数学问题.其中一个问题翻译过来是:“啊哈,它的全部,它的17,其和等于19.”你能求出问题中的“它”吗?(2)甲、乙两队开展足球对抗赛,规定每队胜一场得3分,平一场得1分,负一场得0分,甲队与乙队一共比赛了10场,甲队保持了不败记录,一共得了22分.甲队胜了多少场?平了多少场?2.x =2是下列方程的解吗?(1)3x +(10-x)-20;(2)4x +6=7x.四、课堂小结,提炼观点你认为在解决实际问题时,列出方程的关键是什么?学生提出自己的问题,师生共同解决.五、布置作业,巩固提升1.小明参加知识竞赛,共有20道题,规则为答对一题加5分,答错一题或不答扣2分,小明的最后得分是86分,你能知道小明一共答对多少道题吗?2.教材第132页习题5.1.【板书设计】一元一次方程1.根据给出的问题,分析其中的数量关系,列出方程.2.分析列出的方程,归纳一元一次方程的概念:在一个方程中,只含有一个未知数,而且方程中的代数式都是整式,未知数的指数都是1,这样的方程叫做一元一次方程.3.方程的解的概念:使方程左、右两边的值相等的未知数的值,叫做方程的解.第二课时等式的基本性质【教学目标】理解等式的基本性质,并能用它们来解方程.【教学重难点】重点:深刻理解等式的基本性质.难点:理解等式的基本性质及应用.【教学过程】一、创设情境,导入新课看下面一组式子,请你添上适当的数或者式子,保证等式还成立(师生探讨,允许学生犯错误,教师进行及时的纠正).1+2=3,1+2+____=3+____,1+2-____=3-____;2x+3x=5x,2x+3x+____=5x+____,2x+3x-____=5x-____.再换一个数或者式子试试.分小组交流讨论,多试几次.归纳发现的规律:由此你发现等式有什么性质?请用语言叙述一下:_____________________________________________________ ___________________;用数学符号表示:若________=________,那么________=________.点拨:等式两边同时加(或减)同一个代数式,所得结果仍是等式.a=b,a±c=b±c.二、师生互动,探究新知1.看一组式子:请你添上适当的数使等式还成立.(1)6+2=8,(6+2)×____=8×____,(6+2)□____=8□____;(2)3x+7x=10x,(3x+7x)□____=10x□____,(3x+7x)÷____=10x÷____.归纳发现的规律:由此你又发现了等式有什么性质?用语言叙述一下:_____________________________________________________ ___________________;用数学符号表示:(1)若________=________,那么________=________;(2)若________=________(________),那么________=________.点拨:等式两边同时乘同一个数(或除以同一个不为0的数),所得结果仍是等式.(1)a =b ,a ·c =b ·c ;(2)a =b ,a c =b c (c ≠0).等式的基本性质:等式两边同时加(或减)同一个代数式,所得结果仍是等式.等式两边同时乘同一个数(或除以同一个不为0的数),所得结果仍是等式.2.你会用等式的性质来解决以下问题吗?(试试看)(1)从x +5=y +5能得到x =y 吗?理由是:______________;(2)从x =y 能得到x -5=y -5吗?理由是:______________;(3)从-3a =-3b 能得到a =b 吗?理由是:______________;(4)如果3x -2=7,那么3x =7+________,根据________得到.3.你能辨析以下问题的正误吗?(1)在等式ab =ac 的两边都除以a ,可得b =c.这句话对吗?说出你的理由.师生探讨:这种说法错误,没考虑到a 是否为0的问题.(2)在等式a =b 两边都除以c 2+1,可得a c 2+1=b c 2+1.这句话对吗?说出你的理由.师生探讨:这个说法正确,因为c2+1≥1≠0,所以上述正确.三、运用新知,解决问题所谓“解方程”就是求得方程的解的过程,即要求出方程的解“x =?”,因此我们需要把方程转化为“x=a(a为常数)”的形式.1.x+2=5.解:方程两边同时________,得________.所以x=________.练习:x-2=5.反思学习:这道题你应用了________来解决的.2.-3x=15.解:方程两边同时________,得_____________________________________________________ ___________________.所以x=________.反思小结:本题你用了________来解决的.3.-3x+3=6.解:方程两边同时________,得________.方程两边同时________,得________.所以x=________.思考:本题先应用________,后应用________.发现:由此你发现解方程的依据是什么?________________________________________________________________________.四、课堂小结,提炼观点通过你的学习,你明白了什么?有什么收获?五、布置作业,巩固提升解方程:5-3y =-16;2x 3-1=5.(注明每一步的理由)【板书设计】等式的基本性质等式的基本性质:等式两边同时加(或减)同一个代数式,所得结果仍是等式.等式两边同时乘同一个数(或除以同一个不为0的数),所得结果仍是等式。
北师大版七年级数学上册教案:5.1认识一元一次方程

三、教学难点与重点
1.教学重点
-理解并掌握一元一次方程的定义及其一般形式ax + b = 0(a,b是常数且a≠0)。
-学会通过观察、分析等量关系,将实际问题抽象为一元一次方程。
-掌握一元一次方程的解法,包括移项、合并同类项等基本步骤。
-对一元一次方程解法的理解,特别是移项、合并同类项等操作。
-在解决实际问题时,如何选择合适的未知数,并正确列出方程。
举例解释:
-对于找等量关系这一难点,可以设置多个实际问题,让学生分组讨论,引导学生通过画图、列表等方法,逐步抽象出等量关系。
-在讲解解法时,通过具体例题,逐步演示移项、合并同类项的过程,强调符号变化和运算规则。
五、教学反思
在上完这节课后,我对教学过程进行了深入的思考。首先,我发现学生在理解一元一次方程的定义及其解法方面存在一定的困难。在讲解过程中,我尽量用生动的例子和实际操作来帮助学生理解,但感觉效果并不理想。因此,我考虑在下一节课中,增加一些互动环节,让学生自己动手操作,以便更直观地感受一元一次方程的特点和解法。
在实践活动环节,学生分组讨论和实验操作的效果较好,大家能够积极参与,相互协作。但我也注意到,部分小组在展示成果时,表达不够清晰,逻辑性不强。为了提高学生的表达能力和逻辑思维,我将在下一节课中增加一些针对性的训练,如组织小型辩论赛,让学生在讨论中学会如何清晰、有条理地表达自己的观点。
在学生小组讨论环节,我发现大家在探讨一元一次方程在实际生活中的应用时,能够提出很多有趣的观点和想法。这说明学生具有一定的创新意识和实践能力。今后,我会继续鼓励学生发挥想象,将所学知识运用到实际生活中,提高他们的数学素养。
北师大版七年级数学上册全册教案(教学设计)

第五章一元一次方程1 认识一元一次方程一、学生起点分析学生在小学期间已学过等式、等式的基本性质以及方程、方程的解、解方程等知识,经历了分析简单数量的关系,并根据数量关系列出方程、求解方程、检验结果的过程。
对方程已有初步认识,但并没有学习“一元一次方程”准确的理性的概念。
二、学习任务分析本节从有趣的“猜年龄”游戏入手,通过对五个熟悉的实际问题的分析,学生结合已有知识,能得出一元一次方程。
在此过程中,学生逐渐体会方程是刻画现实世界、解决实际问题的有效数学模型.本节的重点:学生在实际问题中分析、找到等量关系,准确列出方程,并总结所列方程的共同特点,归纳出一元一次方程的概念。
本节的难点:由特殊的几个方程的共同特点归纳一元一次方程的概念。
三、教学目标、在对实际问题情境的分析过程中感受方程模型的意义;、借助类比、归纳的方式概括一元一次方程的概念,并在概括的过程中体验归纳方法;、使学生在分析实际问题情境的活动中体会数学与现实的密切联系。
四、教学过程设计环节一:阅读章前图内容:请一位同学阅读章前图中关于“丟番图”的故事。
(大约分钟)丢番图()是古希腊数学家.人们对他的生平事迹知道得很少,但流传着一篇墓志铭叙述了他的生平:坟中安葬着丢番图,多么令人惊讶,它忠实地记录了其所经历的人生旅程.上帝赐予他的童年占六分之一,又过十二分之一他两颊长出了胡须,再过七分之一,点燃了新婚的蜡烛.五年之后喜得贵子,可怜迟到的宁馨儿,享年仅及其父之半便入黄泉.悲伤只有用数学研究去弥补,又过四年,他也走完了人生的旅途.——出自《希腊诗文选》()第题目的:通过阅读章前图中的故事,激发同学们探索丟番图年龄的兴趣,进而引导学生通过列方程解决问题,感受利用方程可以解决实际问题,感受方程是刻画现实世界有效地模型。
效果:学生对丟番图的故事很感兴趣,有的学生提出问题:他的年龄是多少呢?教师借机也提出问题:用什么方法可以求解丟番图的年龄呢?紧接着呈现内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《认识一元一次方程(1)》
◆教学目标
1.通过对多种实际问题的分析,感受方程作为刻画现实世界的有效模型的意义。
2.通过观察,归纳一元一次方程的概念。
◆教学重难点
◆
【教学重点】
一元一次方程的概念。
【教学难点】
列一元一次方程。
◆教学过程
一、联系生活实际,创设问题情境
【当学生看到自己所学的知识与“现实世界”息息相关时,学生通常会更主动。
】
情景一:两学生表演(小彬和小明)(21+5)÷2=13
一天,小明在公园里认识了新朋友小彬。
小明:小彬,我能猜出你的年龄。
小彬:不信。
小明:你的年龄乘2减5得数是多少?小彬:21
小明:你的今年是13岁。
小彬心里嘀咕:他怎么知道的我是年龄是13岁的呢?
如果设小彬的年龄为x岁,那么“乘2再减5”就是_2x-5__,所以得到等式: 2x-5=21___。
在小学里我们已经知道,像这样含有未知数的等式叫做方程。
[选一选]:判断下列各式是不是方程,是的打“√”,不是的打“x”。
⑴5x=0;⑵42÷6=7;⑶y2=4+y;⑷3m+2=1-m;
⑸1+3x. (6) -2+5=3 (7) 3χ-1=7 (8) m=0
(9) χ﹥ 3 (10) χ+y=8 (11) 2χ2-5χ+1=0 (12) 2a +b
判断方程①有未知数②是等式
[练一练]:思考下列情境中的问题,列出方程。
情境1:小颖种了一株树苗,开始时树苗高为40厘米,栽种后每周升高约15厘米,大约几
周后树苗长高到1米?
如果设x周后树苗升高到1米,那么可以得到方程:___ _
情境 2 某长方形足球场的周长为310米,长和宽之差为25米,这个足球场的长与宽分
别是多少米?
如果设这个足球场的宽为X米,那么长为(X+25)米。
由此可以得到方程:_____ ______。
情境 3
第五次全国人口普查统计数据(2001年3月28日新华社公布)
截至2000年11月1日0时,全国每10万人中具有大学文化程度的人数为3611人,
比1990年7月1日0时增长了153.94%.
1990年6月底每10万人中约有多少人具有大学文化程度?
如果设1990年6月每10万人中约有x人具有大学文化程度,那么可以得到方程:_____ _____。
三个情境中的方程为:
⑴ 40+15χ=100⑵ 2[χ+(χ+25)]=310⑶χ(1+153.94%)=3611
议一议:上面情境中的三个方程有什么共同点?
在一个方程中,只含有一个未知数χ(元),并且未知数的指数是1(次),这样的方程叫做一
元一次方程
(我国古代称未知数为元,只含有一个未知数的方程叫做一元方程。
)
练习题
一、填空题:
1、在下列方程中:①2χ+1=3; ②y2-2y+1=0; ③2a+b=3;
④2-6y=1;⑤2χ2+5=6;属于一元一次方程有_________。
2、方程3x m-2 + 5=0是一元一次方程,则代数式 4m-5=_____。
3、方程(a+6)x2 +3x-8=7是关于x的一元一次方程,则a= _____。
二、根据条件列方程。
某数χ的相反数比它的 3/4 大1
三、根据题意,列出方程:
(1)在一卷公元前1600年左右遗留下来的古埃及草卷中,记载着一些数学问题。
其中一个
问题翻译过来是:“啊哈,它的全部,它的 1/7 ,其和等于19。
” 你能求出问题中的“它”
吗?
(2)甲、乙两队开展足球对抗赛,规定每队胜一场得3分,平一场得1分,负一场得0分。
甲队与乙队一共比赛了10场,甲队保持了不败记录,一共得了22 分,甲队胜了多少场?
平了多少场?
解:设甲队胜了χ场,则乙胜了10 -χ场. 3 χ +(10-χ)=22
请联系自己生活中的例子编一道应用题,并列出方程
小结:
1、方程的概念
2、一元一次方程的概念
3、列方程的一般步骤
(1)设未知数,用字母表示。
(2)关键找等量关系。
(3)列出方程。
作业:
1题
略。
《认识一元一次方程(2)》
1.体会解决问题的一种重要的思想方法----尝试检验法.
.
【教学重点】
用尝试检验法求方程的解。
【教学难点】
一、 【复习引入】
1. 什么叫方程?什么叫一元一次方程?
2. 你能写出一个一元一次方程吗?
(让学生回答,教师在黑板上板书,其他学生帮忙纠正)
3.[练一练]请你运用已学的知识,根据下列问题中的条件,分别列出方程:
⑴ 奥运冠军朱启南在雅典奥运会男子10米气步枪决赛中最后两枪的平均成绩为10.4环,其中第10枪(即最后一枪)的成绩为10.1环,问第9枪的成绩是多少环?
设第9枪的成绩为x 环,可列出方程 。
⑵ 国庆期间,“时代广场”搞促销活动,小颖的姐姐买了一件衣服,按8折销售的售价为72元,问这件衣服的原价是多少元?
设这件衣服的原价为x 元,可列出方程 。
二、【交流对话,自主探索】
在小学里我们还知道,使方程左右两边的值相等的未知数的值叫做方程的解。
你们知道“练一练”第⑴题的方程x +10.12
=10.4的解吗? 你们是怎么得到的?
(让学生各抒己见,只要学生能说出该方程的解教师都应给予积极的鼓励。
)
强调:我们知道x 只能取10.5,10.6,10.7,10.8,10.9。
把这些值分别代入方程左
边的代数式x +10.12 ,求出代数式的值,就可以知道x=10.7是方程x +10.12
=10.4的解。
这种尝试检验的方法是解决问题的一种重要的思想方法。
[做一做]:⒈判断下列t 的值是不是方程2t +1=7-t 的解:
⑴ t =-2; ⑵ t =2.
追问:你能否写出一个一元一次方程,使它的解是t =-2?
⒉解方程:⑴ x-2=8; ⑵ 5y=8.
(让学生思考解法,只要合理均以鼓励。
)
除了这些方法,还有没有更好的方法呢?如果方程比较复杂,怎么办呢?下面我们就来研究如何用等式的性质解一元一次方程。
三、理解并运用
(一)实验
如果天平两边砝码的质量同时扩大相同的倍数或同时缩小为原来的几分之一,那么天平还保持平衡吗?
教师引导学生通过天平实验观察、思考、分析天平和等式之间的联系。
(二)归纳等式的两个性质
⒈等式两边同时加上(或减去同一个代数式,所得结果仍是等式。
⒉等式两边同时乘以同一个数(或除以同一个不为0的数),所得结果仍是等式。
说明:课本指出:“在小学我们还学过等式的两个性质”,但目前小学生尚未学过或未正式学过等式的两个性质。
所以在此对等式的性质先作一番介绍。
(三)解方程
例⒈利用等式的性质解下列方程:
⑴ x + 2= 5;⑵ 3=x - 5.
(学生已经用其他方法求解过这两个方程,这里是用等式的性质来解方程.可先让学生自己尝试利用等式的性质进行求解,教师再加以引导。
)
例⒉解下列方程:
⑴ - 3x = 15 ;⑵ - n/3 – 2 = 10.
(教学时,首先应鼓励学生自己尝试求解这两个方程,并从中体会运用等式的性质解方程的方法,然后提问学生:你是怎样解方程的?每一步的根据是什么?还有其他解法吗?从中让学生体会解一元一次方程就是根据是等式的性质把方程变形成“x=a(a为已知数)”的形式。
并引导学生回顾检验的方法,鼓励他们养成检验的习惯)
检验方法:把求出的解代入原方程,看看左右两边是否相等。
[想一想]:现在你能帮小彬解开上节课的那个谜吗?
(四)[做一做]:课本随堂练习1、2
四、小结回顾
[说一说]:通过上面的学习,你有什么收获?另外你有什么感触?
五、布置作业
1.课本习题5.2 知识技能1。
略。