《因式分解-公式法》教学设计1

合集下载

公式法教学设计

公式法教学设计

因式分解——公式法(二)●课 题§3.3.2 运用公式法(二)●教学目标(一)教学知识点1.使学生会用完全平方公式22)(22b a b ab a +=++分解因式.2.使学生学习多步骤,多方法的分解因式.(二)能力训练要求在导出完全平方公式及对其特点进行辨析的过程中,培养学生观察、归纳和逆向思维的能力.在应用完全平方公式的几何图形进行因式分解中,培养学生数形结合思想(三)情感与价值观要求通过综合运用提公因式法、完全平方公式因式分解,进一步培养学生的观察和联想能力. ●教学重点让学生掌握多步骤、多方进行法因式分解的方法.●教学难点让学生学会观察多项式的特点,恰当地安排步骤,恰当地选用不同方法分解因式. ●教学方法观察—发现—运用法●教学过程一.创设问题情境,引入新课[师]我们知道,因式分解是整式乘法的反过程,逆用乘法公式,我们找到了因式分解的两种方法:提取公因式法、运用平方差公式法.现在,大家自然会想,还有哪些乘法公式可以用来分解因式呢?在前面我们不仅学习了平方差公式(a +b )(a -b )=a 2-b 2而且还学习了完全平方公式(a ±b )2=a 2±2ab +b 2本节课,我们就要学习用完全平方公式分解因式.二.、推导用完全平方公式分解因式的公式以及公式的特点.1、[师]什么是因式分解?[生]将一个多项式表示成若干个多项式的乘积的形式。

[师]很好.请将多项式222b ab a ++ 写成乘积的形式。

[生]将完全平方公式2222)(b ab a b a ++=+从右到左地使用,就可以把形如这样的多项式进行因式分解. 所以, 22)(22b a b ab a +=++[师]例如, 442++x x2、[师]什么样的多项式可以用完全平方公式22)(22b a b ab a +=++进行因式分解呢?[生](1)是三项式(2)有两个平方项且符号相同(3)另一项是两平方项底数之积的2倍由分解因式与整式乘法的关系可以看出,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法.3、[师]判断:下列多项式能否用完全平方公式22)(22b a bab a +=++进行因式分解(1)222y xy x ++(2)422++x x(3)2296n mn m ++(4)25425m m -+(5)22y x +(6)229124y xy x ++生独立思考后举手回答4、独立练习:将能进行因式分解的多项式分解出来。

公式法因式分解教案

公式法因式分解教案

公式法因式分解教案公式法因式分解教案篇一学习重点:同底数幂乘法运算性质的推导和应用.学习过程:一、创设情境引入新课复习乘方an的意义:an表示个相乘,即an=.乘方的结果叫a叫做,n是问题:一种电子计算机每秒可进行1012次运算,它工作103秒可进行多少次运算?列式为,你能利用乘方的意义进行计算吗?二、探究新知:探一探:1根据乘方的意义填空(1)23×24=(2×2×2)×(2×2×2×2)=2();(2)55×54=_________=5();(3)(-3)3×(-3)2=_________________=(-3)();(4)a6a7=________________=a().(5)5m5n猜一猜:aman=(m、n都是正整数)你能证明你的猜想吗?说一说:你能用语言叙述同底数幂的乘法法则吗?同理可得:amanap=(m、n、p都是正整数)三、范例学习:【例1】计算:(1)103×104;(2)aa3;(3)mm3m5;(4)xmx3m+1(5)xx2+x2x1.填空:⑴10×109=;⑵b2×b5=;⑶x4x=;⑷x3x3=.2.计算:(1)a2a6;(2)(-x)(-x)3;(3)8m(-8)38n;(4)b3(-b2)(-b)4.【例2】:把下列各式化成(x+y)n或(x-y)n的形式. (1)(x+y)4(x+y)3(2)(x-y)3(x-y)(y-x)(3)-8(x-y)2(x-y)(4)(x+y)2m(x+y)m+1四、学以致用:1.计算:⑴10n10m+1=⑵x7x5=⑶mm7m9=⑷-4444=⑸22n22n+1=⑹y5y2y4y=2.判断题:判断下列计算是否正确?并说明理由⑴a2a3=a6();⑵a2a3=a5();⑶a2+a3=a5();⑷aa7=a0+7=a7();⑸a5a5=2a10();⑹25×32=67()。

初二数学教学设计:因式分解公式法

初二数学教学设计:因式分解公式法

初二数学教学设计:因式分解—公式法课题15.4.2因式分解公式法(1)课型综合课教学目标知识储备点1.了解平方差公式的特点,掌握用平方差公式分解因式的方法.2.掌握提公因式法,平方差公式分解因式的综合运用.能力培养点1.经历探究分解因式的方法的过程,体会整式乘法与分解因式之间的联系.2.通过乘法公式的逆向变形,发展学生观察,归纳,类比,概括能力,有条理地思考及语言表达能力,培养学生的化归思想,同时培养合作意识.情感体验点通过探究平方差公式,让学生获得成功的体验,勇于发表自己的观点,锻炼克服困难的意志,建立自信心,并能从交流中获益.教学重点运用平方差公式分解因式.教学难点把多项式进行必要的变形,灵活地运用平方差公式分解因式.教学手段利用多媒体辅助教学.教学流程师生行为设计意图新课导入导语:有两块面积不等的正方形草坪,只知道它们的面积之差是24,且草坪的边长为整数,你能猜出这两块草坪的边长吗小明说:设大草坪边长为a,小草坪的边长为b,可得到a2 -b2=(a+b)(a-b),24=64.所以a+b=6,a-b=4.解关于a,b的方程,可求出a=5,b=1.小两说:我求出a=7,b=5.他们说得对吗还有其他答案吗二.学习目标1.掌握用平方差公式分解因式的方法.2.掌握提公因式法,平方差公式分解因式的综合运用.学习指导知识点回顾:你能叙述多项式因式分解的定义吗你知道因式分解与整式乘法有怎样的关系吗判断下列各式是因式分解的是____A.(x+2)(x-2)=x2-4B.x2-4+3x=(x+2)(x-2)+3xC.x2-4x=x(x-4)D.x2-4=(x+2)(x-2)运用平方差公式计算:(x+2y)(x-2y)=____;(y+5)(y-5)=____.探究:(1)你能将多项式x2-4与y2-25分解因式吗(2)这两个多项式有什么共同特点(3)能利用整式的乘法公式平方差公式(a+b)(a-b)=a2b2来解决这个问题吗归纳:平方差公式的特征:(1)__________;(2)_________;(3)__________.平方差公式:a2b2=_______;即两个数的平方差,等于__________.试一试:将多项式x2-4与9m2-4n2分解因式:X2-4=x2-22=(x+2)(x2)a2-b2=(a+b)(a-b)9m2-4n2=(3m)2-(2n)2=(3m+2n)(3m-2n)练一练:(1)下列多项式能否用平方差公式来分解因式a2+b2()m2-n2()-a2+b2()-a2-b2()(2)把下列多项式分解因式:4x2-9x2y2-z2(a+b)2-c2(x+p)2-(x+y)2四:合作学习:类型1.利用平方差公式计算:251012-99225类型2.综合运用因式分解的方法分解因式:(1)x4-y4(2)a3-ab五.盘点收获:知识:平方差公式;方法:类比思想,化归思想;反思:1.因式分解的步骤是先提公因式,再考虑用公式;2.因式分解时要分解到不能再分解为止;3.计算中运用因式分解,可使计算简便.六.消化性考试:1.填空:1-()2=(__+__)(1-5y).2.下列各式运用平方差公式分解因式正确的是()A.x2+y2=(x+y)(x+y)B.x2-y2=(x+y)(x-y)C.-x2+y2=(-x+y)(-x-y)D.-x2-y2=-(x+y)(x-y)3.下列因式分解错误的是()A.1-16a2=(1+4a)(1-4a)B.x3-x=x(x2-1)C.a2-b2c2=(a+bc) (a-bc)D.m2-0.01n2=(0.1n+m)(m-0.1n)4.(2019.黄冈)x3-xy2分解因式的结果为_______.5.(2019.杭州)因式分解(x-1)2-9结果是()A.(x+8)(x+1)B.(x+2)(x-4)C.(x-2)(x+4)D.(x-10)(x+8)6.设n为整数,试说明(2n+1)2-25能被4整除.7.计算:1002-992+982-972+962-952++22-12.七.教学反思:教师提出问题学生思考回答师生共同生成学习目标后,教师再出示学习目标.学生解答并互评教师引导并点评学生尝试用提公因式法分解因式,经过观察,每个多项式中都没有公因式,教师引导学生观察,;类比,归纳,得出结论. 这个活动的关键是逆用乘法公式,要给学生提供自主交流,探究的时间与空间.学生独立思考,自主完成练习并交流教师点评.小组讨论,交流并派代表阐述本组解决问题的方法,教师给予指导和点拨.学生总结教师补充学生按小组合作完成以实例引入新课,强化了数学的应用意识,提出的问题让学生产生浓厚的兴趣,激发他们的探究欲望.让学生明确本节课的学习任务.为新课做铺垫让学生充分经历观察,类比,归纳,概括的过程,探究出乘法公式逆用就能解决问题,发展了学生的逆向思维及分析能力和推理能力,让学生体会到数学知识之间的整体联系.通过练习达到检验,巩固和学以致用的目的,体现了本节课的重点.通过合作学习培养学生的合作意识,提高学生综合运用能力,也突破了本节课的难点.通过盘点收获,能帮助学生完善认知结构,形成解题经验.消化理解知识,同时进行知识反馈,便于随机调整教学.。

数学八年级下册《 公式法》省优质课一等奖教案

数学八年级下册《 公式法》省优质课一等奖教案

《因式分解》教学设计4.3公式法(一)一、教材依据北师大版八年级数学下册第四章因式分解3.公式法(一)平方差公式二、设计思路1、从教材的地位与作用看:(1)本节课的主要内容是运用平方差公式进行因式分解。

(2)它是在学生学习了整式乘法和乘法公式以及实数的基础上,学习了提取公因式法分解因式的基础上,运用逆向思维把平方差公式逆过来,应用到特殊两项式的因式分解上。

(3)是对因式分解中出现的特殊两项式的归纳总结。

从一般到特殊的认识过程的范例。

(4)它在应用过程中的几种特殊形式是培养学生探索、合作、观察、分析和创新能力,以及深化逆向思维能力,数学应用意识和整体思想的很好载体。

2、从学生学习过程的角度看(1)学生七年级下半年学习了整式乘法和乘法公式,八年级上学期学习了实数。

具备了学习用平方差公式进行特殊两项式的因式分解的知识结构。

(2)由于学生初次学习用公式法因式分解,认清公式的结构和符号特征是难点,因此不宜延伸拔高太大(比如:公式中的字母a、b为复杂三项式、多次幂、以及无理数等),以防干扰学生的正常思维,造成对平方差公式因式分解的错误认识。

不能急于求成一步到位,指望把所有问题都在这一节课里解决。

要遵循循序渐进的原则,拔高内容可以作为有余力学生的研究题目。

(3)学生本课学习过程中出现的错误,迸发出的思维火花,情感等都是本节课较好的教学资源。

3、从学法和教法的角度看(1)本节课的教学方法涉及思路是要改变长期以来主宰课堂的“以教师讲为中心”的教法为“以学生的学为中心”的教学法,主要体现以学生自主、合作、探究为主的教学思想。

让学生真正成为课堂的主人。

(2)把竞争机制引入课堂,调动学生学习的积极性。

以小组为单位回答问题,做题都累计加分,开展竞赛活动,调动学生的积极性。

(3)让学生在亲自体验知识的发生发展过程中去学习知识。

掌握知识、从而达到不仅知其然还要知其所以然。

避免学生死记硬背套公式,一问“为什么这样做?”便不知所措。

231.因式分解公式法(一)学案(试题+参考答案)

231.因式分解公式法(一)学案(试题+参考答案)

公式法(一)【目标导航】能说出平方差公式的特征,并熟练地利用提取公因式法和平方差公式进行因式分解.【复习导入】把下列各式分解因式:1.-4m3+16m2-26m;2.(x-3)2+(3x-9);3.-m2n(x-y)n+mn2(x-y)n+1;4(2011福建福州)分解因式:225x-=. 5.y2-25【合作探究】1.由练习中4、5说出分解依据及多项式的特点:2.由乘法中的平方差公式反过来,得到因式分解中的平方差公式:【合作探究】练习:下列各多项式能否用平方差公式分解因式?为什么?(1) x2+y2;(2) x2-y2;(3)-x2+y2;(4)-x2-y2;(5) 14a2b2-1;(6) x4-y4.例1 把下列多项式分解因式(1) 4x2-9;(2) (x+p)2-(x+q)2;(3) 16-125m2;(4)-(x+2)2+16(x-1)2.例2 把下列多项式分解因式(1) x4-y4;(2) (2011贵州安顺)因式分解:x3-9x= .(3)-14xy3+0.09xy;(4)a2-b2+a-b;(5)(p-4)(p+1)+3p.练习:把下列多项式分解因式(1) a2-125b2;(2) 9a2-4b2;(3) (2011广西南宁)把多项式x3-4x分解因式所得的结果是()(A) x (x2-4) (B) x(x+4)(x-4)(C) x(x+2)(x-2)(D)(x+2)(x-2)(4)-a4+16;(5) m4(m-2)+4(2-m)例3 在实数范围内分解因式(1) x2-2;(2) 5x2-3.例4(1) 计算:9972-9(2)设n是整数,用因式分解的方法说明:(2n+1)2-25能被4整除.(3) 已知x、y为正整数,且4x2-9y2=31,你能求出x、y的值吗?【课堂操练】1.9a2- =(3a+b)(3a-b).2.分解因式:4x2-9y2= ;3x2-27y2= ;a2b-b3= ;2x4-2y4= .3.下列各式中,能用平方差公式分解的是()A. x2+y2B. x2+y4C. x2-y4D. x2-2x4.已知-(2a-b)(2a+b)是下列一个多项式分解因式的结果,这个多项式是()A. 4a2-b2B.4a2+b2C. -4a2-b2D. -4a2+b25.分解因式:(1)9a2-14b2;(2)2x3-8x;(3)(m+a)2-(n-b)2.【课后巩固】1.把下列各式分解因式:(1) 9(m+n)2-(m-n)2(2) p4-16(3) -(x+2y)2+(2x+3y)2(4)22 ()() 44a b a b +--(5) 36a4x10-49b6y8(6) b2-(a-b+c)2(7) (3x+y-1)2-(3x-y+1)2(8) 4(x+y+z)2-(x-y-z)2(9) (21135)2-(8635)2(10) 9×1.22-16×1.42(11) -12a2m+1b m+2+20a m+1b2m+4(12) (x-2y)(2x+3y)-2(2y-x)(5x-y)(13) -4a2+(2x-3y)2(14) 2(x+1)(x+2)-x(x+6)-8(15) (2011山东临沂)分解因式:9a-ab2=.(16) (a-b)2-(b-a)4(17) (2x-1)3-8x+4(18) 4x2-9y2-(2x+3y)(19) -(x2-y2)(x+y)-(y-x)3(20) (2011广西梧州)因式分解x2y-4y的正确结果是()A.y(x+2)(x-2)B.y(x+4)(x-4)C.y(x2-4)D.y(x-2)2(21) a4-81b4(22) a3(a-b)2-a(a+b)2(23) (x2-y2)+(x-y)(24) (a-b)(3a+b)2+(a+3b)2(b-a)(25) a n+1-a n-1b4(26)(2011山东枣庄)若622=-nm,且2m n-=,则=+nm.2.求证:两个连续奇数的平方差是8的倍数.3.设n是任一正整数,代入代数式n3-n中计算时,四名同学算出如下四个结果,其中正确的结果只可能是()A.388947B.388944C.388953D.3889494.已知:m2=n+2,n2=m+2(m≠n)求:m3-2mn+n3的值.公式法(一)参考答案【复习导入】把下列各式分解因式:1.解:原式=-2m(m²-8m+13)2.解:原式=(x-3)2+3(x-3)=(x-3)(x-6)3.解:原式=-mn(x-y)n(m-nx+ny)4.答案:(x+5)(x-5) .5.解:原式==(y+5)(y-5)【合作探究】1式子是两项,能写成两个式子的平方差的形式,即两项的符号一定是相反的。

《因式分解》教学设计范文(精选10篇)

《因式分解》教学设计范文(精选10篇)

《因式分解》教学设计范文(精选10篇)《因式分解》教学设计 1教学目标认知目标:(1)理解因式分解的概念和意义(2)认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。

能力目标:由学生自行探求解题途径,培养学生观察、分析、判断能力和创新能力,发展学生智能,深化学生逆向思维能力和综合运用能力。

情感目标:培养学生接受矛盾的对立统一观点,独立思考,勇于探索的精神和实事求是的科学态度。

目标制定的思想1.目标具体化、明确化,从学生实际出发,具有针对性和可行性,同时便于上课操作,便于检测和及时反馈。

2.课堂教学体现能力立意。

3.寓德育教学方法1采用以设疑探究的引课方式,激发学生的求知欲望,提高学生的学习兴趣和学习积极性。

2把因式分解概念及其与整式乘法的关系作为主线,训练学生思维,以设疑——感知——概括——运用为教学程序,充分遵循学生的认知规律,使学生能顺利地掌握重点,突破难点,提高能力。

3在课堂教学中,引导学生体会知识的发生发展过程,坚持启发式,鼓励学生充分地动脑、动口、动手,积极参与到教学中来,充分体现了学生的主动性原则。

4在充分尊重教材的前提下,融教材练习、想一想于教学过程中,增设了由浅入深、各不相同却又紧密相关的训练题目,为学生顺利掌握因式分解概念及其与整式乘法关系创造了有利条件。

教学过程安排一、提出问题,创设情境问题:看谁算得快?(1)若a=101,b=99,则a2-b2=(a+b)(a-b)=(101+99)(101-99)=400(2)若a=99,b=-1,则a2-2ab+b2=(a-b) 2=(99+1)2 =10000(3)若x=-3,则20x2+60x=20x(x+3)=20x(-3)(-3+3)=0二、观察分析,探究新知(1)请每题想得最快的同学谈思路,得出最佳解题方法(2)观察:a2-b2=(a+b)(a-b) ①的左边是一个什么式子?右边又是什么形式? a2-2ab+b2 =(a-b) 2 ②20x2+60x=20x(x+3) ③(3)类比小学学过的因数分解概念,(例42=2某3某7 ④)得出因式分解概念。

14.3.2《因式分解--公式法--完全平方公式》教案

14.3.2《因式分解--公式法--完全平方公式》教案

学科:数学授课教师:年级:八年级总第课时课题14.3.2《因式分解--公式法--完全平方公式》课时教学目标知识与技能用完全平方公式分解因式过程与方法1.理解完全平方公式的特点.2.能较熟悉地运用完全平方公式分解因式.3.会用提公因式、完全平方公式分解因式,•并能说出提公因式在这类因式分解中的作用.4.能灵活应用提公因式法、公式法分解因式.情感价值观通过综合运用提公因式法,完全平方公式分解因式,进一步培养学生的观察和联想能力.通过知识结构图培养学生归纳总结的能力.教学重点用完全平方公式分解因式.教学难点灵活应用公式分解因式.教学方法创设情境-主体探究-合作交流-应用提高媒体资源多媒体投影教学过程教学流程教学活动学生活动设计意图复习提问1、分解因式:(1)-a2+b2(2)2a-8a22、把下列各式分解因式.(1)a2+2ab+b2 (2)a2-2ab+b2思考解答复习引入完全平方公式1、把整式乘法的完全平方公式:(a+b)2=a2+2a b+b2(a-b)2=a2-2a b+b2反过来,得到:a2+2a b+b2=(a+b)2a2-2a b+b2=(a-b)2注:(1)形如a2±2a b+b2的式子叫做完全平方式,说出它们的特点。

(2)利用完全平方公式可以把形如完全平方式的多项式因式分解。

(3)上面两个公式用语言叙述为:两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方。

尝试独立完成然后与同伴交流总结掌握完全平方公式分解因式特点例题练习1、分解因式:(1)16x2+24x+9 (2)-x2+4xy-4y22、练习:P119页:练习:1、2:(1)--(4)3、分解因式:(1)3ax2+6axy+3ay2(2)(a+b)2-12(a+b)+364、练习:P119页:练习:2:(5)(6)5下列多项式是不是完全平方式?为什么?(1)a2-2a+1 (2)a2-4a+4 (3)a2+2ab-b 2(4)a2+ab+b2(5)9a2-6a+1 (6)a2+a+1/4 思考动手板演归纳总结巩固知识因式分解的一般步骤1、把下列多项式分解因式,从中你能发现因式分解的一般步骤吗?(1)44yx-;(2)33abba-;(3)22363ayaxyax++;(4)22)()(qxpx+-+;(5)4x2+20(x-x2)+25(1-x)22、分解因式的一般步骤:(1)先提公因式(有的话);(2)利用公式(可以的话);(3)分解因式时要分解到每个多项式因式不能再分解为止.3、练一练:把下列多项式分解因式:(1)6a-a2-9;(2)-8ab-16a2-b2;(3)2a2-a3-a;课堂小结1、完全平方公式:两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方。

(完整版)因式分解——公式法教案

(完整版)因式分解——公式法教案

因式分解——公式法(1)一.教课内容人教版八年级上册数学十四章因式分解——公式法第一课时二.教材剖析分解因式与数系中分解质因数近似,是代数中一种重要的恒等变形,它是在学生学习了整式运算的基础上提出来的,是整式乘法的逆向变形。

在后边的学习过程中应用宽泛,如:将分式通分和约分,二次根式的计算与化简,以及解方程都将以它为基础。

所以分解因式这一章在整个教材中起到了承上启下的作用。

同时,在因式分解中表现了数学的众多思想,如:“化归”思想、“类比”思想、“整体”思想等。

所以,因式分解的学习是数学学习的重要内容。

依据《课标》的要求,本章介绍了最基本的两种分解因式的方法:提公因式法和运用公式法(平方差、完好平方公式)。

所以公式法是分解因式的重要方法之一,是现阶段的学习要点。

三.教课目的知识与技术:理解和掌握平方差公式的构造特色,会运用平方差公式分解因式过程与方法: 1. 培育学生自主研究、合作沟通的能力2.培育学生察看、剖析和创新能力,深入学生逆向思想能力和数学应企图识,浸透整体思想感情、态度与价值观:让学生在合作学习的过程中体验成功的愉悦,进而加强学好数学的梦想和信心四.教课重难点要点:会运用平方差公式分解因式难点:正确理解和掌握公式的构造特色,并擅长运用平方差公式分解因式易错点:分解因式不完全五.教课方案(一)温故知新1.什么是因式分解?以下变形过程中,哪个是因式分解?为何?22(1)( 2x - 1) = 4 x- 4x + 1;(2)3x2 + 9xy - 3x = 3x( x+ 3y + 1);(3)x2 - 4+ 2x = ( x + 2)( x - 2) + 2x.2.我们已经学过的因式分解的方法是什么?将以下多项式分解因式。

(1) a3b3 - 2a2 b - ab ;( 2) - 9 x2 y + 3xy2 - 6 xy.【设计企图】经过复习因式分解的定义和方法,为持续学习公式法作好铺垫。

3.依据乘法公式进行计算:(1)( x + 1)(x -1);(2)( x + 2 y)(x - 2 y).4.依据上题结果分解因式:(1) x2 - 1;(2) x 2 - 4 y 2 .由以上 3、 4 两题,你发现了什么?【设计企图】经过整式乘法中的平方差公式引出公式法因式分解进而引出课题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

14.3.2 公式法因式分解
班级: 姓名: 学号:
学习目标:
1、熟练掌握公式法,并能灵活选择平方差公式进行因式分解。

2、通过独立思考、小组讨论,进一步体验“整体的 思想”。

3、培养主动参与学习、认真严谨的学习态度。

学习重点:用公式法进行因式分解
学习难点:对平方差公式结构的理解以及灵活运用公式。

学习过程:
一、复习反馈
1、什么叫因式分解?。

2、计算:①(x+2)(x-2)=_________。

把等号左右两边互换得 。

②(y+5)(y-5)=_________。

把等号左右两边互换得 。

思考:你能将多项式2x - 4与多项式2y -25分解因式吗?这两个多项式有什么共同的特点吗?
二、引导探究
平方差公式 22b -a b -a )(b a =+)
( 把等号两边互换位置变形平方差公式得 语言描述:即两个数的 ,等于这两个数的 与这两个数的 的积。

平方差公式进行因式分解:2a - 2b =(a+b)(a-b)
1、因式分解。

① 2x -1=________ 。

② 9 - 2t =________。

2、下列多项式能用平方差公式因式分解吗?
①2x+2y②2x-2y
③-2x+2y④-2x-2y
思考:能用平方差公式因式分解的多项式有何特征?
三、巩固精炼
例3 分解因式:
(1) 42x–9 (2) 2
(+
x
q)
x–2
p)
(+
你能仿照例3完成下面的题目吗?
练习:比一比,看谁做得快!
2、把下列各式分解因式。

(1)2m-4 (2) 2
4x-25 (3) -2y4+ 2x(4) 22)
x-9
(+
3、课堂升华
例4 分解因式: (1)4x -4y (2) b a 3 – ab
练习:我能行!(小组合作比赛)
4、分解因式。

(1)2a -
2b 25
1 ; (2) 29a -24b ;
(3)4y -y x 2; (4) 4a - +16.
四、课外拓展
1、用平方差公式进行简便计算:
(1)102²-2² ( 2) 99²-1²
五、自我检测
1、下列各式能用平方差公式分解因式的是( )。

(10分)
A 、4X ²+y ² B. 4 x- (-y)² C. - 4 X ²-y ³ D. - X ² + y ²
2、4a ² -1分解因式的结果应是 ( )。

(10分)
A 、 (4a+1)(4a-1) B. ( 2a –1)(2a –1)
C 、(2a +1)(2a+1) D. (2a+1) (2a-1)
3、因式分解
a a -5的结果是( ) 。

(10分) A. 4a a ⋅ B. ()()()1112-++a a a a
C. ()()1122-+a a a
D. ()
14-a a
4、 把下列各式分解因式。

(20分)
(1)18-2b ² (2)
4x – 1
作业布置:教科书习题14.3复习巩固 1、2;
六、课堂小结
今天你有什么收获,学到了什么知识与方法?。

相关文档
最新文档