九年级数学下册2.4过不共线三点作圆教案(新版)湘教版

合集下载

湘教版数学九年级下册教学设计:2.4 过不共线三点作圆

湘教版数学九年级下册教学设计:2.4 过不共线三点作圆

湘教版数学九年级下册教学设计:2.4 过不共线三点作圆一. 教材分析湘教版数学九年级下册第2.4节“过不共线三点作圆”是圆的基本性质和几何作图的重要组成部分。

本节内容是在学生已经掌握了圆的定义、圆的性质以及圆的方程的基础上进行学习的,通过本节的学习,使学生能够掌握过不共线三点作圆的方法,进一步培养学生的几何思维能力和作图能力。

二. 学情分析九年级的学生已经具备了一定的几何知识和逻辑思维能力,对于圆的性质和方程应该已经有所了解。

但是在作图方面,可能还存在一些困难,因此,在教学过程中,需要注重引导学生进行实际操作,培养学生的动手能力和观察能力。

三. 教学目标1.让学生理解过不共线三点作圆的原理和方法。

2.培养学生运用几何知识解决实际问题的能力。

3.培养学生的动手操作能力和观察能力。

四. 教学重难点1.过不共线三点作圆的原理和方法。

2.如何引导学生将几何知识运用到实际问题中。

五. 教学方法1.采用问题驱动法,引导学生通过实际问题理解过不共线三点作圆的原理和方法。

2.采用分组合作学习法,让学生在实际操作中相互交流、讨论,培养学生的团队协作能力。

3.采用案例分析法,让学生通过分析实际案例,掌握过不共线三点作圆的方法。

六. 教学准备1.准备相关的几何模型和教具,用于引导学生进行实际操作。

2.准备一些实际问题,让学生进行分析和讨论。

3.准备PPT,用于辅助教学。

七. 教学过程1.导入(5分钟)通过一个实际问题引出本节内容:“在平面上有三个点,如何作一个圆,使得这个圆经过这三个点?”让学生思考并尝试解答这个问题。

2.呈现(10分钟)讲解过不共线三点作圆的原理和方法,引导学生理解并掌握这个方法。

3.操练(10分钟)让学生分组进行实际操作,尝试用刚学到的方法过不共线的三点作圆。

教师巡回指导,解答学生的疑问。

4.巩固(5分钟)通过一些实际问题,让学生运用过不共线三点作圆的方法进行解答,巩固所学知识。

5.拓展(5分钟)引导学生思考:过共线三点能否作圆?如果可以,如何作圆?进一步拓展学生的知识面。

湘教版数学九年级下册说课稿:2.4过不共线三点作圆

湘教版数学九年级下册说课稿:2.4过不共线三点作圆

湘教版数学九年级下册说课稿:2.4 过不共线三点作圆一. 教材分析湘教版数学九年级下册第2.4节“过不共线三点作圆”是圆的基本性质和圆的方程学习的基础内容。

本节内容主要让学生了解并掌握过不共线三点可以确定一个圆的性质,以及如何利用这一性质来作圆。

教材通过生活实例引入课题,让学生感受数学与生活的紧密联系,激发学生的学习兴趣。

紧接着,教材引导学生通过合作、探究、发现的方式来认识和证明过不共线三点作圆的性质,培养学生的合作意识和探究能力。

二. 学情分析学生在学习本节内容前,已经掌握了直线、圆的基本概念和性质,具有一定的几何直观能力和逻辑思维能力。

但部分学生对几何图形的直观感知能力较弱,对于证明过程的理解和运用还有待提高。

此外,学生对于合作探究的学习方式还不太熟悉,需要教师在教学过程中加以引导和培养。

三. 说教学目标1.知识与技能目标:让学生掌握过不共线三点作圆的性质,并能够运用这一性质解决实际问题。

2.过程与方法目标:通过合作、探究、发现的学习方式,培养学生的合作意识和探究能力。

3.情感态度与价值观目标:让学生感受数学与生活的紧密联系,增强学生对数学学习的兴趣和信心。

四. 说教学重难点1.教学重点:过不共线三点作圆的性质及应用。

2.教学难点:如何引导学生理解和证明过不共线三点作圆的性质。

五. 说教学方法与手段1.教学方法:采用问题驱动法、合作探究法、讲解法等。

2.教学手段:多媒体课件、黑板、几何模型等。

六. 说教学过程1.导入新课:通过生活实例引入过不共线三点作圆的概念,让学生感受数学与生活的联系。

2.探究新知:引导学生分组合作,利用几何模型进行探究,发现并证明过不共线三点作圆的性质。

3.讲解示范:教师对过不共线三点作圆的性质进行讲解,并通过几何模型进行示范。

4.练习巩固:学生独立完成练习题,加深对过不共线三点作圆性质的理解。

5.拓展应用:引导学生运用过不共线三点作圆的性质解决实际问题。

6.课堂小结:教师和学生一起总结本节课的主要内容和收获。

九年级数学下册第2章圆课题过不共线三点作圆学案新版湘教版

九年级数学下册第2章圆课题过不共线三点作圆学案新版湘教版

课题:过不共线三点作圆【学习目标】1.理解确定圆的条件及外接圆和外心的定义.2.掌握三角形外接圆的画法.【学习重点】确定圆的条件及外接圆和外心的定义.【学习难点】任意三角形的外接圆的作法.情景导入 生成问题情景导入:1.圆心和半径分别确定圆的什么? 答:圆心确定圆的位置;半径确定圆的大小.2.平面内一定点A ,如何过点A 作一个圆?过点A 可作多少个圆?答:任取平面内一点O 为圆心,以OA 为半径作圆即可,过点A 的圆可作无数个.3.平面内有两定点A ,B ,如何过A ,B 两点作一个圆?过两点可作多少个圆?答:以线段AB 垂直平分线上任意一点为圆心,以这点到点A 的距离为半径画圆即可,这样的圆有无数个.自学互研 生成能力知识模块一 不在同一直线上的三点确定一个圆阅读教材P61~P62,完成下列问题:如何过不在同一直线上的三个点作圆?可作多少个圆? 答:由上面作图可知,过A ,B 两点圆的圆心在AB 的垂直平分线上,过B ,C 两点的圆的圆心在BC 的垂直平分线上,两条垂直平分线交于一点O ,且OA =OB =OC ,以OA 为半径作圆即可,由于圆心与半径的唯一性,这样的圆有且只有一个.即不在同一直线上的三个点确定一个圆.【例1】 在同一平面内,过已知A ,B ,C 三个点可以作圆的个数为( D )A .0个B .1个C .2个D .0个或1个【变例1】 用尺规法找出BAC ︵所在圆的圆心;(保留作图痕迹,不写作法)略.【变例2】如图,OA=OB=OC,且∠ACB=30°,且∠AOB的大小是( C)A.40°B.50°C.60°D.70°知识模块二三角形的外接圆和外心什么是三角形的外接圆?什么是三角形的外心?答:经过三角形各个顶点的圆叫这个三角形的外接圆,三角形外接圆的圆心叫作这个三角形的外心,这个三角形叫作这个圆的内接三角形,三角形的外心是它的三条边的垂直平分线的交点,它到各个顶点的距离相等.【例2】如图,在△ABC中,AB=AC=5,BC=6,求△ABC外接圆的半径.解:作AD⊥BC,垂足为D ,连接OB.∴AD=52-32=4.设OA =r ,OB 2=OD 2+BD 2,即r 2=(4-r)2+32,解得r =258. 【变例1】 在△ABC 中,AB =AC =5,且△ABC 的面积为12,则△ABC 外接圆的半径为__256或258__. 【变例2】 在Rt △ABC 中,∠C =90°,AC =6cm ,BC =8cm ,则它的外心与顶点C 之间的距离是( A ) A .5cm B .6cm C .7cm D .8cm【变例3】 点O 是△ABC 的外心,若∠BOC =80°,则∠BAC 的度数为( C )A .40°B .100°C .40°或140°D .40°或100°交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自学互研”得出的结论展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 不在同一直线上的三点确定一个圆知识模块二 三角形的外接圆和外心检测反馈 达成目标1.三角形的外心是( B )A .三角形三角平分线交点B .三角形三条边的垂直平分线的交点C .三角形三条高的交点D .三角形三条中线的交点2.(普洱中考)⊙O 是△A BC 的外接圆,∠OCB =40°,则∠A 的度数是( B )A .40°B .50°C .60°D .100°3.(济南中考)如图⊙O 的半径为1,△ABC 是⊙O 的内接等边三角形,点D ,E 在圆上,四边形BCDE 为矩形,这个矩形的面积是( B )A .2B . 3C .32D .32课后反思 查漏补缺1.收获:_____________________________________________________________________ 2.存在困惑:__________________________________________________________________。

湘教版数学九年级下册2.4《过不共线三点作圆》教学设计

湘教版数学九年级下册2.4《过不共线三点作圆》教学设计

湘教版数学九年级下册2.4《过不共线三点作圆》教学设计一. 教材分析湘教版数学九年级下册2.4《过不共线三点作圆》是本册教材中的一个重要内容。

在此之前,学生已经学习了圆的基本概念、圆的性质等知识。

本节课通过教授过不共线三点作圆的方法,使学生更深入地理解圆的性质,培养学生的几何思维能力。

教材通过具体的例子引导学生探索、发现、归纳圆的性质,从而提高学生的数学素养。

二. 学情分析九年级的学生已经具备了一定的几何知识基础,对圆的概念和性质有初步的了解。

但是,对于过不共线三点作圆的原理和应用,学生可能还存在一定的困惑。

因此,在教学过程中,需要关注学生的认知水平,引导学生通过实际操作和思考,理解并掌握过不共线三点作圆的方法。

三. 教学目标1.让学生理解过不共线三点作圆的原理。

2.培养学生运用圆的性质解决实际问题的能力。

3.提高学生的几何思维能力,培养学生的数学素养。

四. 教学重难点1.过不共线三点作圆的原理。

2.如何运用圆的性质解决实际问题。

五. 教学方法1.采用问题驱动的教学方法,引导学生主动探索、发现、归纳圆的性质。

2.利用几何画板等软件,进行动态演示,帮助学生直观理解过不共线三点作圆的原理。

3.通过实际例题,让学生运用圆的性质解决实际问题,巩固所学知识。

六. 教学准备1.准备相关教学PPT,包括理论知识、实例分析等。

2.准备几何画板软件,用于动态演示。

3.准备相关练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)通过一个实际问题引出本节课的主题:过不共线三点作圆。

例如,讲解一个 farmer 问题: farmer 有三个奶牛,分别位于不同的地方,他想围一个圆形牧场,如何确定圆的位置和半径?2.呈现(15分钟)讲解过不共线三点作圆的原理,引导学生通过实际操作和思考,发现并归纳圆的性质。

利用几何画板软件进行动态演示,帮助学生直观理解。

3.操练(15分钟)让学生分组进行实际操作,尝试过不共线三点作圆。

湘教版数学九年级下册2.4《过不共线三点作圆1》说课稿

湘教版数学九年级下册2.4《过不共线三点作圆1》说课稿

湘教版数学九年级下册2.4《过不共线三点作圆 1》说课稿一. 教材分析湘教版数学九年级下册2.4《过不共线三点作圆 1》是本节课的主要内容。

教材从实际问题出发,引导学生认识圆的定义,并通过实例让学生掌握过不共线三点作圆的方法。

本节课的内容是学生对圆的基本概念和性质的进一步理解,也是对圆的画法的基本训练。

教材通过问题驱动的方式,引导学生探究过不共线三点作圆的方法,培养学生的动手操作能力和解决问题的能力。

二. 学情分析学生在学习本节课之前,已经学习了圆的基本概念和性质,对圆的画法有一定的了解。

但是,对于过不共线三点作圆的具体方法,学生可能还没有完全掌握。

因此,在教学过程中,我需要根据学生的实际情况,引导学生通过实例理解过不共线三点作圆的方法,并加以巩固。

三. 说教学目标本节课的教学目标有三:1.让学生理解圆的定义,掌握过不共线三点作圆的方法。

2.培养学生动手操作能力和解决问题的能力。

3.通过对圆的画法的探究,培养学生的逻辑思维能力和团队合作能力。

四. 说教学重难点本节课的重难点是让学生理解并掌握过不共线三点作圆的方法。

过不共线三点作圆是圆的基本画法之一,对于学生来说,理解和掌握这一方法需要一定的空间想象能力和逻辑思维能力。

因此,在教学过程中,我需要通过实例和操作,引导学生理解和掌握这一方法。

五. 说教学方法与手段在本节课的教学过程中,我将采用问题驱动的教学方法,通过实例和操作,引导学生理解和掌握过不共线三点作圆的方法。

同时,我会利用多媒体教学手段,如PPT和几何画板,来辅助教学,使学生更直观地理解和掌握圆的画法。

六. 说教学过程1.导入:通过一个实际问题,引导学生认识圆的定义,激发学生的学习兴趣。

2.探究:引导学生通过实例,探究过不共线三点作圆的方法,并总结出规律。

3.巩固:让学生通过操作,巩固过不共线三点作圆的方法。

4.应用:让学生运用过不共线三点作圆的方法,解决实际问题。

5.总结:对本节课的内容进行总结,强调重点和难点。

2.4过不共线三点作圆教案九年级数学下册

2.4过不共线三点作圆教案九年级数学下册

九年级数学新授课型第__章__课时,总第__课时授课时间:月日周教学内容:2.4 过不共线三点作圆教学目标:1、理解掌握确定圆的条件及外接圆和外心的定义.2、理解掌握三角形外接圆的画法3、经过不在同一直线上的三点确定一个圆的探索过程,学会用尺规作不在同一直线上三点的圆. 重点:确定圆的条件及外接圆和外心的定义难点:任意三角形的外接圆的作法学习内容及导学流程方法指导或行为提示一、目标导学(一)创设情境,导入新知如图所示,点A,B,C表示因支援三峡工程建设而移民的某县新建的三个移民新村.这三个新村地理位置优越,空气清新,环境幽雅.花园式的建筑住宅让人心旷神怡,但安居后发现一个极大的现实问题:学生就读的学校离家太远,给学生上学和家长接送学生带来了很大的麻烦.根据上面的实际情况,政府决定为这三个新村就近新建一所学校,让三个村到学校的距离相等,你能帮助他们为学校选址吗?(二)明确目标,揭示课题今天我们的学习目标是――情境导入二、新知探究(一)自学自研:阅读教材P61-62,完成下列各题:1、确定圆的条件:活动1:如何过一点A作一个圆?过点A可以作多少个圆?结论:过平面内一个点A的圆,是以为圆心,以为半径的圆。

这样的圆有个。

活动2:如何过两点A、B作一个圆?过两点可以作多少个圆?结论:经过平面内两个点A、B的圆,先作,再以为圆心,以为半径画圆。

这样的圆有个。

活动3:如何过不在同一直线上的三个点作圆?可以作多少个圆?已知:如图,平面上不共线的三点A、B、C。

求作:⊙O,使它经过点A、B、C。

分析:由于⊙O经过点A、B、C,所以圆心O与三点A、B、C的距离。

即==,因此圆心O既在线段AB的上,又在线段BC的上。

作法:(1)连接AB,作线段AB的垂直平分线EF;(2)连接BC,作线段BC的垂直平分线MN;(3)以EF和MN的交点O为圆心,以OA为半径作圆;则⊙O就是所求作的圆结论:经过不在同一直线上的三个点A、B、C的圆,是以为圆心,以为半径的圆,这样的圆有个。

湘教版数学九年级下册2.4《过不共线三点作圆 2》教学设计

湘教版数学九年级下册2.4《过不共线三点作圆 2》教学设计

湘教版数学九年级下册2.4《过不共线三点作圆 2》教学设计一. 教材分析湘教版数学九年级下册2.4《过不共线三点作圆》是本节课的主要内容。

这一节内容是在学生掌握了圆的定义、圆的性质、圆的标准方程等知识的基础上进行学习的。

通过这一节课的学习,学生需要掌握过不共线三点作圆的方法和步骤,并能够运用这一方法解决实际问题。

教材中给出了详细的步骤和例子,同时也提供了丰富的练习题供学生巩固所学知识。

二. 学情分析在进入九年级下册之前,学生已经学习了两年多的数学知识,对于基础的代数、几何知识有一定的掌握。

在几何知识方面,学生已经学习了图形的性质、图形的变换等知识,对于图形的性质和图形的变换有一定的了解。

在代数知识方面,学生已经学习了函数、方程等知识,对于函数和方程的解法有一定的了解。

但是,对于过不共线三点作圆的知识,学生可能还没有接触过,需要通过本节课的学习来掌握。

同时,由于九年级学生的学习压力较大,需要教师在教学过程中注重启发学生的学习兴趣,引导学生主动参与学习。

三. 教学目标1.知识与技能目标:学生能够理解过不共线三点作圆的原理,掌握过不共线三点作圆的方法和步骤,并能够运用这一方法解决实际问题。

2.过程与方法目标:通过自主学习、合作交流等方法,学生能够培养自己的问题解决能力和团队协作能力。

3.情感态度与价值观目标:学生能够体验到数学与实际生活的紧密联系,激发学习数学的兴趣和热情。

四. 教学重难点1.教学重点:过不共线三点作圆的方法和步骤。

2.教学难点:理解和掌握过不共线三点作圆的原理。

五. 教学方法1.启发式教学法:通过提出问题、引导学生思考,激发学生的学习兴趣和主动性。

2.合作交流法:学生进行小组讨论、合作交流,培养学生的团队协作能力和沟通能力。

3.实践操作法:引导学生动手操作,通过实际操作来加深对知识的理解和掌握。

六. 教学准备1.教学PPT:制作教学PPT,包括教材中的例题和练习题。

2.教学素材:准备相关的图片、实例等教学素材,用于辅助教学。

九年级数学下册 第2章 圆 课题 过不共线三点作圆学案

九年级数学下册 第2章 圆 课题 过不共线三点作圆学案

课题:过不共线三点作圆【学习目标】1.理解确定圆的条件及外接圆和外心的定义. 2.掌握三角形外接圆的画法. 【学习重点】确定圆的条件及外接圆和外心的定义. 【学习难点】任意三角形的外接圆的作法.情景导入 生成问题情景导入:1.圆心和半径分别确定圆的什么?答:圆心确定圆的位置;半径确定圆的大小.2.平面内一定点A ,如何过点A 作一个圆?过点A 可作多少个圆?答:任取平面内一点O 为圆心,以OA 为半径作圆即可,过点A 的圆可作无数个. 3.平面内有两定点A ,B ,如何过A ,B 两点作一个圆?过两点可作多少个圆?答:以线段AB 垂直平分线上任意一点为圆心,以这点到点A 的距离为半径画圆即可,这样的圆有无数个.自学互研 生成能力知识模块一 不在同一直线上的三点确定一个圆 阅读教材P61~P62,完成下列问题:如何过不在同一直线上的三个点作圆?可作多少个圆?答:由上面作图可知,过A ,B 两点圆的圆心在AB 的垂直平分线上,过B ,C 两点的圆的圆心在BC 的垂直平分线上,两条垂直平分线交于一点O ,且OA =OB =OC ,以OA 为半径作圆即可,由于圆心与半径的唯一性,这样的圆有且只有一个.即不在同一直线上的三个点确定一个圆.【例1】 在同一平面内,过已知A ,B ,C 三个点可以作圆的个数为( D )A .0个B .1个C .2个D .0个或1个【变例1】 用尺规法找出BAC ︵所在圆的圆心;(保留作图痕迹,不写作法)略.【变例2】 如图,OA =OB =OC ,且∠ACB=30°,且∠AOB 的大小是( C )A .40°B .50°C .60°D .70°知识模块二 三角形的外接圆和外心什么是三角形的外接圆?什么是三角形的外心?答:经过三角形各个顶点的圆叫这个三角形的外接圆,三角形外接圆的圆心叫作这个三角形的外心,这个三角形叫作这个圆的内接三角形,三角形的外心是它的三条边的垂直平分线的交点,它到各个顶点的距离相等.【例2】 如图,在△ABC 中,AB =AC =5,BC =6,求△ABC 外接圆的半径.解:作AD⊥BC,垂足为D ,连接OB.∴AD=52-32=4. 设OA =r ,OB 2=OD 2+BD 2,即r 2=(4-r)2+32,解得r =258.【变例1】 在△ABC 中,AB =AC =5,且△ABC 的面积为12,则△ABC 外接圆的半径为__256或258__.【变例2】 在Rt △ABC 中,∠C =90°,AC =6cm ,BC =8cm ,则它的外心与顶点C 之间的距离是( A )A .5cmB .6cmC .7cmD .8cm【变例3】 点O 是△ABC 的外心,若∠BOC =80°,则∠BAC 的度数为( C )A .40°B .100°C .40°或140°D .40°或100°交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自学互研”得出的结论展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 不在同一直线上的三点确定一个圆 知识模块二 三角形的外接圆和外心检测反馈 达成目标1.三角形的外心是( B )A .三角形三角平分线交点B .三角形三条边的垂直平分线的交点C .三角形三条高的交点D .三角形三条中线的交点2.(普洱中考)⊙O 是△A BC 的外接圆,∠OCB =40°,则∠A 的度数是( B )A .40°B .50°C .60°D .100°3.(济南中考)如图⊙O 的半径为1,△ABC 是⊙O 的内接等边三角形,点D ,E 在圆上,四边形BCDE 为矩形,这个矩形的面积是( B )A .2B . 3C .32D .32课后反思查漏补缺1.收获:_____________________________________________________________________ 2.存在困惑:__________________________________________________________________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.4 过不共线三点作圆1.掌握过不共线的三点作圆的方法;2.认识三角形的外接圆和外心的概念,并会进行运用.(重点)一、情境导入如图所示,点A ,B ,C 表示因支援三峡工程建设而移民的某县新建的三个移民新村.这三个新村地理位置优越,空气清新,环境幽雅.花园式的建筑住宅让人心旷神怡,但迁居后发现一个极大的现实问题:学生目前就读的学校离家太远,给学生上学和家长接送学生带来了很大的麻烦.根据上面的实际情况,政府决定为这三个新村就近新建一所学校,让三个村到学校的距离相等,你能帮助他们为学校选址吗?二、合作探究探究点一:过不共线三点作圆如图,AB ︵是一座石拱桥的桥拱.请你确定出AB ︵所在圆的圆心.解析:要作AB ︵所在圆的圆心,就要在AB ︵上确定三点.找与这三点距离都相等的那个点.即是圆心.解:作法:1.在AB ︵上任找异于A 、B 的一点C ;2.连接AC 、BC ;3.分别作线段AC 、BC 的垂直平分线,两线交于点O ,则点O 即为所求作的AB ︵所在圆的圆心.方法总结:确定已知弧所在圆的圆心,只需在弧上任取两条弦,这两条弦的垂直平分线的交点即为圆心.探究点二:三角形的外接圆及外心的相关计算【类型一】 与圆的内接三角形有关的角的计算如图,△ABC 内接于⊙O ,若∠OAB =20°,则∠C 的度数是________.解析:由OA =OB ,知∠OAB =∠OBA =20°,所以∠AOB =140°,根据圆周角定理,得∠C =12∠AOB =70°.故填70°. 方法总结:在圆中求圆周角的度数,可以根据圆周角定理找相等的角实现互换,也可以寻找同弧所对的圆周角与圆心角的关系.【类型二】 与圆的内接三角形有关线段的计算如图,在△ABC 中,O 是它的外心,BC =24cm ,O 到BC 的距离是5cm ,求△ABC 的外接圆的半径.解:连接OB ,过点O 作OD ⊥BC 于D ,则OD =5cm ,BD =12BC =12cm.在Rt△OBD 中,OB =OD 2+BD 2=52+122=13(cm).即△ABC 的外接圆的半径为13cm.方法总结:由外心的定义可知外接圆的半径等于OB ,过点O 作OD ⊥BC ,易得BD =12cm.由此可求它的外接圆的半径.三、板书设计教学过程中,强调三角形的外接圆的圆心到三角形三个顶点的距离相离,它是三角形三边垂直平分线的交点.在圆中充分利用这一点可解决相关的计算问题. 第(1)课时课题:书法---写字基本知识课型:新授课教学目标:1、初步掌握书写的姿势,了解钢笔书写的特点。

2、了解我国书法发展的历史。

3、掌握基本笔画的书写特点。

重点:基本笔画的书写。

难点:运笔的技法。

教学过程:一、了解书法的发展史及字体的分类:1、介绍我国书法的发展的历史。

2、介绍基本书体:颜、柳、赵、欧体,分类出示范本,边欣赏边讲解。

二、讲解书写的基本知识和要求:1、书写姿势:做到“三个一”:一拳、一尺、一寸(师及时指正)2、了解钢笔的性能:笔头富有弹性;选择出水顺畅的钢笔;及时地清洗钢笔;选择易溶解的钢笔墨水,一般要固定使用,不能参合使用。

换用墨水时,要清洗干净;不能将钢笔摔到地上,以免笔头折断。

三、基本笔画书写1、基本笔画包括:横、撇、竖、捺、点等。

2、教师边书写边讲解。

3、学生练习,教师指导。

(姿势正确)4、运笔的技法:起笔按,后稍提笔,在运笔的过程中要求做到平稳、流畅,末尾处回锋收笔或轻轻提笔,一个笔画的书写要求一气呵成。

在运笔中靠指力的轻重达到笔画粗细变化的效果,以求字的美观、大气。

5、学生练习,教师指导。

(发现问题及时指正)四、作业:完成一张基本笔画的练习。

板书设计:写字基本知识、一拳、一尺、一寸我的思考:通过导入让学生了解我国悠久的历史文化,激发学生学习兴趣。

这是书写的起步,让学生了解书写工具及保养的基本常识。

基本笔画书写是整个字书写的基础,必须认真书写。

课后反思:学生书写的姿势还有待进一步提高,要加强训练,基本笔画也要加强训练。

总第(2)课时课题:书写练习1课型:新授课教学目标:1、教会学生正确书写“杏花春雨江南”6个字。

2、使学生理解“杏花春雨江南”的意思,并用钢笔写出符合要求的的字。

重点:正确书写6个字。

难点:注意字的结构和笔画的书写。

教学过程:一、小结课堂内容,评价上次作业。

二、讲解新课:1、检查学生书写姿势和执笔动作(要求做到“三个一”)。

2、书写方法是:写一个字看一眼黑板。

(老师读,学生读,加深理解。

)3、书写教学“杏花春雨江南”6个字。

杏:上大下小,上面要写得大,大在哪里?(大在撇捺)写的时候撇捺要舒展,象燕子张开的翅膀;下面的“口”要写得小,左右两竖要内斜,稍扁;“木”的竖写在竖中线上。

花:也是上下结构,草字头两竖要内斜;下面单人旁起笔对准上面的左竖,竖弯钩起笔对准上面的右竖;竖弯钩要舒展,(用红笔描竖弯钩,并在旁边书写一个大的竖弯钩)要求弯处圆转,不能僵硬(书写僵硬的竖弯钩,并在旁边打×)。

春:上部三横都是短横,收笔处不要顿;撇画最长,捺画从哪里起笔?从第三横下面起笔,不能碰到撇;下面“日”的两竖要竖直,不能斜。

雨:旁边两竖要内斜,上横短,中竖写在竖中线上;从下面看,哪一笔最低?钩最低,中竖最短;四个点都是斜点。

江:左右结构,左窄右宽左边三点水第二点略向外展;右边“工”字上横是短横,下横是长横;中竖略斜。

南:上横短;下边两竖内斜;框架中两横都是短的,中间一竖悬针;三个竖画左、中差不多长,右竖钩最低;横折钩要写出弯势。

4、学生练习,教师巡回指导。

三、讲评:收上学生的作业,进行批改和评比,对写得好的进行表扬,并加盖☆符号章,然后贴在展示板上,向学生展示。

板书设计:书写练习1、杏花春雨江南我的思考:进一步加强写字姿势训练,这是根本。

在了解字结构的基础上更好的把握每个字的书写。

及时对书写情况进行反馈,同时通过奖励激发学生兴趣。

课后反思:通过字形的比较,学生基本上学会了笔画位置的比较,但是还需要不断的引导。

第(3)课时课题:书写练习2课型:新授课教学目标:1、掌握车字旁写法,并能把“轻”字写端正。

2、完成书写练习。

重点:正确地书写“轻”字难点:“车”字旁的书写。

教学过程:一、讲评上一课作业情况。

1、表扬书写优秀者,展示其作业。

2、指出存在的主要缺点并进行针对性的练习。

二、指导“车”字旁写法:1、出示范字,观察“车”字旁写法。

2、讨论明确其书写要领:“车”字旁分四笔完成,整个偏旁左重右轻,不超过竖中线。

第一笔横稍短。

第二笔撇折收笔于横中线。

第三笔垂露竖,应在第一笔横下的正中位置起笔。

最后一笔,比第一横长一些,离折笔稍近一些。

3、练写“车”字旁。

三、指导临写“轻”字。

1、观察范字。

2、明确写法。

“轻”字的写法:“轻”字左窄右宽,右边的第一笔起笔与左边的第一笔短横相齐平,底部大体相齐,右边上下两部分基本相等。

四、课后延伸书写:斩、转板书设计:书写练习2、轻、斩、转我的思考:以复习巩固导入,并有针对地进行纠正。

明确字的重心及每个笔画在田字格中分布的位置,使学生初步掌握字的结构特点。

在练习书写“车”字旁的基础上,更好的把握整个字的字形。

课后及时巩固,拓展。

课后反思:学生基本上能把握好字在田字格中的位置,处理好左右的布局。

第(4)课时课题:结构特点(六)课型:新授课教学目标: 1、懂得以宝盖头、穴字头等作为字头的字宜上大而下小。

2、通过练习,写好课文中的例字。

重点:掌握以宝盖头、穴字头等作为字头的字宜上大而下小难点:把握好字的结构。

教学过程:一、复习巩固二、教学新课1.讲解以宝盖头、穴字头等作为字头的字(1)教师讲解字头的书写。

(2)学生练习书写,教师指导书写。

(3教师根据实际情况小结,提出要求。

2.指导书写例字(1)出示例字:“宝”:首先要控制好字头,摆正位置,下面的“玉”字占格子的一半以上,特别是最后一横宜稍长,使整个字立正。

“穷”:下面的力字宜正,不宜写得太小。

(其余字略)(2)学生练习,师巡回指导。

3、提出注意点三、讲评:收上学生的作业,进行批改和评比,对写得好的进行表扬,并加盖☆符号章,然后贴在展示板上,向学生展示。

板书设计:结构特点(6)宝、穷、写、会、奔我的思考:使学生更好的把握好字的结构,同时在教师的指导下提高学生辨别能力。

激励学生更好的书写。

第(5)课时课题:怎样写好字课型:复习课教学目标:1、让学生能够正确认识,端正态度。

教学过程:一、正确的学书之路1.临帖临帖是学习书法的最根本的方法。

古往今来,没有一个书法家是不经临习而成功的,没有一个字写得好的人是不经过临帖的。

只有临帖,取法唐楷、晋行、汉隶、秦篆等传统的东西,才会有所获。

2.专一学书首先应师承一家,建立根据地,然后再发展。

这就有一个选帖的问题,选帖的标准:①好帖;②喜欢。

选定帖后专心致志,认真临习,坚持不懈,直至形同神似。

这个时期检验你学习得怎样,首先看临得像不像,再看笔法笔意。

3.博采众长当对一本帖或一家书体临习达到形同神似之后,就要广涉其他好帖,取其营养加以吸收消化,融会贯通。

4.字外功夫练字的同时经常要多读书,多掌握方方面面的知识,加强自身修养。

总之一句话,加强字外功夫的训练。

在此基础上,逐步形成自己的风格,便自成一家。

综上所述,我们可以把正确的学书之路概括为:二、科学的学书方法明确了正确的学书之路之后,我们还要掌握科学的学习方法,有了科学的学习方法,就可得到较好的学习效果。

1.临帖和摹帖这既是正确学书之路的开端,又是正确学书方法中的根本点,必须坚信不疑,坚定不移。

摹帖和临帖各有优点,效果各异。

姜夔《续书谱》中说:“临书易失占人位置,而多得古人笔意,摹书易得古人位置,而多失古人笔意,临书易进,摹书易忘。

”其中的“笔意”即指笔法、笔势及线条意趣。

“临”的方法就是看着字帖,照着写。

只要仔细地临,便容易掌握笔法笔意.从而把范本的精髓学到手。

“摹”的方法,就是用薄纸蒙在帖上,直接地描画。

所以字形基本上不会走样,多摹几遍,有利于把握结构。

但摹书看不清笔法,“易失笔意”,虽然间架不错.但没有笔法,字就僵化。

所以,初学者可以临摹并用,相互补充。

2.每天定量事实证明,任何事情都有一个由量变到质变的过程,练字也一样,写得太少,练习量跟不上,就谈不上进步;当然盲目机械地多写,疲倦了效果也不好。

一定的量才能达到的一定的效果,较佳的量才能达到较佳的效果。

3.循序渐进学习书法,在勤学苦练的基础上,还应该懂得它是一个循序渐进的过程:第一,先正楷,后行草。

苏轼说:“真生行,行生草。

真如立,行如行,草如走。

”就是说楷、行、草书三者如同人的立、走、跑,如果人连站都不能站,怎么能走和跑呢?如果没有楷书基础,直接写行书、草书,就会疏于法度,流于轻滑飘浮。

相关文档
最新文档