实验液体的表面张力测定(滴重法)

合集下载

液体表面张力系数的测定实验报告

液体表面张力系数的测定实验报告

液体表面张力系数的测定实验报告液体表面张力系数的测定实验报告引言:液体表面张力是液体分子间相互作用力在液体表面产生的结果,是液体表面分子间的一种特殊力。

液体表面张力的大小对于液体的性质和应用有着重要的影响,因此准确测定液体表面张力系数具有重要的科学意义和实际应用价值。

实验目的:本实验旨在通过测定液体表面张力系数,了解液体的性质和分子间相互作用力,掌握测定液体表面张力的方法和技巧。

实验原理:液体表面张力系数的测定常用的方法有测量液体表面降低高度法和测量液滴形状法。

本实验采用测量液滴形状法。

实验仪器和药品:1. 精密天平2. 滴定管3. 滴定管架4. 滴定瓶5. 蒸馏水6. 乙醇溶液实验步骤:1. 将实验室温度调至恒定,避免温度对实验结果的影响。

2. 用精密天平称取一定质量的滴定瓶。

3. 在滴定管架上放置一只干净的滴定管。

4. 将滴定瓶倒置并将液体滴入滴定管中,直到滴定管口外溢。

5. 记录液滴的质量和滴定管口外溢的时间。

6. 重复以上步骤3-5,每次使用不同的液体进行实验。

实验数据处理:根据实验数据,可以计算液体表面张力系数。

液体表面张力系数的计算公式为:γ =(4Mg) / (πd^2t)其中,γ为液体表面张力系数,M为液滴的质量,g为重力加速度,d为液滴的直径,t为滴定管口外溢的时间。

实验结果与分析:通过实验测量和计算,得到了不同液体的表面张力系数。

结果显示,乙醇溶液的表面张力系数较大,说明乙醇溶液的分子间相互作用力较强;而蒸馏水的表面张力系数较小,说明蒸馏水的分子间相互作用力较弱。

结论:通过本实验的测定,我们成功地测量了不同液体的表面张力系数,并得出了相应的结论。

液体表面张力系数的测定对于了解液体的性质和分子间相互作用力具有重要意义,对于液体的应用和研究也具有实际价值。

实验中可能存在的误差:1. 实验过程中,滴定管口外溢的时间可能受到人为操作的影响,导致实验结果的误差。

2. 液滴的直径的测量可能存在一定的误差,影响了液体表面张力系数的计算结果。

利用滴重法测定液体表面张力

利用滴重法测定液体表面张力

摘要本文论述了用滴重法测定液体表面张力的基本原理、测定装置、测试步骤和该方法的应用特点。

Abstract:The basic principle, device and method for measuring liquid surface tension with the drop weight method are reviewed in this paper. Besides, the application features of this method are introduced.关键词液体表面张力滴重法Keywords Liquid surface tension; Drop weight method前言表面张力的知识对基础科学研究和生产应用都具有重要意义。

它决定了很多工业生产的质量,例如:食品、农业化学制品、药品的生产和冶金[1]、炼钢等等。

人们针对表面张力也做了大量的研究,很多发达国家将表面张力测定作为检测和控制环境污染的标准程序之一。

滴重法是一种较好的测定表面张力的方法,此方法操作简单,温度控制方便,试样尺寸小,再现性好,而且能够测量液-气界面和液-液界面的张力。

在适当的条件下,滴重法的精度可以达到±0.01mN/m。

测量原理图1 滴重法示意图如图1所示,对于液体从很细的管口中缓慢滴出的过程,液滴在表面张力的支撑下缓慢长大,当重量比表面张力稍大时,液滴就将落下来。

设管口的半径为r,落下的液滴质量为m,其表面张力为σ,当重力加速度为g,则可以得到:(1)σrmg2π=但实际过程并不是这么简单,当液滴落下时,首先式中部变细,大部分落下来,剩下的一部分变成小液滴,接着落下来。

即使采用毛细管,应用公式(1)也会产生很大的误差,因此Harkins 就引入了校正因子f ,则更精确的表面张力可以表示为: rf mg σ2π= (2) 其中f 与液滴的大小V 和管口的半径r 有关,根据f 与3/1V r 的关系,可以从表中查得相应的修正系数[2]。

最大泡压法测定溶液的表面张力(泡压法、滴重法、毛细管升高法)

最大泡压法测定溶液的表面张力(泡压法、滴重法、毛细管升高法)

最⼤泡压法测定溶液的表⾯张⼒(泡压法、滴重法、⽑细管升⾼法)表⾯张⼒的测定——最⼤⽓泡压⼒法、滴重法、⽑细管升⾼法⼀、实验原理:1.最⼤⽓泡压⼒法测定表⾯张⼒(装置如下图所⽰):其中,B是管端为⽑细管的玻璃管,与液⾯相切。

⽑细管中⼤⽓压为P0。

试管A中⽓压为P,当打开活塞E时,C中的⽔流出,体系压⼒P逐渐减⼩,逐渐把⽑细管液⾯压⾄管⼝,形成⽓泡。

当⽓泡在⽑细管⼝逐渐长⼤时,其曲率半径逐渐变⼩,⽓泡达最⼤时便会破裂。

此时⽓泡的曲率半径最⼩,即等于⽑细管半径r,⽓泡承受的压⼒差也最⼤△P=P0-P=2γ/r 此压⼒差可由压⼒计D读出,故γ=r△P/2若⽤同⼀⽀⽑细管测两种不同液体,其表⾯张⼒分别为γ1、γ2,压⼒计测得压⼒差分别为△P1、△P2则:γ1/γ2=△P1/△P2若其中⼀种液体的γ已知,例如⽔,则另⼀种液体的表⾯张⼒可由上式求得。

2.⽑细管⾝升⾼法(装置如下图所⽰):⽑细管法测定表⾯张⼒仪器⽑细管表⾯张⼒⽰意图当⼀根洁净的,⽆油脂的⽑细管浸进液体,液体在⽑细管内升⾼到h⾼度。

在平衡时,⽑细管中液柱重量与表⾯张⼒关系为:2πσrcosθ=πr2gdhσ=gdhr/2cosθ(1)如果液体对玻璃润湿,θ=0,cosθ=1(对于很多液体是这样情况),则:σ=gdhr/2 (2)式中σ为表⾯张⼒;g为重⼒加速度;d为液体密度;r为⽑细管半径。

上式忽略了液体弯⽉⾯。

如果弯⽉⾯很⼩,可以考虑为半球形,则体积应为:πr3 -2/3πr3 =1/3πr3从(2)可得:σ=gdr/2(h+1/3r)(3)更精确些,可假定弯⽉⾯为⼀椭圆球。

(3)式应变为:σ=gdhr/2(1+1/3(r/h)-0.1288(r/h)2+0.1312(r/h)3)(4)3. 滴重法(装置如右图所⽰):从图中可看出,当达到平衡时,从外半径为r的⽑细管滴下的液体重量应等于⽑细管周边乘以表⾯张⼒,即:mg=2πσr (5)式中m为液滴质量;r为⽑细管外半径;σ为表⾯张⼒;g为重⼒加速度。

测量液体表面张力系数实验报告

测量液体表面张力系数实验报告

测量液体表面张力系数实验报告
液体表面张力系数是液体分子间吸引力与液体表面处分子间吸引力之差,也是液体表现出来的特性之一。

测量液体表面张力系数对于理解液体性质、解决实际问题和开拓应用领域有重要意义。

本实验使用的方法是测量液滴的形状,计算出液体表面张力系数。

实验中的设备和材料有平板玻璃、毫升管、水、乙醇等。

首先,用毫升管将待测液体滴在平板玻璃表面上,使其形成一个较大的液滴。

然后,用放大镜观察液滴的形状,并用尺规测量液滴的直径和高度。

根据液滴的形状(通常为半球形),可以运用杨-卢埃尔公式计算得到液体表面张力系数。

杨-卢埃尔公式是:
γ = 2T/r
其中,γ为液体表面张力系数,T为液滴的悬垂力,r为液滴的半径。

实验结果显示,水的表面张力系数为72.0±0.5 mN/m,乙醇的表面张力系数为22.5±0.3 mN/m。

这些结果与先前实验的数据相符。

在本实验中,为确保测量结果的准确性和可靠性,需要注意以下几点事项:
1. 使用的玻璃片和毫升管要清洁干净,不得有灰尘、油脂等物质附着。

2. 每次实验前要检查玻璃片和毫升管是否存在微小划痕或损坏,以免影响测量的准确性。

3. 液体滴的大小应适中,过小或过大都会影响测量结果。

4. 在实验中要避免注入过量的液体,以免外部重力、表面张力、粘性等因素对实验结果造成影响。

本实验旨在通过测量液体表面张力系数,深入理解液体的性质和特征,为相关领域的开发和应用提供实验数据。

要想取得准确、可靠的实验结果,需要细心仔细地进行实验,严格遵守操作规程,同时认真分析和处理实验数据。

细圆柱滴重法测液体的表面张力系数

细圆柱滴重法测液体的表面张力系数

细圆柱滴重法测液体的表面张力系数细圆柱滴重法是一种简单可靠的测定液体的表面张力的方法。

细圆柱滴重法的基本原理:细圆柱滴重法依赖重力,在液体中放入特定形状的
细圆柱体,重力对该细圆柱体施加自身重量力,液体则对细圆柱体施加表面张力力,该滴体的上升速度由重力作用力和表面张力之间的平衡决定,测得该滴体上升速度,即可求得液体表面张力系数。

细圆柱滴重法测试液体的表面张力时,须将测试液体密闭容器中滴入,方可测
试表面张力。

首先,先将相同面积的细圆柱体(根据具体需要调节)放入装有测试液体的罐内;其次,借助精密的时间记录仪、连接尺度的绳索和重量的小物体,仔细观察放入的小滴体的上升过程,记录到小滴体完全在罐内浮起时间即可;最后,将实验所测液体表面张力和标准值进行比对,判定液体表面张力参数。

细圆柱滴重法不仅适用于研究实验室里的液体,也适用于日常生活之中,比如
洗衣液中有不同数值的表面张力系数,可以通过细圆柱滴重法来进行测定。

而且,将该法用在酿造过程中,大大提高了生产效率和酒的质量。

总之,细圆柱滴重法是一种简单可行的液体表面张力测试方法,其精确性及优
越性。

滴重法在实验室,学校,工厂,酒业等均有广泛应用,可以有效提高生产率和产品质量。

实验中如何测量液体的表面张力

实验中如何测量液体的表面张力

实验中如何测量液体的表面张力表面张力是液体表面上的分子间相互作用力所产生的一种特性。

在实验中,测量液体的表面张力可以帮助我们了解液体的性质以及分子间的相互作用。

本文将介绍几种常见的实验方法,旨在帮助读者了解实验中如何准确测量液体的表面张力。

一、杯垫法(Drop Weight Method)杯垫法是一种简单而常见的实验方法,用于测量液体的表面张力。

实验步骤如下:1. 准备一个平坦的表面,如一张白纸。

2. 将测量液体倒入一个小杯子中,待液体静置一段时间使其达到平衡状态。

3. 将一张玻璃片轻轻地浸入液体中,确保玻璃片在液体表面上形成一个完整的液体膜。

4. 缓慢地将玻璃片抬出液体,同时观察液体膜上的拖尾。

5. 使用天平测量并记录玻璃片上残余液体的重量。

6. 利用天平测量玻璃片完全浸湿液体的重量。

7. 计算液体的表面张力,公式为:表面张力 = 残余液体的重量 ÷玻璃片完全浸湿液体的重量。

杯垫法的优点是简单易行,并且不需要任何特殊的设备,因此在实验室和教学中广泛应用。

二、浮力法(Wilhelmy Method)浮力法是一种基于液体表面张力的浸润力测量方法。

实验步骤如下:1. 准备一根细且绝缘的平行丝,并将其固定在一个支架上。

2. 用放射状液体弧度刷将测量液体均匀地涂在细丝的表面上。

3. 将细丝缓慢地浸入液体中,同时观察液体升高或降低细丝的长度变化。

4. 用显微镜测量并记录液体升高或降低细丝的长度。

5. 根据液体的密度、重力加速度等参数,计算液体的表面张力。

浮力法能够较精确地测量表面张力,但需要较复杂的实验设备和测量方法,适合于专业实验室研究和深入研究液体性质的实验。

三、静滴法(Stalagmometer Method)静滴法是一种简便的测量液体表面张力的方法。

实验步骤如下:1. 准备一个带有细孔的滴液器,并放于支架上。

2. 倒入一定量的测量液体,待液体静置一段时间使其达到平衡状态。

3. 观察并记录液体从滴液器细孔中滴出的滴数与时间。

液体表面张力系数的测定实验报告

液体表面张力系数的测定实验报告

液体表面张力系数的测定实验报告一、实验目的。

本实验旨在通过测定液体表面张力系数的实验,掌握液体表面张力系数的测定方法,加深对表面张力的理解,提高实验操作能力。

二、实验原理。

液体表面张力系数是表征液体分子间相互作用力的物理量,通常用$\gamma$表示。

液体表面张力系数的测定方法有很多种,常用的有悬铁环法、悬滴法、悬水滴法等。

本实验采用悬水滴法测定液体表面张力系数。

三、实验仪器和试剂。

1. 一台天平。

2. 一根细丝。

3. 一根细管。

4. 一根毛细管。

5. 一根水平的细管。

6. 一些水。

四、实验步骤。

1. 将一根细丝固定在天平上,使其水平。

2. 用细管将水滴在细丝上,形成一个悬水滴。

3. 用毛细管在悬水滴下方加入一些水,使悬水滴增大,直到悬水滴脱落。

4. 测量水滴的质量$m$,并记录下悬水滴的直径$d$。

五、实验数据处理。

根据实验数据,可以计算出液体表面张力系数$\gamma$的值。

根据悬水滴法的原理,液体表面张力系数$\gamma$与水滴的质量$m$、直径$d$和重力加速度$g$之间存在如下关系:$$\gamma = \frac{4m}{\pi d^2 g}$$。

六、实验结果与分析。

根据实验数据和计算公式,可以得到液体表面张力系数$\gamma$的数值。

通过对实验数据的分析,可以发现液体表面张力系数与水滴质量和直径呈反比关系,与重力加速度呈正比关系。

这与表面张力的性质相符合。

七、实验结论。

通过本实验的实验操作和数据处理,成功测定了液体表面张力系数$\gamma$的数值。

实验结果与理论预期相符,验证了悬水滴法测定液体表面张力系数的可行性。

八、实验中的注意事项。

1. 实验操作要细致,保证悬水滴的稳定性。

2. 测量数据要准确,避免误差的产生。

3. 实验结束后要及时清理实验仪器和试剂。

九、参考文献。

1. 《物理化学实验》。

2. 《实验化学》。

十、致谢。

感谢实验指导老师的悉心指导和同学们的配合,使本次实验取得了圆满成功。

表面张力的测定实验报告

表面张力的测定实验报告

表面张力的测定实验报告表面张力的测定实验报告引言:表面张力是液体分子之间相互作用力的一种表现形式,是液体分子间吸引力的结果。

表面张力的测定对于研究液体性质、液滴形成和液体表面现象具有重要意义。

本实验旨在通过测定不同液体的表面张力,探究液体分子间相互作用力的差异,并了解表面张力对液体特性的影响。

实验材料与仪器:1. 三种不同液体:水、酒精、甘油2. 试管3. 滴管4. 皮尺5. 密度计实验方法:1. 实验前将试管清洗干净,以避免杂质对实验结果的影响。

2. 分别取一定量的水、酒精和甘油,注入三个试管中。

3. 将试管放在水平桌面上,注意保持试管外壁干燥。

4. 使用滴管,逐渐向试管中滴加液体,直到液体溢出试管口为止。

记录滴加液体的滴数。

5. 重复上述步骤3-4,每种液体进行三次测定,取平均值。

实验结果与数据处理:根据实验方法得到的滴加液体的滴数,可以计算出液体的表面张力。

根据液体表面张力的公式,表面张力=密度×重力加速度×滴数/滴液体积,可以得到不同液体的表面张力值。

通过对实验数据的处理,可以得到以下结论:1. 水的表面张力最大,酒精次之,甘油的表面张力最小。

这是因为水分子之间的氢键作用力较强,导致表面张力较大;酒精分子之间的作用力较弱,表面张力较水小;甘油分子之间的作用力最弱,表面张力最小。

2. 表面张力与液体的分子间相互作用力有关。

分子间相互作用力越强,表面张力越大;相反,作用力越弱,表面张力越小。

3. 表面张力对液体的性质有一定影响。

表面张力大的液体,易形成液滴,不易湿润固体表面;表面张力小的液体,不易形成液滴,易湿润固体表面。

讨论与改进:本实验通过测定不同液体的表面张力,探究液体分子间相互作用力的差异,并了解表面张力对液体特性的影响。

然而,由于实验条件的限制,实验结果可能存在一定误差。

为提高实验的准确性和可靠性,可以进行以下改进:1. 增加实验重复次数,取平均值,减小误差。

2. 使用更精确的仪器,如精密滴管和数字密度计,提高测量的准确性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验D-13 滴重法测定液体的表面张力实验目的用滴重法测量液体的表面张力,学会用校正因子表,迭代计算毛细管的半径。

实验原理当液体在滴重计(滴重计市售商品名屈氏粘力管)口悬挂尚未下滴时: r :若液体润湿毛细管时为外半径,若不润湿时应使用内半径。

σ: 液体的表面张力。

m :液滴质量(一滴液体)。

g ;重力加速度,当采用厘米.克.秒制时为 981cm /S 2但从实际观察可知,测量时液滴并未全部落下,有部分收缩回去,故需对上式进行校正: m ’为滴下的每滴液体质量(用分析天平称量)。

f 称为哈金斯校正因子,它是r /v 1/3的函数;v 是每滴液体的体积;可由每滴液体的质量除液体密度得到。

在上式中r 和f 是未知数,可采用已知表面张力的液体(如蒸馏水)做实验,采用迭代法得到: 设每滴水质量为m ’,体积为v ;先用游标卡尺量出滴重计管端的外直径D ;可得半径r 0;用r 0作初值;求得r 0/ v 1/3;查哈金斯校正因子表(插值法)得f 1;用水的表面张力σ和f 1代入12'r f m g πσ=;求的第一次迭代结果r 1;再由r 1/ v 1/3查表得f 2 ;再代入:22'r f m g πσ=求得第二次迭代值r 2,同法再由r 2/ v 1/3代入查表求f 3 ,这样反复迭代直至相邻两次迭代值的相对误差:┃(r i-1-r i )/ r i ┃≤eps (eps 表示所需精度,如1‰)这时的r 就是要求的结果,记录贴在滴重管上的标签上,半径就标定好了。

求得半径r 后,对待测液体只要测得每滴样品重和密度,就可由r/ v 1/3查表得f ;由: 2'r f m g πσ= 就可求得样品的表面张力。

纯水的表面张力见最大泡压法实验;水和酒精的密度数据见恒温技术与粘度实验。

仪器与药品屈氏粘力管一根。

测液体比重用比重瓶一个。

游标卡尺一根(公用)。

50ml 和100ml 烧杯各一个。

酒精,表面活性剂溶液(每组一个,实验室编好号)。

实验步骤1.用游标卡尺测量滴重计的外半径。

测量酒精从上刻度到下刻度滴下液滴的总质量W 和滴数n。

,算出每滴酒精的重量。

2.剩余的酒精倒入回收瓶,烘干滴重计,冷却后同法测量纯水的从上刻度到下刻度的总质量W和滴数n。

迭代法求得滴重计的半径。

把多余的蒸馏水倒掉,3.把滴重计用待测溶液(样品)荡洗数次后,用此溶液测量从上刻度到下刻度滴下液滴的总质量W和滴数n。

计算该待测表面活性剂溶液的表面张力。

4.测量此待测溶液的比重(方法见实验后附录中比重瓶法)酒精待测样品(表面活性剂溶液)每滴水重量(克)样品编号每滴酒精重量(克)比重(克/ cm3)滴重计校正半径r= (cm)每滴样品重量(克)酒精表面张力σ= (dyne/cm)样品表面张力σ = (dyne/cm)思考题1.在本实验中,为什么先按排测量酒精,测量后不洗直接烘干,再测纯水。

而测表面活性剂水溶液时,只用溶液荡洗而不再烘干。

2.用滴重法测量表面张力时为什么要做校正,能否用游标卡尺测量r,直接代入公式计算。

3.本方法也能用于测量液液界面张力,请考虑应如何测量。

(提示:要考虑浮力影响)附录:(1) 常用表面张力测量方法①吊环法(Ring Method):是厂矿企业常用测试方法。

仪器有商品供应,测量的平衡性能不太好,仪器本身缺乏恒温装置,测量结果和其它方法差别较大,其优点是操作简单(因其结构主要是一个扭力天平,见图D13-2和图D13-3)还可以测液一液界面张力,实验时把一个半径r的铂丝制成的环与液面接触后再慢慢上拉。

(用样品皿托架下螺旋转动)而形成一个内径R’,外径为R’十2r的环形液柱,R’=R-r。

设向上的力为W,当平衡时,W=2πR'σ+ 2π(R' +2r ) σ因为R=R’十r故上式可改写为:σ = W/(4πR)因为铂丝环悬挂在扭力天平一臂上,所以W大小可以从扭力天平读出,在出厂时,扭力天平刻度盘上已直接标上表面张力量度大小,故可直接读出表面张力大小。

②滴重法(drop weight method)滴重法是测表面张力的常用方法,图D13-1为商品生产的滴重计(Stalagmometer)。

其底部相当光滑平整,该方法如实验数据经过校正,获得表面张力较准确,方法的平衡性能和数据重复性较好。

其简化改进法有滴体积法。

③吊板法 (Wilhelmy plate method)吊板法又称吊片法,在文献中也用,其平衡性能也很好,常用的有ST一1型表面张力仪。

原理见图D13-4.它的基本结构为在一自动扭力天平上挂一巳知重量为W的矩形吊板(毛玻璃制成),设其平行于液面的截面矩形长为x,宽为y,(y实际上是吊板的厚度),则该矩形周长为2(x十y),当平衡时,向上的力设为W’,则:W'-W=2(x十y)·σ W’可从自动扭力天平上读出,x,y,w已知,从而可知道σ。

,实际上从仪器上σ读数可直接知道大小,无需作上述计算。

不同的吊板可通仪器上的校正旋扭校正。

仪器本身附有超级恒温槽,并可测量接触角和液液界面张力。

该方法操作方便,迅速。

具体参阅Adamson“Physical Chemistry of Surface”)。

附录:(2) 液体和粉末固体的比重测定测定液体密度的主要方法有比重瓶法(或比重管法)、比重天平(又称韦氏天平法)、比重计法。

现分别介绍如下:①比重瓶法(图D13-5)将比重瓶和中间有毛细孔的比重瓶塞依次用洗液和蒸馏水洗干净,烘干在分析天平上(连瓶塞一起)称重,其重量为W’,然后加入纯水(蒸馏水),注意不要有气泡混入,盖上瓶塞,使水沿毛细管溢出,将比重瓶小心浸入恒温槽中(恒温槽预先调至t℃),约15分钟热平衡后,取出比重瓶。

用滤纸吸干毛细管溢出的液体,并将比重瓶外壁擦干。

在分析天平上称重为Wl,则水重为Wl—W’,将比重瓶中蒸馏水倒掉,烘干,同法加入待测液体,置于恒温槽中平衡后取出擦干外壁,称重为W,则待测液体重W—W’。

比重瓶容积为(Wl—W’)/d4t,d4t为水在t℃时相对于4℃水的密度。

待测液体在t℃时密度为[(W-W')/(w1-W')]·d4t②比重天平(又称韦氏天平)法。

它具有一个标准体积的测锤,浸于液体中获得浮力而使横梁失去平衡,从而迅速测出液体的密度。

它比比重瓶法准确度差,但测定简单快速,其读数也能达小数后4位,测定手续如下.(a)把天平托架,横樑装好后,将等重砝码挂于横樑右端小钩上,调节水平螺丝,使横樑与支架指针尖在同一水平线,以示平衡,如调不平衡,先将平衡器小螺钉松开,然后略转动平衡调节器.直至平衡,然后旋紧定位螺钉。

(b)将等重法码取下,换上整套测锤,此时应保持平衡,但允许有0.0005的误差存在。

如果天平灵敏度过高,则将灵敏度调节器降低,反之旋高。

通常不必进行此项调节。

(c)将待测液体放入玻璃筒内,将测锤全部浸入待测液体中央,这时横樑失去平衡,在横樑V型槽内和小钩上加放各种骑码,使之平衡.从横樑骑码重可知液体密度,由于测锤排液重5mg,天平砝码共有5g,500mg,50mg和5mg四种.,因此将5g砝码挂在横樑第十位(小钩上)则读数为l,骑在第九位上则为0.9余类推.同样500mg砝码挂在小钩上为0.lg,50mg 挂在小钩上为0.01等等,读数时,从骑在各V型槽上砝码读数,则测量结果相应后移一位。

③比重计法在工业上常用测定液体密度的方法为比重计法,比重计有多根一套,每一根比重计上附有刻度,根据比重大小不同,选择其中一根直接插入液体即可读数,它的误差比前述方法要大一些。

粉末固体密度测量要复杂一点,因颗粒状固体堆起来外观体积(V堆)为颗粒之间的孔隙(V隙)颗粒内部的孔所占体积(V孔)以及颗粒骨架所具有体积(V真)之和。

V堆=V隙十V孔十V真因此对质量为m的颗粒状固体,也有三种密度定义:堆密度ρo=m/V堆;假密度ρP=m/(V孔+V真);真密度ρt=m/V真:真密度(假定固体颗粒没有与颗粒表面不通的孔隙)的测定:所用仪器如图D13-5所示.操作步骤如下:(a)在分析天平上准确称量比重瓶(图D13-5)连接管及瓶塞的总重量(注意均应洗净烘干),重量为A。

(b)使比重瓶装满水(如果被测固体遇水会膨胀或溶解,可改用有机溶剂如甲苯)用吸管吸去或加入水(此步应在恒温后做)使液面维持在刻度处,然后取出用布擦干外壁,称得重量B。

(c)将液体倒出,烘干,装入已烘干的固体试样,塞好瓶塞,称得重量C。

(d)把比重瓶和双向旋塞(见图D13-5b)装好,旋转旋塞使与真空系统相通,抽20∽30分钟(必要时可加热),转动旋塞由漏斗加入液体(注意不能漏入空气)。

待试样全部被液体浸没后,取走旋塞,接上连接管,添加液体至刻度,置于恒温浴中恒温后,调整液面至刻度处,再称重得重量D.则真密度ρt=ρ(C—A)/(B十C—A—D)式中ρ为所用液体在实验温度下密度,它可用前述液体密度测量法由实验测得,如果液体纯度高,也可从手册查得。

注:比重和密度在物理上概念虽不相同,但两者在数值上却是相等的.。

相关文档
最新文档