液体表面张力系数测定实验报告
液体表面张力系数测定的实验报告

液体表面张力系数测定的实验报告一、实验目的1、掌握用拉脱法测量液体表面张力系数的原理和方法。
2、学习使用力敏传感器测量微小力的原理和方法。
3、研究液体表面张力系数与液体温度、浓度等因素的关系。
二、实验原理液体表面层内分子受到指向液体内部的拉力,使得液体表面有收缩的趋势。
要使液体表面增大,就需要克服这种内聚力而做功。
单位长度上所受的这种力称为表面张力,其大小与液体的种类、温度和纯度等因素有关。
拉脱法测量液体表面张力系数的基本原理是:将一个金属圆环水平地浸入液体中,然后缓慢地将其拉起,在拉起的过程中,圆环会受到液体表面张力的作用。
当圆环即将脱离液面时,所施加的拉力等于液体表面张力与圆环所受重力之差。
设圆环的内半径为$r_1$,外半径为$r_2$,拉起圆环所需的拉力为$F$,液体的表面张力系数为$\sigma$,则根据力的平衡条件,有:$F =(π(r_2^2 r_1^2))\sigma$从而可得液体表面张力系数:$\sigma =\frac{F}{π(r_2^2 r_1^2)}$在本实验中,拉力$F$通过力敏传感器测量,其输出电压$U$与拉力$F$成正比,即$F = kU$,其中$k$为力敏传感器的灵敏度。
三、实验仪器1、液体表面张力系数测定仪。
2、力敏传感器。
3、数字电压表。
4、游标卡尺。
5、纯净水、洗洁精溶液等。
四、实验步骤1、仪器安装与调试将力敏传感器固定在铁架台上,使其探头向下。
将数字电压表与力敏传感器连接,调整零点。
用游标卡尺测量金属圆环的内半径$r_1$和外半径$r_2$。
2、测量纯净水的表面张力系数将洗净的金属圆环挂在力敏传感器的挂钩上,调整升降台,使圆环浸入纯净水中。
缓慢地向上移动升降台,观察数字电压表的示数变化。
当圆环即将脱离液面时,记录电压表的示数$U_1$。
重复测量多次,取平均值。
3、测量不同温度下纯净水的表面张力系数改变纯净水的温度,例如用热水加热或冷水冷却,分别测量在不同温度下的表面张力系数。
测液体表面张力系数实验报告

测液体表面张力系数实验报告
x
测液体表面张力系数实验报告
一、实验目的
本次实验的目的是测量液体表面张力系数的变化。
二、实验原理
液体表面张力是液体表面的内表面能量耦合效应,是液体表面上分子之间的力的结果。
液体表面张力系数反应了表面化学热,即表面的内能,它以特定形式传递给表面上的任何物体,而这种传递的形式就是表面张力。
三、实验装置
采用表面活性度测定仪(表面张力计),可以快速准确的测量液体的表面张力系数,它把表面张力概括为液滴形状系数或液滴体积系数,因此可以考虑到液体的表面张力及其影响的因素,如化学热、温度、PH值等。
四、实验步骤
1. 在表面张力计中先将配套的标准液体事先稀释1000倍,然后将稀释后的标准液体加入到吸盘中,进行测量;
2. 把需要测试的液体事先稀释1000倍,然后将稀释后的样品液体加入到吸盘中,进行测量;
3. 对所有测试液体进行同样的测量;
4. 将实验数据输入到电脑中,计算出液体的表面张力系数。
五、实验结果
实验结果如下:
液体表面张力系数:
样品1:18.6 mN/m
样品2:19.2 mN/m
样品3:19.6 mN/m
六、实验结论
通过实验测试,可以得出结论:不同液体的表面张力系数不同,因此液体的表面张力系数必须注意控制和稳定。
液体表面张力系数的测定实验报告数据

液体表面张力系数的测定实验报告数据液体表面张力系数的测定实验报告数据引言:液体表面张力是指液体分子表面层内部的相互吸引力。
它是液体分子间的一种特殊力,决定了液体在表面上的性质和行为。
本实验旨在通过测定液体表面张力系数,探究液体分子间的相互作用力,并分析实验数据。
实验仪器与试剂:1. 测量液体表面张力的仪器:纸片法测量仪2. 实验液体:蒸馏水、乙醇、甲苯实验步骤:1. 实验前准备:a. 将实验室温度调至恒定,避免温度变化对实验结果的影响。
b. 清洗测量仪器,确保无杂质干扰。
2. 测定蒸馏水的表面张力系数:a. 将测量仪器放置于水平台上,调整纸片的位置,使其悬垂于平台边缘。
b. 缓慢地将蒸馏水滴入纸片上,观察纸片的形态变化,直至纸片完全沉没。
c. 记录滴入蒸馏水的体积,并根据纸片的形态变化确定表面张力系数。
3. 测定乙醇的表面张力系数:a. 重复步骤2中的操作,将乙醇滴入纸片上。
b. 记录滴入乙醇的体积,并根据纸片的形态变化确定表面张力系数。
4. 测定甲苯的表面张力系数:a. 重复步骤2中的操作,将甲苯滴入纸片上。
b. 记录滴入甲苯的体积,并根据纸片的形态变化确定表面张力系数。
实验结果与分析:根据实验数据,我们计算得到了蒸馏水、乙醇和甲苯的表面张力系数。
以下是实验结果的总结:1. 蒸馏水的表面张力系数为X N/m。
通过对纸片的形态变化观察,我们发现蒸馏水的表面张力较大,纸片在滴入水滴后能够悬垂一段时间,表明水分子间的相互作用力较强。
2. 乙醇的表面张力系数为Y N/m。
与蒸馏水相比,乙醇的表面张力系数较小,纸片在滴入乙醇后迅速沉没,表明乙醇分子间的相互作用力较弱。
3. 甲苯的表面张力系数为Z N/m。
与蒸馏水和乙醇相比,甲苯的表面张力系数更小,纸片在滴入甲苯后几乎立即沉没,表明甲苯分子间的相互作用力非常弱。
结论:通过本实验,我们成功测定了蒸馏水、乙醇和甲苯的表面张力系数,并分析了实验数据。
实验结果表明,不同液体的表面张力系数与其分子间的相互作用力有关。
(完整版)液体表面张力系数的测定实验报告.docx

液体表面张力系数的测定一实验目的1学习用界面张力仪测微小力的原理和方法。
2深入了解液体表面张力的概念,并测定液体的表面张力系数二实验原理1液体表面张力由于液体分子之间存在作用力,使每个位于表面层内的分子都受到一个指向液体内部的力,这就使每个分子都有从液体表面进入液体内部的倾向,所以液体表面积有收缩的趋势,在没有外力的情况下,液滴总是呈球形,致使其表面积缩到最小,这种使液体表面收缩的力叫做液体的表面张力。
2液体表面张力系数的测量原理图 1如图 1,将一表面洁净的矩形金属薄片浸入水中,使其底边保持水平,然后将其轻轻提起,则其附近液面呈现如图示的形状,则0时,f方向趋向垂直向下。
在金属片脱离液体前,受力平衡条件为F f mg (1)而f 2 (l d ) (2)则F mg(3)2(l d )若用金属环替代金属片,则(3)式变为F mg( 4)( d1 d 2 )式中 d1, d2 为圆环的内外直径。
若用补偿法消除mg 的影响,即f F mg则( 4)式可写为f( 5)(d1d2 )即为液体表面张力系数。
三实验仪器液体界面张力仪、标准砝码、环形测件、玻璃杯、镊子、纯净水、小纸片四实验内容及步骤1仪器调整。
调整仪器水平,刻度盘归零。
2调零。
将小纸片放在金属环上,调整调零旋扭,通过放大镜观察,指针、指针的像及红线三线重合。
3绘制质量标准曲线分别在小纸片上放100mg、 300 mg 、 500 mg 、 700 mg、 1000 mg 的砝码,记下对应的刻度盘的示数。
以所加砝码的质量作为横坐标,刻度盘的示数作为纵坐标,绘制质量标准曲线。
4测量纯净水的表面张力系数调零。
用玻璃杯盛大约2/3 的水,放在样品座上,调节样品座的高度,使金属环刚好浸过水面。
左手调节样品座下面的螺丝,使样品座缓慢的下降,右手调节蜗轮旋扭。
两手调节的同时,眼睛观察三线始终重合,直到环把水膜拉破为止。
记下刻度盘示数M ’。
为了消除随机误差,共测五次。
液体表面张力系数的测定实验报告

液体表面张力系数的测定实验报告一、实验目的。
本实验旨在通过测定液体表面张力系数的实验,掌握液体表面张力系数的测定方法,加深对表面张力的理解,提高实验操作能力。
二、实验原理。
液体表面张力系数是表征液体分子间相互作用力的物理量,通常用$\gamma$表示。
液体表面张力系数的测定方法有很多种,常用的有悬铁环法、悬滴法、悬水滴法等。
本实验采用悬水滴法测定液体表面张力系数。
三、实验仪器和试剂。
1. 一台天平。
2. 一根细丝。
3. 一根细管。
4. 一根毛细管。
5. 一根水平的细管。
6. 一些水。
四、实验步骤。
1. 将一根细丝固定在天平上,使其水平。
2. 用细管将水滴在细丝上,形成一个悬水滴。
3. 用毛细管在悬水滴下方加入一些水,使悬水滴增大,直到悬水滴脱落。
4. 测量水滴的质量$m$,并记录下悬水滴的直径$d$。
五、实验数据处理。
根据实验数据,可以计算出液体表面张力系数$\gamma$的值。
根据悬水滴法的原理,液体表面张力系数$\gamma$与水滴的质量$m$、直径$d$和重力加速度$g$之间存在如下关系:$$\gamma = \frac{4m}{\pi d^2 g}$$。
六、实验结果与分析。
根据实验数据和计算公式,可以得到液体表面张力系数$\gamma$的数值。
通过对实验数据的分析,可以发现液体表面张力系数与水滴质量和直径呈反比关系,与重力加速度呈正比关系。
这与表面张力的性质相符合。
七、实验结论。
通过本实验的实验操作和数据处理,成功测定了液体表面张力系数$\gamma$的数值。
实验结果与理论预期相符,验证了悬水滴法测定液体表面张力系数的可行性。
八、实验中的注意事项。
1. 实验操作要细致,保证悬水滴的稳定性。
2. 测量数据要准确,避免误差的产生。
3. 实验结束后要及时清理实验仪器和试剂。
九、参考文献。
1. 《物理化学实验》。
2. 《实验化学》。
十、致谢。
感谢实验指导老师的悉心指导和同学们的配合,使本次实验取得了圆满成功。
测量液体表面张力系数实验报告

测量液体表面张力系数实验报告液体表面张力是液体分子之间的吸引力导致液体表面上发生的现象。
在液体表面,靠近空气的分子受到的吸引力是其他分子所没有的,因此它们会被吸引向液体内部,形成一层相对稳定的表面。
表面张力系数是量化液体表面张力大小的常数。
一、实验目的本实验的主要目的是通过测量液体表面张力来了解液体分子之间的相互作用和物理性质。
具体的实验目标有:1. 掌握测量液体表面张力的方法和技巧;2. 了解不同条件对液体表面张力的影响;3. 理解液体表面张力与液体分子性质的关系。
二、实验原理1. 测量液体表面张力的方法:本实验使用的是悬铂铁环法。
液体样品放置在一个玻璃片上,然后将铂铁环轻轻悬挂在液体表面上,通过调节悬挂的长度,使铂铁环在液体表面平衡,此时液体表面张力F为mg,其中m为铂铁环质量,g为重力加速度。
通过测量悬挂铂铁环的长度,可以计算出液体表面张力系数。
2. 影响液体表面张力的因素:液体表面张力受到温度、溶质浓度和杂质含量等因素的影响。
一般情况下,随着温度升高,液体表面张力降低;溶质浓度的增加会导致液体表面张力增加;杂质的存在也会降低液体表面张力。
三、实验步骤1. 准备工作:清洗实验仪器和玻璃片,确保其表面没有杂质。
2. 精密称量:使用天平和电子天平分别测量铂铁环的质量和液体样品的质量。
3. 处理液体样品:将液体样品倒入一个干净的容器中,并待其静止片刻,让其温度稳定。
4. 实验操作:将磁力搅拌器调至适当速度,加热样品并保持液体温度稳定。
然后将玻璃片浸入液体中,等待液体温度均匀。
5. 开始测量:取出玻璃片,用吹气球将其吹干,再将其置于铂铁环上。
然后通过调节铂铁环长度,在液体表面平衡,记录铂铁环长度。
6. 实验重复:根据实验需要,重复测量多组数据,确保结果的准确性。
7. 数据处理:根据实验原理的公式,计算液体表面张力系数。
如果有多组数据,则计算平均值。
四、实验注意事项1. 实验时应小心操作,避免液体样品溅出或对仪器造成损害。
液体表面张力系数测定实验报告

检查表面张力计是否完好无损,电极是否干净、无损坏,确保设备能够正常工作。
操作步骤:安装仪器、加液、测量
安装仪器
按照实验要求正确安装表面张力计,调整水平,确保 测量准确。
加液
使用滴管向测量筒中加入待测液体,注意控制液面高 度和加液速度,避免产生气泡和波动。
测量
启动表面张力计,按照设备操作说明进行测量,记录 测量数据。
数据筛选
去除了明显偏离正常范围的异常数据,确保数据可靠性。
平均值计算
对剩余的有效数据进行了平均值计算,以减小随机误差的影响。
结果展示:绘制图表、呈现结果,直观地展示了实验结果。
结果分析
通过观察图表,可以发现液体表面张力系数在一定范围 内波动,且整体趋势相对稳定。
THANKS FOR WATCHING
感谢您的观看
设备名称
01
表面张力计(常用的是最大泡法表面张力计或悬液滴法表面张
力计)
规格
02
不同型号的表面张力计有不同的测量范围和精度,需根据实验
需求选择合适的规格。
使用方法
03
使用前需对表面张力计进行校准,然后按照实验步骤进行操作,
注意保持实验环境的稳定和避免外界干扰。
注意事项与安全防护措施
注意事项
实验过程中需保持仪器清洁干燥,避免油污 和杂质对实验结果的影响;同时要注意控制 实验温度,避免温度变化对实验结果的影响 。
02 实验原理及设备介绍
表面张力产生原因及影响因素
产生原因
液体表面分子间距离大于液体内部分子 间距离,表面分子间存在相互吸引力, 使得液体表面有收缩到最小的趋势,这 种力称为表面张力。
VS
影响因素
表面张力大小与液体种类、温度、压力和 液体中溶质的种类及浓度等因素有关。
实验报告-液体表面张力系数的测定

实验3-3 液体表面张力系数的测定一、实验目的:测量室温下水的表面张力系数。
二、实验原理:液体表面张力的存在,液体表面具有收缩的趋势,在液体表面上作一条曲线,则曲线受两侧平衡的、并与液体表面相切的表面张力的作用。
在线性近似下,表面张力的大小与曲线的长度成正比,表面张力的大小与曲线长度的比值即为液体的表面张力系数。
根据这一规律,可以用液体表面张力系数测定液体的表面张力。
在实验中用一个金属圆环固定在传感器中,该环浸没于液体中,把圆环慢慢拉起,金属圆环会受到液体表面膜的拉力作用。
表面膜拉力的大小为f=α△l=α(2πr1+2πr2)=π(D1+D2)α在页面拉脱的瞬间,膜的拉力小时。
拉力差为f=π(D1+D2)α(1)并以数字式电压表输出显示为f=(U1-U2)/B (2)由(1)、(2),我们可以得到水的表面张力系数为α=(U1-U2)/[Bπ(D1+D2)]因此,只要测量出(U1-U2),B,D1和D2,就能得到液体的表面张力系数α三、实验器材:液体表面张力系数测定仪、垂直调解台、硅压阻力敏传感器、铝合金吊环、吊盘、砝码、玻璃皿、镊子和游标卡尺。
四、实验步骤:(1)力敏传感器的定标(表3-3-1)物体质量m/g 0.500 0.100 1.500 2.000 2.500 3.000 3.500 输出电压U/mV(2)测量金属圆环的外径D1和内径D2。
(3)记录吊环即将拉断液柱前一瞬间数字电压表的读数值U1和拉断时瞬间数字电压表的读数U2。
并用温度计测出水的温度。
利用所测数据计算出α(表3-3-2)。
表3-2-2 水的表面张力系数测量测量次数D1/mm D2/mm U1/mV U2/mV △U/mV f/10-3N α/(10-3N/m)123456水的温度:_____℃(4)求出在此温度下的水的表面张力系数,查询资料获得水的表面张力系数的标准值,与实验值测得值相比较,对测量结果进行误差分析。
五、数据记录将所得实验数据填入《表3-3-1 力敏传感器定标》和《表3-3-2 水的表面张力系数测量》中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
液体表面张力系数的测量
【实验目的】
1、 掌握用砝码对硅压阻式力敏传感器定标的方法,并计算该传感
器的灵敏度
2、 了解拉脱法测液体表面张力系数测定仪的结构、测量原理和使
用方法,并用它测量纯水表面张力系数。
3、 观察拉脱法测量液体表面张力系数的物理过程和物理现象,并
用物理学概念和定律进行分析研究,加深对物理规律的认识 4、 掌握读数显微镜的结构、原理及使用方法,学会用毛细管测定
液体的表面张力系数。
5、 利用现有的仪器,综合应用物理知识,自行设计新的实验内容。
【实验原理】
一、拉脱法测量液体的表面张力系数
把金属片弯成如图 1(a )所示的圆环状,并将该圆环吊挂在灵敏的测力计上,如图 1(b )所示,然后把它浸到待测液体中。
当缓缓提起测力计(或降低盛液体的器皿)时,金属圆环就会拉出一层与液体相连的液膜,由于表面张力的作用,测力计的读数逐渐达到一个最大值 F (当超过此值时,液膜即破裂),则 F 应是金属圆环重力 mg 与液膜拉引金属圆环的表面张力之和。
由于液膜有两个表面,若每个表面的力为f
L (L 为圆形液膜的周长)
,则有 2F mg L (2)
所以
2F
mg
L
(3)
圆形液膜的周长L 与金属圆环的平均周长,L 相当,若圆环的内、外直径分别为1,2D D 。
则圆形液膜的周长
L ≈L ’=(D 1+D 2)/2 (4)
将(4)式代入(3)式得
12
F mg
D D (5)
硅压阻式力敏传感器由弹性梁和贴在梁上的传感器芯片组成,其中芯片由四个硅扩散电阻集成一个非平衡电桥。
当外界压力作用于金属梁时,在压力作用下,电桥失去平衡,此时将有电压信号输出,输出电压大小与所加外力成正比。
即
U K F (6)
式中,ΔF 为外力的大小;K 为硅压阻式力敏传感器的灵敏度,单位为 V/N ;ΔU 为传感器输出电压的大小。
二、毛细管升高法测液体的表面张力系数
1一只两端开口的均匀细管(称为毛细管)插入液体,当液体与该管润湿且接触角小于90°时,液体会在管内上升一定高度。
而当接触角大于 90°时,液体在管内就会下降。
这种现象被称为毛细现象。
本实验研究玻璃毛细管插入水中的情形。
如图 2 所示,f 为表面张力,其方向沿着凹球面的切线方向,大小为 2f
r ,其中
r 为毛细管的内孔半径。
设 为接触角(与液体和管壁材料的性质有
面的部关),凹球面的半径为R ,由图 2 可知cos r
R
,由表面张力产生的、垂直向上提高液面的力为cos
f ,若忽略h 上分液体的重
量,则这个力与毛细管中高为h 的液柱重量平衡,即
2
2
22cos
r r gh R
(7)
所以
2cos
2r gh
R gh
(8)
式ρ中为液体的密度,g 为重力加速度。
如果玻璃管壁和水都非常清净,则
0,R r ,而(8)而式变为
2
r gh (9)
在推导公式(9)时,忽略了毛细管中凹球面下端与上端之间液体的重量,为了得到更精确的计算公式,必须考虑这部分液体的重量。
该部分液体的体积约等于半径为 r 、高也为r 的圆柱体体积和
半径为 r 的球体积的一半之差,即3
33
2133
r r r ,故忽略的液体重量为
3
13
r g 。
当考虑这部分液体重量后,可得 112346r d
r g h d g h (10)
由上式可知,只要测出毛细管的内径 d 和上升的液柱高 h ,就可算出表面张力系数σ。
【实验仪器】
1、表面张力系数测定仪,如图 3 所示,包括硅扩散电阻非平衡电桥的电源和测电桥失去平衡时输出电压大小的数字电压表、铁架台、微调升降台、装有力敏传感器的固定杆、盛液体的玻璃器皿一套、铝合金圆形吊环一个、0.500g 砝码七只(定标用),其它仪器包括镊子(取砝码、砝码盘和挂吊环用),待测液体水,烧杯,温度计等。
2、读数显微镜,玻璃毛细管。
【实验内容】
一、:拉脱法测水表面张力系数
1、实验准备
(1)连线后接通主机电源,开机预热。
(2)调节铁架台上的三个水平调节螺丝,使铁架台水平。
(3)清洗玻璃器皿
(4)预热15 分钟后,可对力敏传感器定标。
2、硅压阻力敏传感器定标
(1)将砝码盘挂在力敏传感器的挂钩上。
(2)将数字电压表调零。
(3)依次加入0.500g的砝码,待稳定后记下电压表读数。
注意放砝码时应尽量轻。
每次增加0.500g砝码,待稳定后记下
电压表读数Ui(i =1,2,…8)。
3、水表面张力系数的测量
(1)将砝码盘取下来换上吊环,使吊环平面成水平状态。
(2)在玻璃器皿内放入被测液体并安放在升降台上。
(3)在测定液体表面张力系数过程中,可观察到液体产生的浮力与张力的情况与现象,以顺时针转动升降台大螺帽时液体液面上升,当吊环下沿部分均浸入液体中时,改为逆时针转动该螺帽,这时液面往下降(或者说相对吊环往上提拉),观察环浸入液体中及从液体中拉起时的物理过程和现象。
特别应注意吊环即将拉断液膜前一瞬间数字电压表读数值为U1,拉断时瞬间数字电压表读数为U 2。
记下这两个数值,这时
U U U.重复测量6 次。
12
二、毛细管升高法测表面张力系数
1、将烧杯装入适量纯水后放在支架上,将洗净烘干的毛细管插入液
体中,使之铅直,可见到液体将沿毛细管上升到一定高度。
2、调节望远镜焦距,使看清被测毛细管,在上下慢慢移动显微镜,
使望远镜中十字叉丝的水平线与毛细管中液体凹面的下沿相切,记下该读数,然后移动显微镜使十字叉丝的水平线与玻璃器皿中液体凹面的下沿相切,再记下该读数,两读数之差即为液柱高h。
重复测量5 次,将所得数据记入表格中。
3、将毛细管取出平放在木盒上,对准显微镜筒调节焦距,直至观察
到清晰的毛细管圆孔图像,测出内径d,转动毛细管,放在不同的方位测五次,将所得数据记入表格中。
【数据处理】
1、硅压阻力敏传感器定标
表1 力敏传感器定标
用最小二乘法拟合得得仪器的灵敏度K,并求得线性相关系数r。
2、纯水液体表面张力系数的测量
表2 纯水的表面张力系数测量(水的温度T = 25℃)
根据公式计算在室温下纯水的表面张力系数α。
然后与标准值相比较,求出相对不确定度并写出结果表达式。
二、毛细管法
1、毛细管法测液体的表面张力系数数据表(T= 25℃)
2、与拉脱法测量的结果比较,分析误差原因。