八下数学第十七章检测题
第十七章勾股定理章节检测2022--2023学年人教版数学八年级下册

人教版数学八年级下册第十七章勾股定理章节检测一、单选题1.设三角形的三边长分别等于下列各组数,能构成直角三角形的是()。
A.1,13B235C.0.2,0.3,0.5D.13,14,152.如图,正方形网格中,每个小正方形的边长为1,则网格上的ABC中,长为无理数的边有()A.0条B.1条C.2条D.3条3.如图,有一个正方体盒子,棱长为1cm,一只蚂蚁从盒底点A沿盒的表面爬到盒顶的点B,蚂蚁爬行的最短路程是()A5cm B.3cm C3cm D.2cm 4.如图,一棵大树被台风刮断,若树在离地面6m处折断,树顶端落在离树底部8m 处,则树折断之前高()A.15m B.17m C.18m D.16m5.在 ABC 中,AB =AC =5,BC =6,若点P 在边AC 上移动,则BP 的最小值是( )A .5B .6C .4D .4.8 6.如图,Rt△OAB 的直角边OA 长为2,直角边AB 长为1,OA 在数轴上,在OB 上截取BC=BA ,以原点O 为圆心,OC 的长为半径画弧,交正半轴于一点P ,则OP 中点对应的实数是( )A 51-B 31-C 5D 3-1 7.如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是( )A .12米B .13米C .14米D .15米 8.如图,在 Rt ABC 中, 90B ∠=︒ ,分别以 A , C 为圆心,大于 12AC 的长为半径作弧,两弧分别交于点 D ,E ,直线 DE 交 AC 于点F ,交 AB 于点G , 4AC = , 3AB = ,则 CG 的长为( )A .4B .83C .43D .2 9.如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm ,底面周长为10cm ,在容器内壁离容器底部3cm 的点B 处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm 的点A 处,则蚂蚁吃到饭粒需爬行的最短路径是( )A .13cmB .2 61cmC 61 cmD .2 34cm10.由下列线段 ,,a b c 不能组成直角三角形的是( )A .1,2,3a b c ===B .1,2,5a b c ===C .3,4,5a b c === D .2,3,3a b c ===11.如图,在Rt△ABC 中,△ACB =90°,以AB ,AC ,BC 为边作等边△ABD ,等边△ACE ,等边△CBF.设△AEH 的面积为S 1,△ABC 的面积为S 2,△BFG 的面积为S 3,四边形DHCG 的面积为S 4,则下列结论正确的是( )A .S 2=S 1+S 3+S 4B .S 1+S 2=S 3+S 4C .S 1+S 4=S 2+S 3D .S 1+S 3=S 2+S 412.已知a 、b 为两正数,且 12a b += ,则代数式 2249a b ++最小值为( )A .12B .13C .14D .15二、填空题13.满足 的三个正整数a ,b ,c 称为勾股数.14.如图,点B在射线AN上,以AB为边作等边ABC,M为AN中点,且+最小时,AB=.4AN=,P为BC中点,当PM PN15.如图,数轴上的点A表示的数是.16.已知2、3、5是三角形的三边长,则最短边上的中线长为.=,17.已知正方形ABCD的边长为6,点P是直线AD上一点,且3AP AD连接BP,作线段BP的垂直平分线交直线BC于点Q,则线段CQ的长为.三、解答题18.小红家最近新盖了房子,室内装修时,木工师傅让小红爸爸去建材市场买一块长3m,宽2.2m的薄木板用来做家居面,到了市场爸爸看到满足这个尺寸的木板有点大,买还是不买爸爸犹豫了,因为他知道他家门框高只有2m,宽只有1m,他不知道这块木板买回家后能不能完整的通过自家门框.请你替小红爸爸解决一下难题,帮他算一算要买的木板能否通过自家门框进入室内.(备用图可供做题参考,薄木板厚度可以忽略不计)19.一阵大风把一根高为9m的树在离地4m处折断,折断处仍相连,此时在离树3.9m处,一头高1m的小马正在吃草,小马有危险吗?为什么?20.如图,某地方政府决定在相距50km的A、B两站之间的公路旁E点,修建一个土特产加工基地,且使C、D两村到E点的距离相等,已知DA△AB于A,CB△AB于B,DA=30km,CB=20km,那么基地E应建在离A站多少千米的地方?21.在一次课外实践活动中,同学们要知道校园内A,B两处的距离,但无法直接测得.已知校园内A、B、C三点形成的三角形如图所示,现测得AC=6m,BC=14m,△CAB=120°,请计算A,B两处之间的距离.22.有一块土地,如图所示,已知AB=8,△B=90°,BC=6,CD=24,AD=26,求这块土地的面积.23.在△ABC中,△BAC=90°,AB=AC.点D为直线BC上一动点(点D不与点B、C 重合),以AD为直角边在AD右侧作等腰直角三角形ADE,使△DAE=90°,连结CE.(1)探究:如图①,当点D在线段BC上时,证明BC=CE+CD.(2)应用:在探究的条件下,若AB= 2,CD=1,则△DCE的周长为.(3)拓展:①如图②,当点D在线段CB的延长线上时,BC、CD、CE之间的数量关系为.②如图③,当点D在线段BC的延长线上时,BC、CD、CE之间的数量关系为.。
【带答案】人教版八年级数学下册第十七章测试题(附答案)

人教版八年级数学下册第十七章测试题(附答案)学校: 姓名: 班级: 考号:1.如图AB=AC ,则数轴上点C 所表示的数为( )A .+1B .-1C .-+1D .--12.已知x 、y 为正数,且|x-4|+(y-3)=0,如果以x 、y 的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为( )A .5B .25C .7D .153.如图,△ABC 为等边三角形,点E 在BA 的延长线上,点D 在BC 边上,且ED=EC .若△ABC 的边长为4,AE=2,则BD 的长为( )A .2 B. 3 C .D .+1 4.如图,Rt △ABC 中,AB=9,BC=6,∠B=90°,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为( )A.4 B.5 C.D. 5.有六根细木棒,它们的长度分别是2,4,6,8,10,12(单位:cm),从中取出三根首尾顺次连接搭成一个直角三角形,则这三根木棒的长度分别为()A.2,4,8 B.4,8,10 C.6,8,10 D.8,10,126.如右下图所示,在□ABCD中,已知∠ODA=90º, AC=10cm,BD=6cm,则AD的长为().A、4cmB、5cmC、6cmD、8cm7.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线上,且之间的距离为1,之间的距离为2,则AC的长是()A. B. C. D. 58.已知Rt△ABC中,∠C=90°,若cm,cm,则S为().A.24cmB.36cmC.48cmD.60cm9.给出下列命题:①在直角三角形ABC中,已知两边长为3和4,则第三边长为5;②三角形的三边a、b、c满足a+c=b,则∠C=90°;③△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④△ABC中,若 a:b:c=1:2:,则这个三角形是直角三角形.其中,假命题的个数为()A.1个 B.2个 C.3个 D.4个10.如图,在的方格中,有一个正方形ABCD,假设每一个小方格的边长为1个单位长度,则正方形的边长为()A、B、C、D、11.如图,在四边形ABCD中,AD∥BC,DE⊥BC,垂足为点E,连接AC交DE于点F,点G 为AF的中点,∠ACD=2∠ACB.若DG=3,EC=1,则DE的长为()A.B.C.D.二、填空题12.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm 到D,则橡皮筋被拉长了 cm.13.如图,在△ABC中,AB=AC,AD⊥BC于点D,若AB=5,CD=3,则△ABC的周长是.14.已知直角三角形两边的长x、y满足|x-4|+=0,则第三边长为 .15.如图,△ABC是边长6的等边三角形,动点P、Q同时从A、B两点出发,分别在AB、BC边上均速移动,它们的速度分别为V=2cm/s, V=1cm/s,当点P到达点B时,P、Q两点停止运动,设点P的运动时间为ts,则当t= s时,△PBQ为直角三角形.16.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B 落在矩形内点F处,连接CF,则CF的长为.17.在△ABC中,AB=13,AC=20,BC边上的高为12,则△ABC的面积为.18.如图Rt△ABC中,AC=12,BC=5,分别以AB,AC,BC为直径作半圆,则图中阴影部分的面积为。
人教版八年级下册数学 第十七章 勾股定理 单元检测题

人教版八年级下册数学第十七章 勾股定理 单元检测题一.单选题1.若△ABC 三边a 、b 、c 满足()2340a b -+-=,则△ABC 的形状是( )A .直角三角形B .等腰三角形C .锐角三角形D .钝角三角形 2.如图,Rt ABC 中,2AC =,4AB =,则BC 的长为( )A .2 BCD.3.以下列线段为边,不能构成直角三角形的是( )A .1,1B .4,5,6C .6,8,10D .9,40,414.若矩形ABCD 的邻边长分别是1,2,则BD 的长是( )AB .3CD .5.如图,将矩形ABCD 沿直线DE 折叠,顶点A 落在BC 边上F 处,已知3BE =,8CD =,则BF 的长为( )A .5B .4C .3D .26.如图,一个圆桶底面直径为8cm ,高为12cm ,则桶内所能容下的最长木棒的长度为( ).A .8cmB .10cmC .D .7. 《九章算术》“勾股”章有一题:“今有二人同所立,甲行率七,乙行率三,乙东行,甲南行十步而斜东北与乙会,问甲、乙行各几何.”大意是说:已知甲、乙两人同时从同一地点出发,甲的速度为7,乙的速度为3,乙一直向东走,甲先向南走10步,后又向东北方向走了一段后与乙相遇,那么相遇时所用时间为多少?若设甲与乙相遇时间为x ,则可列方程为( )A .222(3)(7)10x x +=B .222(310)(7)10x x -+=C .222(3)10(710)x x +=-D .22210(710)(310)x x +-=-8.如图,在ABCD 中,BE⊥CD,BF⊥AD,∠EBF=45°,CE=3,DF=1,则AF=( )A .1B .1C .2D .29.课堂上,戴老师要求学生设计图形来证明勾股定理,同学们经过讨论,给出两种图形,能证明勾股定理的是( )A .①行,②不行B .①不行,②行C .①,②都行D .①,②都不行10.如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,AB⊥AC.若AC =6,BD =10,则AB 的长是( )A .3B .4C .5D .6二.填空题 11.如图,若四边形ABCD 是菱形,AC=24,BD=10,则菱形ABCD 的边长是 .12.如图,在△ABC 中,D 是AB 边上的中点,90ACB ∠=︒,5AC =,12BC =,则CD = ;13.已知Rt△ABC 中,∠ACB=90°.请从下面A ,B 两题中任选一题作答;A .如图1,AB 边的垂直平分线交AC 于点E ,交AB 于点F .若AE =5,EF=3,则线段EC 的长为 ;B .如图2,∠ABC 的平分线交AC 于点D ,AB 边的垂直平分线交AC 于点E ,AC=8,BC =6,线段DE 的长为 .14.如图,在ABC 中,AC =BC ,∠ACB=90°,点E 在AC 边上,EF⊥AB 于点F ,连接EB ,AF =3,EFB的周长为12,则EB 的长为 .三.计算题15.如图, ABC 中, 6,14,60AB cm BC cm ABC ==∠=︒ AD BC ⊥ 于D .求 AD 及 AC 的长.16.(1)计算:(2)在Rt△ABC 中,∠C=90°,∠A、∠B、∠C 的对边分别为a 、b 、c .若a :c=15:17,b=24,求a 的值。
人教版八年级数学下册第十七章达标检测卷含答案

人教版八年级数学下册第十七章达标检测卷一、选择题(每题3分,共30分)1.下列各组数中,是勾股数的是()A.1.5,2,2.5 B.1,2,5C.2,3, 5 D.5,12,132.【教材P26练习T2变式】在平面直角坐标系中,点P(3,4)到原点的距离是()A.3 B.4 C.5 D.±53.下列命题中,其逆命题成立的是()A.对顶角相等B.等边三角形是等腰三角形C.如果a>0,b>0,那么ab>0D.如果三角形的三边长a,b,c(其中a<c,b<c)满足a2+b2=c2,那么这个三角形是直角三角形4.如图,数轴上点A表示的数是0,点B表示的数是1,BC⊥AB,垂足为B,且BC=1.以点A为圆心,AC的长为半径画弧,与数轴交于点D,则点D 表示的数为()A.1.4 B. 2C. 3 D.25.在△ABC中,a,b,c分别是∠A,∠B,∠C所对的边.下列条件中,不能得出△ABC是直角三角形的是()A.b2=a2-c2B.∠A:∠B:∠C=3:4:5C.∠C=∠A-∠B D.a:b:c=1:3: 26.如图,在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交AB于点D,E是垂足,连接CD.若BD=1,则AC的长是()A.2 3 B.2 C.4 3 D.4 7.若△ABC的三边长a,b,c满足(a-b)2+|a2+b2-c2|=0,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.无法确定8.如图为某楼梯示意图,测得楼梯长为5 m,高为3 m.计划在楼梯表面铺地毯,则地毯长度至少需要()A.5 m B.7 m C.8 m D.12 m 9.如图,长方体的底面邻边长分别是5 cm和7 cm,高为20 cm,如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B(点B为棱的中点),那么所用细线最短为()A.20 cm B.24 cm C.26 cm D.28 cm 10.如图①所示的是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到如图②所示的“数学风车”,则这个风车的外围周长是()A.36 B.76 C.66 D.12二、填空题(每题3分,共24分)11.命题“如果|a|=|b|,那么a2=b2”的逆命题是________________,它是________(填“真”或“假”)命题.12.如图,已知正方形ABCD的面积为8,则对角线BD的长为________.13.如图,OC为∠AOB的平分线,CM⊥OB,OC=5,OM=4,则点C到射线OA的距离为________.14.公元3世纪初,中国古代数学家赵爽注释《周髀算经》时,创造了“赵爽弦图”.如图,设勾a=6,弦c=10,则小正方形ABCD的面积是________.15.已知直角三角形的两边长分别为3和4,则此三角形的周长为______________.16.如图,在平面直角坐标系中,将长方形AOCD沿直线AE折叠(点E在边DC上),折叠后顶点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则点E的坐标为__________.17.如图,一扇门的高为2 m,宽为1.5 m,李师傅有3块木板,尺寸如下:①号木板长3 m,宽2.7 m;②号木板长2.8 m,宽2.8 m;③号木板长4 m,宽2.4 m.可以从这扇门通过的木板是________(填序号).18.如图,AB,BC,CD,DE是四根长度均为5 cm的火柴棒,点A,C,E 共线.若AC=6 cm,CD⊥BC,则线段CE的长度是________.三、解答题(19~22题每题10分,23题12分,24题14分,共66分) 19.如图,在△ABC中,CD⊥AB,垂足为D,AB=AC=13,BD=1.(1)求CD的长;(2)求BC的长.20.【教材P39复习题T9变式】如图,在边长为1的小正方形组成的网格图中,△ABC的三个顶点均在格点上,请按要求完成下列问题:(1)求△ABC的周长;(2)试判断△ABC的形状.21.【教材P33例2变式】如图,某港口A有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8 n mile的速度前进,乙船沿南偏东某个角度以每小时15 n mile的速度前进,2 h后,甲船到达M岛,乙船到达P岛,两岛相距34 n mile,你知道乙船是沿哪个方向航行的吗?22.【教材P39复习题T10拓展】一根直立的旗杆长8 m,一阵大风吹过,旗杆从C点处折断,顶部B着地,离杆脚A 4 m,如图,工人在修复的过程中,发现在折断点C的下面1.25 m的D处,有一明显刮痕.如果旗杆从D处折断,则杆脚周围多大范围内有被砸中的危险?23.在△ABC中,BC=a,AC=b,AB=c,如图①,若∠C=90°,则有a2+b2=c2;若△ABC为锐角三角形,小明猜想:a2+b2>c2.理由如下:如图②,过点A作AD⊥CB于点D,设CD=x.在Rt△ADC中,AD2=b2-x2;在Rt△ADB中,AD2=c2-(a-x)2,∴b2-x2=c2-(a-x)2,即a2+b2=c2+2ax.∵a>0,x>0,∴2ax>0.∴a2+b2>c2.∴当△ABC为锐角三角形时,a2+b2>c2.∴小明的猜想是正确的.请你猜想,当△ABC为钝角三角形时,如图③,a2+b2与c2的大小关系,并证明你猜想的结论.24.已知:△ABC是等腰直角三角形,动点P在斜边AB所在的直线上,以PC为直角边作等腰直角三角形PCQ,其中∠PCQ=90°,探究并解决下列问题:(1)如图①,若点P在线段AB上,且AC=1+3,PA=2,则:①线段PB=________,PC=________;②猜想:PA2,PB2,PQ2三者之间的数量关系为____________________.(2)如图②,当点P在线段AB的延长线上时,(1)②中所猜想的结论仍然成立,请你利用图②给出证明过程.答案一、1.D 2.C 3.D 4.B 5.B 6.A 7.C 8.B 9.C10.B 点拨:依题意,可知“数学风车”中的四个大直角三角形的斜边长为122+52=13.所以这个风车的外围周长是(13+6) ×4=76.二、11.如果a 2=b 2,那么|a |=|b |;真12.4 13.3 14.4 15.12或7+7 16.(10,3) 17.③18.18.8 cm 点拨:由题意知AB =BC =CD =DE =5 cm ,AC =6 cm.如图,过点B 作BM ⊥AC 于点M ,过点D 作DN ⊥CE 于点N ,则∠BMC =∠CND =90°,AM =CM =12AC =12×6=3(cm),CN =EN .∵CD ⊥BC ,∴∠BCD =90°.∴∠BCM +∠CBM =∠BCM +∠DCN =90°.∴∠CBM =∠DCN .在△BCM 和△CDN 中, ⎩⎨⎧∠CBM =∠DCN ,∠BMC =∠CND ,BC =CD ,∴△BCM ≌△CDN (AAS).∴BM =CN .在Rt △BCM 中,∵BC =5 cm ,CM =3 cm ,∴BM =BC 2-CM 2=52-32=4(cm).∴CN =4 cm.∴CE =2CN =2×4=8(cm).三、 19.解:(1) ∵AB =13,BD =1,∴AD =13-1=12.在Rt △ACD 中,CD =AC 2-AD 2=132-122=5.(2)在Rt△BCD中,BC=BD2+CD2=12+52=26.20.解:(1)∵AB=22+12=5,AC=22+42=25,BC=32+42=5,∴AB+AC+BC=5+25+5=35+5,即△ABC的周长为35+5.(2)∵AB2+AC2=(5)2+(25)2=25,BC2=52=25,∴AB2+AC2=BC2.∴△ABC是直角三角形.21.解:由题意知,AM=8×2=16(n mile),AP=15×2=30(n mile).∵两岛相距34 n mile,∴MP=34 n mile.∵162+302=342,∴AM2+AP2=MP2.∴∠MAP=90°.又∵∠NAM=60°,∴∠PAS=30°.∴乙船是沿南偏东30°方向航行的.22.解:在Rt△ABC中,AB=4 m,设BC=x m,则AC=(8-x)m.由勾股定理得BC2=AC2+AB2,即x2=(8-x)2+42,解得x=5.故BC=5 m,AC=3 m.如果旗杆从D处折断,设顶部的着地点为E,则DE=BC+CD=5+1.25=6.25(m),AD=AC-CD=3-1.25=1.75(m).在Rt△ADE中,由勾股定理得AE=DE2-AD2= 6.252-1.752=6(m).∴杆脚周围6 m范围内有被砸中的危险.23.解:当△ABC为钝角三角形时,a2+b2与c2的大小关系为a2+b2<c2.证明:如图,过点A作AD⊥BC,交BC的延长线于点D.设CD=y.在Rt△ADC中,由勾股定理得AD2=AC2-DC2=b2-y2;在Rt△ADB中,由勾股定理得AD2=AB2-BD2=c2-(a+y)2.∴b2-y2=c2-(a+y)2,整理,得a2+b2=c2-2ay.∵a>0,y>0,∴2ay>0.∴a2+b2=c2-2ay<c2.∴当△ABC为钝角三角形时,a2+b2<c2.24.解:(1)①6;2②PA2+PB2=PQ2(2)证明:如图,过点C作CD⊥AB于点D.∵△ACB为等腰直角三角形,CD⊥AB,∴CD=AD=DB.∵PA2=(AD+PD)2=(DC+PD)2=DC2+2DC·PD+PD2,PB2=(PD-BD)2=(PD-DC)2=DC2-2DC·PD+PD2,∴PA2+PB2=2DC2+2PD2.∵在Rt△PCD中,由勾股定理,得PC2=DC2+PD2,∴PA2+PB2=2PC2.∵△CPQ为等腰直角三角形,∴2PC2=PQ2.∴PA2+PB2=PQ2.。
人教版八年级数学下册第十七章检测题

第十七章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.以下列各组数为边长能组成直角三角形的是( B )A .2,3,4B . 3 ,2,7C . 6 ,2 2 ,10D .3,5,82.已知等腰三角形ABC 中,AB =AC =10 cm ,BC =12 cm ,则BC 边上的高是( B )A .6 cmB .8 cmC .10 cmD .12 cm3.如图,在平面直角坐标系中,点P 的坐标为(-2,3),以点O 为圆心,以OP 的长为半径画弧,交x 轴的负半轴于点A ,则A 点的横坐标介于( A )A .-4和-3之间B .3和4之间C .-5和-4之间D .4和5之间第3题图 第4题图4.如图,AB =BC =CD =DE =1,AB ⊥BC ,AC ⊥CD ,AD ⊥DE ,则AE =( D )A .1B . 2C . 3D .25.如图,两个较大正方形的面积分别为144,169,则字母A 代表的正方形的面积为( D )A .5B .6C .20D .25第5题图 第6题图6.(2020·陕西)如图,在3×3的网格中,每个小正方形的边长均为1,点A ,B ,C 都在格点上,若BD 是△ABC 的高,则BD 的长为( D )A .1013 13B .913 13C .813 13D .713 13 7.小明准备测量一段河水的深度,他把一根竹竿直插到离岸边6米远的水底,竹竿高出水面2米,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,则河水的深度为( B )A .7米B .8米C .9米D .10米8.在△ABC 中,若三条边长a =n 2-1,b =2n ,c =n 2+1(n >1),则△ABC 是( D )A .锐角三角形B .钝角三角形C .等腰三角形D .直角三角形9.如图,一轮船以16海里/时的速度从港口A 出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,则两船相距( D )A .25海里B .30海里C .35海里D .40海里第9题图 第10题图10.(2020·金华)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连接EG ,BD 相交于点O ,BD 与HC 相交于点P.若GO =GP ,则S 正方形ABCD S 正方形EFGH的值是( B )A .1+ 2B .2+ 2C .5- 2D .154二、填空题(每小题3分,共24分)11.若一个三角形的三边之比为3∶4∶5,且周长为24 cm ,则它的面积为__24__cm 2.12.定理:“全等三角形的对应边相等”的逆命题是__对应边相等的三角形全等__,它是__真__命题.(填“真”或“假”)13.如图,在△ABC 中,CA =CB ,AD ⊥BC ,BE ⊥AC ,AB =5,AD =4,则AE =__3__.第13题图 第15题图14.(2020·绥化)在Rt △ABC 中,∠C =90°,若AB -AC =2,BC =8,则AB 的长是__17__.15.如图,已知在△ABC 中 ,∠ABC =90°,AB =BC ,三角形的顶点在相互平行的三条直线l 1,l 2,l 3上,且l 1,l 2之间的距离为2,l 2,l 3之间的距离为3,则AC 2是__68__.16.如图,长方体的长、宽、高分别为8 cm ,4 cm ,5 cm .一只蚂蚁沿着长方体的表面从点A 爬到点B.则蚂蚁爬行的最短路径的长是cm .第16题图 第17题图 第18题图17.如图所示,四边形ABCD 是长方形,把△ACD 沿AC 折叠到△ACD ′,AD ′与BC 交于点E ,若AD =4,DC =3,则BE 的长为__78__. 18.(2020·贵阳)如图,△ABC 中,点E 在边AC 上,EB =EA ,∠A =2∠CBE ,CD垂直于BE 的延长线于点D ,BD =8,AC =11,则边BC 的长为.三、解答题(共66分) 19.(7分)一个直立的火柴盒在桌面上倒下,启迪人们发现了勾股定理的一种验证方法.如图,火柴盒的一个侧面ABCD 倒下到AB ′C ′D ′的位置,连接CC ′,设AB =a ,BC =b ,AC =c ,请利用四边形BCC ′D ′的面积验证勾股定理:a 2+b 2=c 2.解:∵四边形BCC ′D ′是直角梯形,∴S 梯形BCC ′D ′=12 (a +b)(a +b)=12(a +b)2,由旋转知AC =AC ′,∠CAC ′=90°,∴△ACC ′是等腰三角形,∴S 梯形BCC ′D ′=12 c 2+12ab ×2=12 c 2+ab ,∴12 (a +b)2=12c 2+ab ,化简整理得a 2+b 2=c 220.(7分)如图,在4×4正方形网格中,每个小正方形的边长都为1.(1)求△ABC 的周长;(2)求证:∠ABC =90°.解:(1)AB =2 5 ,AC =5,BC = 5 ,∴△ABC 的周长为3 5 +5 (2)∵AB 2+BC 2=20+5=25=AC 2,∴△ABC 是直角三角形且∠ABC =90°21.(8分)有人说:如果Rt △ABC 的三边是a ,b ,c(c >a ,c >b),那么以an ,bn ,cn(n 是大于1的正整数)为三边的三角形也是直角三角形.(1)这个说法是否正确?请说明理由;(2)写出上述命题的逆命题,并判断命题是真命题还是假命题.解:(1)正确.∵c 2=a 2+b 2,∴(an)2+(bn)2=a 2n 2+b 2n 2=n 2(a 2+b 2)=n 2c 2.∴以an ,bn ,cn 为边的三角形也是直角三角形 (2)逆命题:如果以an ,bn ,cn(n 是大于1的正整数)为三边的三角形是直角三角形,那么以a ,b ,c 为三边的三角形也是直角三角形,真命题22.(8分)如图,已知CD =6,AB =4,∠ABC =∠D =90°,BD =DC ,求AC 的长.解:在Rt△BDC中,BC2=BD2+DC2,Rt△ABC中,AC2=AB2+BC2,则AC2=AB2+BD2+DC2.又因为BD=DC,则AC2=AB2+2CD2=42+2×62=88,AC=222 ,即AC 的长为22223.(8分)如图,已知在△ABC中,∠A=90°,D是BC中点,且DE⊥BC于D,交AB于E.求证:BE2-EA2=AC2.解:连接CE,∵ED垂直平分BC,∴EB=EC,又∵∠A=90°,∴EA2+AC2=EC2,∴BE2-EA2=AC224.(8分)(大庆中考)如图,一艘船由A港沿北偏东60°方向航行10 km至B港,然后再沿北偏西30°方向航行10 km至C港.(1)求A,C两港之间的距离(结果保留到0.1 km,参考数据:2 ≈1.414,3 ≈1.732);(2)确定C港在A港的什么方向.解:(1)由题意可得∠PBC=30°,∠MAB=60°,∴∠CBQ=60°,∠BAN=30°,∴∠ABQ=30°,∴∠ABC=90°.∵AB=BC=10,∴AC=AB2+BC2=10 2 ≈14.1(km).答:A,C两地之间的距离为14.1 km(2)由(1)知,△ABC为等腰直角三角形,∴∠BAC=45°,∴∠CAM=60°-45°=15°,∴C港在A港北偏东15°的方向上25.(8分)如图,一根长6 3 米的木棒(AB),斜靠在与地面(OM)垂直的墙(ON)上,与地面的倾斜角(∠ABO)为60°.当木棒A 端沿墙下滑至点A ′时,B 端沿地面向右滑行至点B ′.(1)求OB 的长;(2)当AA ′=1米时,求BB ′的长.解:(1)∵OA ⊥OB ,∠ABO =60°,∴∠BAO =30°,∴OB =12 AB =12×6 3 =3 3 (米)(2)在Rt △ABO 中,AO =AB 2-BO 2 =9,A ′O =AO -AA ′=9-1=8.由题意可知A ′B ′=AB =6 3 ,在Rt △A ′OB ′中,B ′O =A ′B ′2-A ′O 2 =211 ,∴BB ′=B ′O -BO =(211 -3 3 )米26.(12分)(2020·山西)阅读与思考如图是小宇同学的数学日记,请仔细阅读,并完成相应的任务.×年×月×日星期日没有直角尺也能作出直角今天,我在书店一本书上看到下面材料:木工师傅有一块如图①所示的四边形木板,他已经在木板上画出一条裁割线AB ,现根据木板的情况,要过AB 上的一点C ,作出AB 的垂线,用锯子进行裁割,然而手头没有直角尺,怎么办呢?办法一:如图①,可利用一把有刻度的直尺在AB 上量出CD =30 cm ,然后分别以D ,C 为圆心,以50 cm 与40 cm 为半径画圆弧,两弧相交于点E ,作直线CE ,则∠DCE 必为90°.办法二:如图②,可以取一根笔直的木棒,用铅笔在木棒上点出M,N两点,然后把木棒斜放在木板上,使点M与点C重合,用铅笔在木板上将点N对应的位置标记为点Q,保持点N不动,将木棒绕点N旋转,使点M落在AB上,在木板上将点M对应的位置标记为点R.然后将RQ延长,在延长线上截取线段QS=MN,得到点S,作直线SC,则∠RCS =90°.我有如下思考:以上两种办法依据的是什么数学原理呢?我还有什么办法不用直角尺也能作出垂线呢?……任务:(1)填空:“办法一”依据的一个数学定理是__勾股定理的逆定理__;(2)根据“办法二”的操作过程,证明∠RCS=90°;(3)①尺规作图:请在图③的木板上,过点C作出AB的垂线(在木板上保留作图痕迹,不写作法);②说明你的作法所依据的数学定理或基本事实(写出一个即可).解:(1)∵CD=30,DE=50,CE=40,∴CD2+CE2=302+402=502=DE2,∴∠DCE =90°,故“办法一”依据的一个数学定理是勾股定理的逆定理,故答案为:勾股定理的逆定理(2)由作图方法可知,QR=QC,QS=QC,∴∠QCR=∠QRC,∠QCS=∠QSC,∵∠SRC+∠RCS+∠QSC=180°,即∠QCR+∠QCS+∠QRC+∠QSC=180°,∴2(∠QCR +∠QCS)=180°,∴∠QCR+∠QCS=90°,即∠RCS=90°(3)①如图③所示,直线PC即为所求;②答案不唯一,到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
八年级数学(下)第十七章测试题(含答案)

八年级数学(下)第十七章测试题(含答案)一、选择题(每小题4分,共28分)1.一个直角三角形的斜边长比一条直角边长大2,另一直角边长为6,则斜边长为( )A.4B.8C.10D.122.已知三角形的三边长之比为1∶1∶,则此三角形一定是( )A.锐角三角形B.钝角三角形C.等边三角形D.等腰直角三角形3.如图,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为( )A.4B.8C.16D.644.如图,一个高1.5m,宽3.6m的大门,需要在相对的顶点间用一条木板加固,则这条木板的长度是( )A.3.8 mB.3.9 mC.4 mD.4.4 m5.(2013·德宏州中考)设a,b是直角三角形的两条直角边,若该三角形的周长为6,斜边长为2.5,则ab的值是( )A.1.5B.2C.2.5D.36.如图所示,要在离地面5m处引拉线固定电线杆,使拉线和地面成60°角,若要考虑既要符合设计要求,又要节省材料,则在库存的L1=5.2m,L2=6.2m,L3=7.8m,L4=10m四种备用拉线材料中,拉线AC最好选用( )A.L1B.L2C.L3D.L47.(2013·柳州中考)在△ABC中,∠BAC=90°,AB=3,AC=4,AD平分∠BAC交BC于D,则BD的长为( )A. B.C. D.二、填空题(每小题5分,共25分)8.定理“全等三角形的对应边相等”的逆命题是,它是命题(填“真”或“假”).9.如图所示,AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,则AE= .10.如图,教室的墙面ADEF与地面ABCD垂直,点P在墙面上.若PA=AB=5,点P到AD的距离是3,有一只蚂蚁要从点P爬到点B,它的最短行程的平方应该是.11.如图所示,在△ABC中,AB∶BC∶CA=3∶4∶5,且周长为36 cm,点P 从点A开始沿AB边向B点以每秒1cm的速度移动;点Q从点B沿BC 边向点C以每秒2cm的速度移动,如果同时出发,则过3s时,△BPQ的面积为cm2.12.(2013·哈尔滨中考)在△ABC中,AB=2,BC=1,∠ABC=45°,以AB 为一边作等腰直角三角形ABD,使∠ABD=90°,连接CD,则线段CD的长为.三、解答题(共47分)13.(10分)已知△ABC的三边分别为a,b,c,且a+b=4,ab=1,c=,试判定△ABC的形状,并说明理由.14.(12分)(2013·湘西州中考)如图,在Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长.(2)求△ADB的面积.15.(12分)《中华人民共和国道路交通管理条例》规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)16.(13分)(2013·贵阳中考)在△ABC中,BC=a,AC=b,AB=c,设c为最长边.当a2+b2=c2时,△ABC是直角三角形;当a2+b2≠c2时,利用代数式a2+b2和c2的大小关系,探究△ABC的形状(按角分类).(1)当△ABC三边长分别为6,8,9时,△ABC为三角形;当△ABC三边长分别为6,8,11时,△ABC为三角形.(2)猜想:当a2+b2c2时,△ABC为锐角三角形;当a2+b2 c2时,△ABC为钝角三角形.(3)判断当a=2,b=4时,△ABC的形状,并求出对应的c的取值范围.答案解析1.【解析】选C.设斜边长为x,则一直角边为x-2,由勾股定理得,x2=(x-2)2+62,解得x=10.2.【解析】选D.由题意设三边长分别为x,x,x,∵x2+x2=(x)2,∴三角形一定为直角三角形,并且是等腰三角形.3.【解析】选D.由题意得,直角三角形的斜边为17,一条直角边为15,所以正方形A的面积为172-152=64.4.【解析】选B.设木板的长为xm,由题意知,x2=1.52+3.62,解得x=3.9(m).5.【解析】选D.∵三角形的周长为6,斜边长为2.5,∴a+b+2.5=6,∴a+b=3.5①,∵a,b是直角三角形的两条直角边,∴a2+b2=2.52②,由①②可得ab=3.6.【解析】选B.在Rt△ACD中,AC=2AD,设AD=x,由AD2+CD2=AC2,即x2+52=(2x)2,得x=≈2.8868,2x=5.7736,所以最好选用L2.7.【解析】选A.∵∠BAC=90°,AB=3,AC=4,∴BC===5,∴BC边上的高=3×4÷5=,∵AD平分∠BAC,∴点D到AB,AC上的距离相等,设为h,则S△ABC=×3h+×4h=×5×,解得h=,S△ABD=×3×=BD·,解得BD=.8.【解析】“全等三角形的对应边相等”的逆命题是三边分别对应相等的两个三角形全等,它是真命题.答案:三边分别对应相等的两个三角形全等真9.【解析】AE=====2.答案:210.【解析】如图,则AG=3.在Rt△APG中,PG2=PA2-AG2=52-32=16.在Rt△PGB中,PB2=PG2+GB2=16+(3+5)2=80.答案:8011.【解析】设AB为3xcm,BC为4xcm,AC为5xcm,因为周长为36 cm,AB+BC+AC=36,所以3x+4x+5x=36,得x=3,所以AB=9,BC=12,AC=15,因为AB2+BC2=AC2,所以△ABC是直角三角形,过3s时,BP=9-3×1=6,BQ=2×3=6,所以S△PBQ=BP·BQ=×6×6=18(cm2).答案:1812.【解析】当点D与C在AB同侧,BD=AB=2,作CE⊥BD于E,CE=BE=,ED=,由勾股定理得CD=(如图1);当点D与C在AB异侧,BD=AB=2,∠DBC=135°,作DE⊥BC于E,BE=ED=2,EC=3,由勾股定理得CD=(如图2).答案:或13.【解析】△ABC是直角三角形,理由:∵(a+b)2=16,a2+2ab+b2=16,ab=1,∴a2+b2=14.又∵c2=14,∴a2+b2=c2.∴△ABC是直角三角形.14.【解析】(1)∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=DE,∵CD=3,∴DE=3.(2)在Rt△ABC中,由勾股定理得,AB===10, ∴S△ADB=AB·DE=×10×3=15.15.【解析】在Rt△ABC中,AC=30m,AB=50m,根据勾股定理可得: BC ===40(m).∴小汽车的速度为v==20m/s=20×3.6km/h=72km/h.∵72km/h>70km/h,∴这辆小汽车超速行驶.16.【解析】(1)锐角钝角.(2)> <.(3)∵a=2,b=4,∴2<c<6,且由题意,c为最长边, ∴4<c<6,当a2+b2=c2,即c=2时,△ABC是直角三角形, ∴当4<c<2时,△ABC是锐角三角形,当2<c<6时,△ABC是钝角三角形.。
八年级数学下册第十七章《勾股定理》测试题-人教版(含答案)
八年级数学下册第十七章《勾股定理》测试题-人教版(含答案)一、单选题(共30分)1.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A3,4,5B.2,3C.6,7,8D.2,3,42.如图,一棵大树在一次强台风中距地面5m处折断,倒下后树顶端着地点A距树底端B的距离为12m,这棵大树在折断前的高度为()A.10m B.15m C.18m D.20m3.勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出()A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和4.如图,在△ABC中,△ACB=90°,分别以点A和点B为圆心,以相同的长(大AB)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交BC于于12点E.若AC=3,AB=5,则DE等于()A .2B .103C .158D .1525.《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为x 尺,则可列方程为( )A .()22610x x =--B .()222610x x =-- C .()22610x x +=- D .()222610x x +=- 6.已知一个直角三角形的两边长分别为3和4,则第三边长是( )A .5B .25C 7D .577.如图所示,圆柱的高AB =3,底面直径BC =3,现在有一只蚂蚁想要从A 处沿圆柱表面爬到对角C 处捕食,则它爬行的最短距离是( )A .31π+B .32C 234π+D .231π+8.在Rt △ABC 中,两条直角边的长分别为5和12,则斜边的长为( ) A .6 B .7 C .10 D .13 9.如图,矩形ABCD 中,AB 3=,BC 4=,EB//DF 且BE 与DF 之间的距离为3,则AE 的长是( )A 7B .38C .78D .5810.在Rt ABC △中,90C ∠=︒,9AC =,12BC =,则点C 到 AB 的距离是( )A .94B .1225C .365D 33二、填空题(共30分)11.在△ABC 中,AB =c ,AC =b ,BC =a ,当a 、b 、c 满足_______时,△B =90°. 12.如图,等腰直角ABC 中,90,4ACB AC BC ∠=︒==,D 为BC 的中点,5AD =,若P 为AB 上一个动点,则PC PD +的最小值为_________.13.如图,在Rt ABC △中,90A ∠=︒,3AB =,4AC =,现将ABC 沿BD 进行翻折,使点A 刚好落在BC 上,则CD =__________.14.如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC 的长为17米,几分钟后船到达点D 的位置,此时绳子CD 的长为10米,问船向岸边移动了__米.15.已知:如图,ABC 中,△ACB =90°,AC =BC 2,ABD 是等边三角形,则CD 的长度为______.16.如图,在四边形ABCD 中,22AD =27AB =10BC =,8CD =,90BAD ∠=︒,那么四边形ABCD 的面积是___________.17.如图,“以数轴的单位长度为边长作一个正方形,以数轴的原点O为圆心,以正方形的对角线长为半径画弧交数轴于一点A”,该图说明数轴上的点并不都表示________.18.在Rt△ACB中,△ACB=90°,点D在边AB上,连接CD,将△ADC沿直线CD翻折,点A恰好落在BC边上的点E处,若AC=3,BE=1,则DE的长是_____.19.如图,一架长5米的梯子A1B1斜靠在墙A1C上,B1到墙底端C的距离为3米,此时梯子的高度达不到工作要求,因此把梯子的B1端向墙的方向移动了1.6米到B处,此时梯子的高度达到工作要求,那么梯子的A1端向上移动了_____米.20.我国古代的数学名著《九章算术》中有这样一道题目“今有立木,系索其末,委地三尺.引索却行,去本八尺而索尽.问索长几何?”译文为“今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺,牵索沿地面退行,在离木柱根部8尺处时,绳索用尽问绳索长是多少?”示意图如下图所示,设绳索AC的长为x尺,根据题意,可列方程为__________.三、解答题(共60分)21.如图,一张长8cm ,宽6cm 的矩形纸片,将它沿某直线折叠使得A 、C 重合,求折痕EF 的长.22.一架云梯长25m ,如图所示斜靠在一而墙上,梯子底端C 离墙7m .(1)这个梯子的顶端A 距地面有多高?(2)如果梯子的顶端下滑了4 m ,那么梯子的底部在水平方向滑动了多少米?23.如图,把一块直角三角形(ABC ,90ACB ∠=︒)土地划出一个三角形(ADC )后,测得3CD =米,4=AD 米,12BC =米,13AB =米.(1)求证:90ADC ∠=︒;(2)求图中阴影部分土地的面积.24.如图,在四边形ABCD 中,AB=20cm ,BC=15cm ,CD=7cm ,AD=24cm ,△ABC=90°.(1)求△ADC 的度数;(2)求出四边形ABCD 的面积.25.如图,在△ABC 和△DEB 中,AC △BE ,△C =90°,AB =DE ,点D 为BC 的中点,12AC BC =. (1)求证:△ABC △△DEB .(2)连结AE ,若BC =4,直接写出AE 的长.26.勾股定理被誉为“几何明珠”,在数学的发展历程中占有举足轻重的地位.它是初中数学中的重要知识点之一,也是初中学生以后解决数学问题和实际问题中常常运用到的重要知识,因此学好勾股定理非常重要.学习数学“不仅要知其然,更要知其所以然”,所以,我们要学会勾股定理的各种证明方法.请你利用如图图形证明勾股定理:已知:如图,四边形ABCD中,BD△CD,AE△BD于点E,且△ABE△△BCD.求证:AB2=BE2+AE2.27.一艘轮船从A港向南偏西48°方向航行100km到达B岛,再从B岛沿BM方向航行125km到达C岛,A港到航线BM的最短距离是60km.(1)若轮船速度为25km/小时,求轮船从C岛沿CA返回A港所需的时间.(2)C岛在A港的什么方向?参考答案1.B2.C3.C4.C5.D6.D7.C8.D9.C10.C11.a2+c2= b212.513.5 214.9.1531 16.14 17.有理数18.15 719.0.820.x2−(x−3)2=8221.EF的长为15 222.(1)这个梯子的顶端A距地面有24m高;(2)梯子的底部在水平方向滑动了8m.23.2424.(1)△ADC=90°;(2)四边形ABCD的面积为2234cm252527.(1)从C岛返回A港所需的时间为3小时;(2)C岛在A港的北偏西42°。
人教版八年级数学下册《第十七章检测题》附答案
人教版八年级数学下册第十七章检测题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.已知Rt△ABC的三边长分别为a,b,c,且∠C=90°,c=37,a=12,则b的值为( )A.50 B.35 C.34 D.262.由下列线段a,b,c不能组成直角三角形的是( )A.a=1,b=2,c= 3 B.a=1,b=2,c= 5C.a=3,b=4,c=5 D.a=2,b=23,c=33.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是( )A.365B.1225C.94D.3344.已知三角形三边长为a,b,c,如果a-6+|b-8|+(c-10)2=0,则△ABC是( ) A.以a为斜边的直角三角形 B.以b为斜边的直角三角形C.以c为斜边的直角三角形 D.不是直角三角形5.(2016·株洲)如图,以直角三角形a,b,c为边,向外作等边三角形、半圆、等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有( )A.1 B.2 C.3 D.46.设a,b是直角三角形的两条直角边,若该三角形的周长为6,斜边长为2.5,则ab 的值是( )A.1.5 B.2 C.2.5 D.37.如图,在Rt△ABC中,∠A=30°,DE垂直平分斜边AC交AB于点D,E是垂足,连接CD,若BD=1,则AC的长是( )A.2 3 B.2 C.4 3 D.4,第7题图) ,第9题图),第10题图)8.一木工师傅测量一个等腰三角形的腰、底边和底边上的高的长,但他把这三个数据与其他数据弄混了,请你帮他找出来,应该是( )A.13,12,12 B.12,12,8 C.13,10,12 D.5,8,49.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8 m处,发现此时绳子末端距离地面2 m,则旗杆的高度为(滑轮上方的部分忽略不计)( )A.12 m B.13 m C.16 m D.17 m10.如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为(3,3),点C 的坐标为(12,0),点P 为斜边OB 上的一个动点,则PA +PC 的最小值为( )A.132 B.312 C.3+192D .27 二、填空题(每小题3分,共24分) 11.把命题“对顶角相等”的逆命题改写成“如果…那么…”的形式:__ __. 12.平面直角坐标系中,已知点A(-1,-3)和点B(1,-2),则线段AB 的长为__ __.13.三角形的三边a ,b ,c 满足(a -b)2=c 2-2ab ,则这个三角形是__ __. 14.如图,在平面直角坐标系中,点A ,B 的坐标分别为(-6,0),(0,8).以点A 为圆心,以AB 为半径画弧交x 轴正半轴于点C ,则点C 的坐标为__ __.,第14题图) ,第15题图),第17题图)15.如图,阴影部分是两个正方形,其他三个图形是一个正方形和两个直角三角形,则阴影部分的面积之和为__ __.16.有一段斜坡,水平距离为120米,高50米,在这段斜坡上每隔6.5米种一棵树(两端各种一棵树),则从上到下共种__ __棵树.17.如图,OP =1,过P 作PP 1⊥OP 且PP 1=1,得OP 1=2;再过P 1作P 1P 2⊥OP 1且P 1P 2=1,得OP 2=3;又过P 2作P 2P 3⊥OP 2且P 2P 3=1,得OP 3=2;…依此法继续作下去,得OP 2017=__ _.18.在△ABC 中,AB =22,BC =1,∠ABC =45°,以AB 为一边作等腰直角三角形ABD ,使∠ABD =90°,连接CD ,则线段CD 的长为__ _.三、解答题(共66分)19.(8分)如图,在△ABC 中,AD ⊥BC ,AD =12,BD =16,CD =5. (1)求△ABC 的周长;(2)判断△ABC 是否是直角三角形.20.(10分)如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,以格点为顶点按下列要求画图:(1)在图①中画一条线段MN ,使MN =17;(2)在图②中画一个三边长均为无理数,且各边都不相等的直角△DEF.21.(8分)如图,已知CD=6,AB=4,∠ABC=∠D=90°,BD=DC,求AC的长.22.(8分)如图,在△ABC中,∠A=90°,D是BC中点,且DE⊥BC于点D,交AB于点E.求证:BE2-EA2=AC2.23.(10分)如图,已知某学校A与直线公路BD相距3000米,且与该公路上的一个车站D相距5000米,现要在公路边建一个超市C,使之与学校A及车站D的距离相等,那么该超市与车站D的距离是多少米?24.(10分)一块长方体木块的各棱长如图所示,一只蜘蛛在木块的一个顶点A处,一只苍蝇在这个长方体上和蜘蛛相对的顶点B处,蜘蛛急于捉住苍蝇,沿着长方体的表面向上爬.(1)如果D是棱的中点,蜘蛛沿“AD→DB”路线爬行,它从A点爬到B点所走的路程为多少?(2)你认为“AD→DB”是最短路线吗?如果你认为不是,请计算出最短的路程.25.(12分)如图,已知正方形OABC的边长为2,顶点A,C分别在x轴的负半轴和y 轴的正半轴上,M是BC的中点,P(0,m)是线段OC上一动点(C点除外),直线PM交AB的延长线于点D.(1)求点D的坐标(用含m的代数式表示);(2)当△APD是以AP为腰的等腰三角形时,求m的值;人教版八年级数学下册第十七章检测题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.已知Rt△ABC的三边长分别为a,b,c,且∠C=90°,c=37,a=12,则b的值为( B)A.50 B.35 C.34 D.262.由下列线段a,b,c不能组成直角三角形的是( D)A.a=1,b=2,c= 3 B.a=1,b=2,c= 5C.a=3,b=4,c=5 D.a=2,b=23,c=33.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是( A)A.365B.1225C.94D.3344.已知三角形三边长为a,b,c,如果a-6+|b-8|+(c-10)2=0,则△ABC是( C) A.以a为斜边的直角三角形 B.以b为斜边的直角三角形C .以c 为斜边的直角三角形D .不是直角三角形5.(2016·株洲)如图,以直角三角形a ,b ,c 为边,向外作等边三角形、半圆、等腰直角三角形和正方形,上述四种情况的面积关系满足S 1+S 2=S 3图形个数有( D )A .1B .2C .3D .46.设a ,b 是直角三角形的两条直角边,若该三角形的周长为6,斜边长为2.5,则ab 的值是( D )A .1.5B .2C .2.5D .37.如图,在Rt △ABC 中,∠A =30°,DE 垂直平分斜边AC 交AB 于点D ,E 是垂足,连接CD ,若BD =1,则AC 的长是( A )A .2 3B .2C .4 3D .4,第7题图) ,第9题图),第10题图)8.一木工师傅测量一个等腰三角形的腰、底边和底边上的高的长,但他把这三个数据与其他数据弄混了,请你帮他找出来,应该是( C )A .13,12,12B .12,12,8C .13,10,12D .5,8,49.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8 m 处,发现此时绳子末端距离地面2 m ,则旗杆的高度为(滑轮上方的部分忽略不计)( D )A .12 mB .13 mC .16 mD .17 m10.如图,在平面直角坐标系中,Rt △OAB 的顶点A 在x 轴的正半轴上,顶点B 的坐标为(3,3),点C 的坐标为(12,0),点P 为斜边OB 上的一个动点,则PA +PC 的最小值为( B )A.132 B.312 C.3+192D .27 二、填空题(每小题3分,共24分)11.把命题“对顶角相等”的逆命题改写成“如果…那么…”的形式:__如果两个角相等,那么它们是对顶角__.12.平面直角坐标系中,已知点A(-1,-3)和点B(1,-2),则线段AB 的长为.13.三角形的三边a ,b ,c 满足(a -b)2=c 2-2ab ,则这个三角形是__直角三角形__. 14.如图,在平面直角坐标系中,点A ,B 的坐标分别为(-6,0),(0,8).以点A 为圆心,以AB 为半径画弧交x 轴正半轴于点C ,则点C 的坐标为__(4,0)__.,第14题图) ,第15题图),第17题图)15.如图,阴影部分是两个正方形,其他三个图形是一个正方形和两个直角三角形,则阴影部分的面积之和为__64__.16.有一段斜坡,水平距离为120米,高50米,在这段斜坡上每隔6.5米种一棵树(两端各种一棵树),则从上到下共种__21__棵树.17.如图,OP=1,过P作PP1⊥OP且PP1=1,得OP1=2;再过P1作P1P2⊥OP1且P1P2=1,得OP2=3;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2;…依此法继续作下去,得OP2017=.18.在△ABC中,AB=22,BC=1,∠ABC=45°,以AB为一边作等腰直角三角形ABD,使∠ABD=90°,连接CD,则线段CD的长为.三、解答题(共66分)19.(8分)如图,在△ABC中,AD⊥BC,AD=12,BD=16,CD=5.(1)求△ABC的周长;(2)判断△ABC是否是直角三角形.解:(1)可求得AB=20,AC=13,所以△ABC的周长为20+13+21=54(2)∵AB2+AC2=202+132=569,BC2=212=441,∴AB2+AC2≠BC2,∴△ABC不是直角三角形20.(10分)如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,以格点为顶点按下列要求画图:(1)在图①中画一条线段MN,使MN=17;(2)在图②中画一个三边长均为无理数,且各边都不相等的直角△DEF.解:如图:21.(8分)如图,已知CD=6,AB=4,∠ABC=∠D=90°,BD=DC,求AC的长.解:在Rt△BDC,Rt△ABC中,BC2=BD2+DC2,AC2=AB2+BC2,则AC2=AB2+BD2+DC2,又因为BD=DC,则AC2=AB2+2CD2=42+2×62=88,∴AC=222,即AC的长为22222.(8分)如图,在△ABC中,∠A=90°,D是BC中点,且DE⊥BC于点D,交AB于点E.求证:BE2-EA2=AC2.解:连接CE,∵ED垂直平分BC,∴EB=EC,又∵∠A=90°,∴EA2+AC2=EC2,∴BE2-EA2=AC223.(10分)如图,已知某学校A与直线公路BD相距3000米,且与该公路上的一个车站D相距5000米,现要在公路边建一个超市C,使之与学校A及车站D的距离相等,那么该超市与车站D的距离是多少米?解:设超市C与车站D的距离是x米,则AC=CD=x米,BC=(BD-x)米,在Rt△ABD 中,BD=AD2-AB2=4000米,所以BC=(4000-x)米,在Rt△ABC中,AC2=AB2+BC2,即x2=30002+(4000-x)2,解得x=3125,因此该超市与车站D的距离是3125米24.(10分)一块长方体木块的各棱长如图所示,一只蜘蛛在木块的一个顶点A 处,一只苍蝇在这个长方体上和蜘蛛相对的顶点B 处,蜘蛛急于捉住苍蝇,沿着长方体的表面向上爬.(1)如果D 是棱的中点,蜘蛛沿“AD →DB ”路线爬行,它从A 点爬到B 点所走的路程为多少?(2)你认为“AD →DB ”是最短路线吗?如果你认为不是,请计算出最短的路程.解:(1)从点A 爬到点B 所走的路程为AD +BD =42+32+22+32=(5+13)cm (2)不是,分三种情况讨论:①将下面和右面展到一个平面内,AB =(4+6)2+22=104=226(cm );②将前面与右面展到一个平面内,AB =(4+2)2+62=72=62(cm );③将前面与上面展到一个平面内,AB =(6+2)2+42=80=45(cm ),∵62<45<226,∴蜘蛛从A 点爬到B 点所走的最短路程为6 2 cm25.(12分)如图,已知正方形OABC 的边长为2,顶点A ,C 分别在x 轴的负半轴和y 轴的正半轴上,M 是BC 的中点,P(0,m)是线段OC 上一动点(C 点除外),直线PM 交AB 的延长线于点D.(1)求点D 的坐标(用含m 的代数式表示);(2)当△APD 是以AP 为腰的等腰三角形时,求m 的值;解:(1)先证△DBM ≌△PCM ,从中可得BD =PC =2-m ,则AD =2-m +2=4-m ,∴点D的坐标为(-2,4-m ) (2)分两种情况:①当AP =AD 时,AP 2=AD 2,∴22+m 2=(4-m )2,解得m =32;②当AP =PD 时,过点P 作PH ⊥AD 于点H ,∴AH =12AD ,∵AH =OP ,∴OP =12AD ,∴m =12(4-m ),∴m =43,综上可得,m 的值为32或43。
八年级数学下册(华师版) 检测题 第17章检测题
第17章检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)(每小题都给出A ,B ,C ,D 四个选项,其中只有一个是正确的)1.(2021·泸州)函数y =1x -1的自变量x 的取值范围是( B ) A .x <1 B .x >1 C .x ≤1 D .x ≥12.(2021·德州)已知点A(x 1,y 1),B(x 2,y 2),C(x 3,y 3)都在反比例函数y =a 2+1x(a 是常数)的图象上,且y 1<y 2<0<y 3,则x 1,x 2,x 3的大小关系为( D )A .x 2>x 1>x 3B .x 1>x 2>x 3C .x 3>x 2>x 1D .x 3>x 1>x 23.(2021·抚顺)如图,直线y =2x 与y =kx +b 相交于点P(m ,2),则关于x 的方程kx +b =2的解是( B )A .x =12B .x =1C .x =2D .x =4 第3题图 第7题图 第9题图第10题图4.(2021·益阳)正比例函数y =2x 与反比例函数y =2x的图象或性质的共有特征之一是( B )A .函数值y 随x 的增大而增大B .图象在第一、三象限都有分布C .图象与坐标轴有交点D .图象经过点(2,1)5.(2021·安徽)某品牌鞋子的长度y cm 与鞋子的码数x 之间满足一次函数关系.若22码鞋子的长度为16 cm ,44码鞋子的长度为27 cm ,则38码鞋子的长度为( B )A .23 cmB .24 cmC .25 cmD .26 cm6.(2021·荆门)在同一直角坐标系中,函数y =kx -k 与y =k |x|(k ≠0)的大致图象是( B )A .①②B .②③C .②④D .③④7.(2021·梧州)如图,在同一平面直角坐标系中,直线y =t(t 为常数)与反比例函数y 1=4x ,y 2=-1x的图象分别交于点A ,B ,连结OA ,OB ,则△OAB 的面积为( C ) A .5t B .5t 2 C .52D .5 8.(2021·黔东南州)已知直线y =-x +1与x 轴,y 轴分别交于A ,B 两点,点P 是第一象限内的点,若△PAB 为等腰直角三角形,则点P 的坐标为( C )A .(1,1)B .(1,1)或(1,2)C .(1,1)或(1,2)或(2,1)D .(0,0)或(1,1)或(1,2)或(2,1)9.如图,在平面直角坐标系中,过点M(-3,2)分别作x 轴、y 轴的垂线与反比例函数y =4x的图象交于A ,B 两点,则四边形MAOB 的面积为( C ) A .6 B .8 C .10 D .1210.(2021·赤峰)甲、乙两人在一条长400米的直线跑道上同起点、同终点、同方向匀速跑步,先到终点的人原地休息.已知甲先出发3秒,在跑步过程中,甲、乙两人间的距离y(米)与乙出发的时间x(秒)之间的函数关系如图所示,则下列结论正确的个数是( B )①乙的速度为5米/秒;②离开起点后,甲、乙两人第一次相遇时,距离起点12米;③甲、乙两人之间的距离超过32米的时间范围是44<x <89;④乙到达终点时,甲距离终点还有68米.A .4B .3C .2D .1二、填空题(每小题3分,共15分)11.(2021·镇江)已知一次函数的图象经过点(1,2),且函数值y 随自变量x 的增大而减小,写出符合条件的一次函数表达式__y =-x +3__.(答案不唯一,写出一个即可)12.(2021·南通)下表中记录了一次试验中时间和温度的数据.若温度的变化是均匀的,则14分钟时的温度是__52__℃.13.(2021·枣庄)如图,正比例函数y 1=k 1x(k 1≠0)与反比例函数y 2=k 2x(k 2≠0)的图象相交于A ,B 两点,其中点A 的横坐标为1.当k 1x <k 2x时,x 的取值范围是__0<x <1或x <-1__.第13题图 第14题图 第15题图14.(2021·梧州)如图,直线l 的函数表达式为y =x -1,在直线l 上顺次取点A 1(2,1),A 2(3,2),A 3(4,3),A 4(5,4),…,A n (n +1,n),构成形如“”的图形的阴影部分面积分别表示为S 1,S 2,S 3,…,S n ,则S 2021=__4044__.15.(2021·德州)小亮从学校步行回家,图中的折线反映了小亮离家的距离S(米)与时间t(分钟)的函数关系,根据图象提供的信息,给出以下结论:①他在前12分钟的平均速度是70米/分钟;②他在第19分钟到家;③他在第15分钟离家的距离和第24分钟离家的距离相等;④他在第33分钟离家的距离是720米.其中正确的序号为__①④__.三、解答题(共75分)16.(8分)已知y 是x 的反比例函数,并且当x =2时,y =6.(1)求y 关于x 的函数表达式;(2)当x =4时,求y 的值.解:(1)∵y 是x 的反比例函数,∴设y =k x(k ≠0),当x =2时,y =6.∴k =xy =12,∴y =12x(2)当x =4时,y =317.(9分)(2021·玉林)先化简再求值:(a -2+1a )÷(a -1)2|a|,其中a 使反比例函数y =a x的图象分别位于第二、四象限. 解:原式=(a -1)2a ·|a|(a -1)2 =|a|a ,∵反比例函数y =a x 的图象分别位于第二、四象限,∴a <0,∴|a|=-a ,,∴原式=-a a=-118.(9分)(2021·北京)在平面直角坐标系xOy 中,一次函数y =kx +b(k ≠0)的图象由函数y =12x 的图象向下平移1个单位长度得到. (1)求这个一次函数的表达式;(2)当x >-2时,对于x 的每一个值,函数y =mx(m ≠0)的值大于一次函数y =kx +b的值,直接写出m 的取值范围.解:(1)∵函数y =12 x 的图象向下平移1个单位长度得到y =12x -1,∴这个一次函数的表达式为y =12 x -1 (2)把x =-2代入y =12x -1,得y =-2,把点(-2,-2)代入y =mx ,得m =1,此时函数为y =x ,图象如图所示,由图可知,12≤m ≤119.(9分)(2021·毕节)某中学计划暑假期间安排2名老师带领部分学生参加红色旅游.甲、乙两家旅行社的服务质量相同,且报价都是每人1000元.经协商,甲旅行社的优惠条件是:老师、学生都按八折收费;乙旅行社的优惠条件是:两位老师全额收费,学生都按七五折收费.(1)设参加这次红色旅游的老师学生共有x 名,y 甲,y 乙(单位:元)分别表示选择甲、乙两家旅行社所需的费用,求y 甲,y 乙关于x 的函数表达式;(2)该校选择哪家旅行社支付的旅游费用较少?解:(1)y 甲=0.8×1000x =800x ,y 乙=2×1000+0.75×1000×(x -2)=750x +500 (2)①y 甲<y 乙,800x <750x +500,解得x <10;②y 甲=y 乙,800x =750x +500,解得x =10;③y 甲>y 乙,800x >750x +500,解得x >10,答:当老师、学生数超过10人时,选择乙旅行社支付的旅游费用较少;当老师、学生数为10人时,两旅行社支付的旅游费用相同;当老师、学生数少于10人时,选择甲旅行社支付的旅游费用较少20.(9分)(2021·德阳)2021年,“广汉三星堆”又有新的文物出土,景区游客大幅度增长.为了应对暑期旅游旺季,方便更多的游客在园区内休息,景区管理委员会决定向某公司采购一批户外休闲椅.经了解,该公司出售弧形椅和条形椅两种类型的休闲椅,已知条形椅的单价是弧形椅单价的0.75倍,用8000元购买弧形椅的数量比用4800元购买条形椅的数量多10张.(1)弧形椅和条形椅的单价分别是多少元?(2)已知一张弧形椅可坐5人,一张条形椅可坐3人,景区计划共购进300张休闲椅,并保证至少增加1200个座位.请问:应如何安排购买方案最节省费用?最低费用是多少元?解:(1)设弧形椅的单价为x 元,则条形椅的单价为0.75x 元,根据题意得:8000x =48000.75x+10,解得x =160,经检验,x =160是原方程的解,且符合题意,∴0.75x =120,答:弧形椅的单价为160元,条形椅的单价为120元 (2)设购进弧形椅m 张,则购进条形椅(300-m)张,由题意得:5m +3(300-m)≥1200,解得m ≥150;设购买休闲椅所需的费用为W 元,则W =160m +120(300-m)=40m +36000,∵40>0,∴W 随m 的增大而增大,∴当m =150时,W 有最小值,W 最小=40×150+36000=42000,300-m =300-150=150.答:购进150张弧形椅,150张条形椅最节省费用,最低费用是42000元21.(10分)如图,一次函数y =kx +b(k ,b 为常数,k ≠0)的图象与反比例函数y =-12x 的图象交于A ,B 两点,且与x 轴交于点C ,与y 轴交于点D ,A 点的横坐标与B 点的纵坐标都是3.(1)求一次函数的表达式;(2)求△AOB 的面积;(3)写出不等式kx +b >-12x的解集. 解:(1)由题意得3=-12x ,解得x =-4,∴B(-4,3),又y =-123=-4,∴A(3,-4),把A ,B 点的坐标代入y =kx +b ,得⎩⎪⎨⎪⎧-4k +b =3,3k +b =-4, 解得⎩⎪⎨⎪⎧k =-1,b =-1, 故一次函数的表达式为y =-x -1 (2)y =-x -1,当y =0时,x =-1,∴C 点坐标为(-1,0),∴S △AOB=S △BOC +S △AOC =12 ×1×3+12 ×1×4=72 (3)不等式kx +b >-12x的解集为:x <-4或0<x <322.(10分)(2021·大庆)如图①是甲,乙两个圆柱形水槽的横截面示意图,乙槽中有一圆柱形实心铁块立放其中(圆柱形实心铁块的下底面完全落在乙槽底面上),现将甲槽中的水匀速注入乙槽,甲,乙两个水槽中水的深度y(cm )与注水时间x(min )之间的关系如图②所示,根据图象解答下列问题:(1)图②中折线EDC 表示__乙__槽中水的深度与注入时间之间的关系;线段AB 表示__甲__槽中水的深度与注入时间之间的关系;铁块的高度为__16__cm .(2)注入多长时间,甲、乙两个水槽中水的深度相同?(请写出必要的计算过程)解:(1)由题意可知,乙槽在注入水的过程中,由于有圆柱形实心铁块在内,所以水的高度出现变化,∴EDC 表示的是乙槽的水深与注水时间的关系;∵甲槽的水是匀速外倒,∴线段AB 表示甲槽水深与注水时间的关系;折线EDC 中,在D 点表示乙槽水深16 cm ,也就是铁块的高度16 cm ;故答案为:乙,甲,16 (2)由图象可知,两个水槽中水的深度相同时,线段ED 与线段AB 相交,设AB 的表达式为y =kx +b ,将点(0,14),(7,0)代入,得⎩⎪⎨⎪⎧b =14,7k +b =0, 解得⎩⎪⎨⎪⎧k =-2,b =14, ∴y =-2x +14;设ED 的表达式为y =mx +n ,将点(0,4),(4,16)代入,得⎩⎪⎨⎪⎧n =4,4m +n =16, 解得⎩⎪⎨⎪⎧m =3,n =4, ∴y =3x +4;联立方程⎩⎪⎨⎪⎧y =-2x +14,y =3x +4, 解得⎩⎪⎨⎪⎧x =2,y =10, ∴注水2分钟时,甲、乙两个水槽中水的深度相同23.(11分)(2021·内江)为迎接“五一”小长假购物高潮,某品牌专卖店准备购进甲、乙两种衬衫,其中甲、乙两种衬衫的进价和售价如下表:若用3000元购进甲种衬衫的数量与用2700元购进乙种衬衫的数量相同.(1)求甲、乙两种衬衫每件的进价;(2)要使购进的甲、乙两种衬衫共300件的总利润不少于34000元,且不超过34700元,问该专卖店有几种进货方案;(3)在(2)的条件下,专卖店准备对甲种衬衫进行优惠促销活动,决定对甲种衬衫每件优惠a 元(60<a <80)出售,乙种衬衫售价不变,那么该专卖店要获得最大利润应如何进货?解:(1)依题意得3000m =2700m -10,解得m =100,经检验,m =100是原方程的根,且符合题意.答:甲种衬衫每件进价100元,乙种衬衫每件进价90元 (2)设购进甲种衬衫x 件,则购进乙种衬衫(300-x)件,根据题意,得⎩⎪⎨⎪⎧(260-100)x +(180-90)(300-x )≥34000,(260-100)x +(180-90)(300-x )≤34700, 解得100≤x ≤110,∵x 为整数,110-100+1=11,答:共有11种进货方案 (3)设总利润为w 元,则w =(260-100-a)x +(180-90)(300-x)=(70-a)x +27000(100≤x ≤110),①当60<a <70时,70-a >0,w 随x 的增大而增大,∴当x =110时,w 最大,此时应购进甲种衬衫110件,乙种衬衫190件;②当a =70时,70-a =0,w =27000,(2)中所有方案获利都一样,但不满足总利润不少于34000元,且不超过34700元,应舍去;③当70<a <80时,70-a <0,w 随x 的增大而减小,∴当x =100时,w 最大,此时应购进甲种衬衫100件,乙种衬衫200件.综上:要获得最大利润,当60<a <70时,应购进甲种衬衫110件,乙种衬衫190件;当70<a <80时,应购进甲种衬衫100件,乙种衬衫200件。
人教版八年级数学下册第17章《勾股定理》单元检测卷及答案解析
八年级数学下册第17章《勾股定理》单元检测卷分值:120分时间:90分钟一、选择题.(本大题共12道小题,共36分)1.下列线段能组成直角三角形的一组是()A .1,2,2B .3,4,5C ,2D .5,6,72.△ABC 中,∠A ,∠B ,∠C 的对边分别是a ,b ,c ,下列命题中的假命题是()A .如果∠C -∠B =∠A ,则△ABC 是直角三角形B .如果222c b a =-,则△ABC 是直角三角形,且∠C =90°C .如果2()()c a c a b +-=,则△ABC 是直角三角形D .如果∠A ∶∠B ∶∠C =5∶2∶3,则△ABC 是直角三角形3.如图,小明学了在数轴上画出表示无理数的点的方法后,进行练习:首先画数轴,原点为O ,在数轴上找到表示数2的点A ,然后过点A 作AB ⊥OA ,使AB =3(如图).以O 为圆心,OB 长为半径作弧,交数轴正半轴于点,则点所表示的数介于()A .1和2之间B .2和3之间C .3和4之间D .4和5之间4.如图,一次飓风灾害中,一棵大树在离地面米处折断,树的顶端落在离树干底部4米处,那么这棵树折断之前的高度是()A .5米B .6米C .7米D .8米5.若△ABC 的三边长分别为a ,b ,c ,且满足222()()0a b a b c -+-=,则△ABC 是()A .等腰三角形B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形6.如图,将一根长厘米的筷子置于底面直径为6厘米,高为8厘米的圆柱形杯子中,则筷子露在杯子外面的长度至少为()厘米.A.1B.2C.3D.47.我市在旧城改造中,需要在一块如图所示的三角形空地上铺设草坪,如果每平方米草坪的价格为x元,则购买草坪需要的花费大概是()提示:2≈1.414,3≈1.732A.150x元B.300x元C.130x元D.260x元8.等腰三角形一腰长为5,这一腰上的高为3,则这个等腰三角形底边长为()A.10B.310C.10或310D.4或3109.如图所示,长方形ABCD中,点E在边AB上,将长方形ABCD沿直线DE折叠,点A恰好落在边BC上的点F处,若AD=5,DC=3,则BF的长是()A.1B.2C.3D.410.小明想知道学校旗杆的高度,她发现旗杆上的绳子刚好垂到地面,当她把绳子的下端拉开5米后,发现绳子下端距离地面1米,则旗杆的高是()A.8米B.10米C.12米D.13米11.如图,圆柱的底面周长是14cm,圆柱高为24cm,一只蚂蚁如果要沿着圆柱的表面从下底面点A爬到与之相对的上底面点B,那么它爬行的最短路程为()A.14cm B.15cm C.24cm D.25cm12.勾股定理是几何中的一个重要定理,在我国古算书周髀算经中就有“若勾三、股四、则弦五”的记载。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八下数学第十七章检测题
(考试时间:120分钟满分:120分)
一.选择题(本大题10个小题,每小题3分,共30分)
1.已知a、b、c分别是△ABC的三边,下列条件:①a=12,b=5,c=13;②∠C-
∠B=∠A ;③a=8,b=15,c=17;④a=12,b=11,c=5,能够判断△ABC是直角三角形的有()
A.1个 B.2个 C.3个 D.4个
2.若三角形中相等的两边长为10cm,第三边长为16cm,那么第三边上的高为()
A.12cm
B.10cm
C.8cm
D.6cm
3.若△ABC的三边分别为a、b、c,且满足(a-b)(a²+b²-c²)=0,则△ABC是()
A.等腰直角三角形
B.直角三角形
C.等腰直角三角形
D.等腰直角三角形或直角三角形
4.若一直角三角形的两边长为12和5,则第三边长为()
A.13
B.13和5 D.15
5.下面各命题中,逆命题成立的是()
A. 两个全等三角形的对应的高相等
B.全等三角形对应角相等
C.两直线平行,内错角相等
D.如果两个角是直角,那么他们相等
6.如图所示,△ABC中,CD⊥AB于D,若AD=2BD,AC=5,BC=4,则BD的长为( )
1
2
7.如图,字母B所代表的正方形的面积是()
A.12
B.13
C.144
D.194
8.下列说法正确的有()
最小边长为1,②已知直角
三角形的面积为2,两直角边长的比为1:2,③在直角
三角形中,若两条直角边边长分别为2n-1和2n,则斜边长为2n+1 ④等腰三角形的面积为12,底边上的高为4,则腰长为5
A.1个
B.2个
C.3个
D.4个
9.小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1m,当他把绳子
的下端拉开5m后,发现下面刚好接触地面,则旗杆的高为()
A.8m
B.10m
C.12m
D.14m
10.如图所示,梯子AB靠在墙上,梯子AB靠在墙上,梯子的底端A到墙根O的距
离为2m,梯子的顶端B到地面的距离为7m,现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离等于3m,同时梯子的底端下降( )
A.等于1m
B.大于1m
C.小于1m
D.以上答案都不对二.填空题(每小题3分,共18分)
11.命题“等边三角形是等腰三角形”的逆命题是:,这
个逆命题 .(填“成立”或“不成立”)
12.如图所示,在△ABC中,AC=BC=2, ∠
ACB=90 °,D是BC的中点,E是AB边上的一动点,则EC+ED的最小值是 .
13.已知a、b、c为△ABC的三边长,且满足
222244.
-=-则此△ABC
a c
b
c a b
是 .
14.等腰三角形的腰长为10cm,底边长为16cm,则它腰上的高为
cm.
15.如图,已知△ABC中,∠ABC=90°,AB=AC,三角形的顶点在互相平行的三条直
线123l l l 、、上,且12l l 、之间的距离为2,23l l 、之间的距离为3,则2AC 是 .
16.在直线l 上依次摆放七个正方形(如图),已知斜放置的三个正方形的面积分别为1、2、3,正放置的四个正方形的面积依次为1234S S S S 、、、,则1234S S S S +++=
.
三. 解答题(共72分)
17.(6分)如图:△ABC 中,AD ⊥BC ,AD=12,BD=16,CD=5.
(1)求△ABC 的周长.
(2)判断△ABC 是否为直角三角形.
18.(6分)如图,圆柱形玻璃容器高18cm,底面周长为60cm.在外侧距下底1cm 的点A 有一只蚂蚁,与蜘蛛正对着的圆柱形容器的外侧距开口处1cm 的地方有一只苍蝇,试求急于捕捉苍蝇充饥的蜘蛛,所走的最短路线的长度.
19.(6分)如图所示是由边长为1的小正方形组成的网格
(1)求四边形ABCD的面积;
(2)你能判断AD与CD的位置关系吗?说出你的理由
20.(6分)如图所示,在△ABC中AB=AC=20,BC=32,D是BC上的一点,且AD⊥AC,
求BD的长.
21.(8分)如图,已知在△ABC中,∠A=90°,D是BC中点,且DE⊥BC与D,交
AB于E,求证:BE²-EA²=AC².
22.(10分)如图,A、B是两座现代化城市,C是一个古城遗址,C城在A城的北
偏东30°方向,在B城的北偏西45°方向,且C城与A城相距120千米,B城在A城的正东方向,以C为圆心,以60千米为半径的圆形区域内有古迹和地下文物,现要在A、B两城市间修建一条笔直的高速公路.
(1)请你计算公路的长度。
(结果保留根号)
(2)请你分析这条公路有没有可能是对古迹或文物
赞成损毁。
23.(10分)在△ABC中,AB=13,BC边上的高AD=12,AC=15,求BC的长度.
24.(8分)一个零件的形状如图,按规定,这个零件中∠A与∠BDC都应为直角.
工人师傅量得零件各边长尺寸:AD=3,AB=4,BD=5,DC=12,BC=13,问这个零件符合要求吗?
25.(12分)如图所示,A城气象台测得台风中心在A城正西方向321km的B处,以
每小时40km的速度向北偏东60°的BF方向移动,距离台风中心200km的范围内是受台风影响的区域.
(1)A城是否受到这次台风的影响?为什么?
(2)若A城受到这次台风的影响,那么A城遭受这次台风影响有多长时间.。