实验三 遥感图像的几何校正
ENVI遥感图像处理实验教程 实验三 几何校正(影像、地形图)ok

实验三 ENVI影像的几何校正本专题旨在介绍如何在ENVI中对影像进行地理校正,添加地理坐标,以及如何使用ENVI进行影像到影像的几何校正。
遥感图像的几何纠正是指消除影像中的几何形变,产生一幅符合某种地图投影或图形表达要求的新影像。
一般常见的几何纠正有从影像到地图的纠正,以及从影像到影像的纠正,后者也称为影像的配准。
遥感影像中需要改正的几何形变主要来自相机系统误差、地形起伏、地球曲率以及大气折射等。
几何纠正包括两个核心环节:一是像素坐标的变换,即将影像坐标转变为地图或地面坐标;二是对坐标变换后的像素亮度值进行重采样。
本实验将针对不同的数据源和辅助数据,提供以下几种校正方法:Image to Map几何校正:通过地面控制点对遥感图像几何进行平面化的过程,控制点可以是键盘输入、从矢量文件中获取。
地形图校正就采取这种方法。
Image to image几何校正:以一副已经经过几何校正的栅格影像作为基准图,通过从两幅图像上选择同名点(GCP)来配准另一幅栅格影像,使相同地物出现在校正后的图像相同位置。
大多数几何校正都是利用此方法完成的。
Image to image自动图像配准:根据像元灰度值自动寻找两幅图像上的同名点,根据同名点完成两幅图像的配准过程。
当同一地区的两幅图像由于各自校正误差的影像,使得图上的相同地物不重叠时,可利用此方法进行调整1. 地形图的几何校正(1)打开并显示地形图从ENVI主菜单中,选择file →open image file,打开3-几何校正\地形图\G-48-34-a.JPG。
(2)定义坐标从ENVI主菜单栏中,选择Map →Registration →Select GCPs:Image to map。
在image to Map Registration对话框中,点击并选择New,定义一个坐标系从ENVI主菜单栏中,选择Map →Registration →Select GCPs: Image to Map。
ERDAS实验报告3--几何校正

西北师范大学学生实验报告学院地环学院专业地理信息系统年级、班08地信学号200875000203 姓名陈晨同组者课程名称ERDAS遥感数字图像处理实验题目几何校正成绩一、实验目的:通过实习操作,掌握遥感图像几何校正的基本方法和步骤,深刻理解遥感图像几何校正的意义。
二、实验准备:充分了解:影像图形几何畸变的因素、几何校正的方法、灰度值的重采样方法、多项式纠正法地面控制点的选取、遥感图像的镶嵌。
三、实验内容:资源卫星数据的校正;图像的仿射变换;航片的正射校正;图像的镶嵌;图像投影变换。
四、实验过程及步骤:1.资源卫星数据Landsat的校正以美国佐治亚州亚特兰大的一景SPOT全色卫片来对同一地区的Landsat影像作图像对图像的几何校正,SPOT卫片已经具有State Plane地图投影。
基本步骤为:1)显示图像文件(1)打开两个视窗Viewer#1和Viewer#2,单击Session,选择Tile Viewers将视窗平铺放置。
在Viewer#1中打开需要校正的Landsat TM影像:tmAtlanta.img,在Viewerr#2中打开作为地理参考的校正过的SPOT影像:panAtlanta.img。
2)启动几何校正模块(1)在Viewer#1中单击Raster(2)选择Geometric Correction,选择多项式几何校正模型。
(3)定义多项式模型参数及投影参数。
3)启动控制点工具。
(1)选择视窗采点模式Exising Viewer(2)确定后打开Viewer Selection Instruction指示器(3)在作为地理参考的图像panAtlanta.img中点击左键,打开Reference Map Information 提示框,显示参考图像的投影信息。
(4)确定表后面控制点工具被启动,进入控制点采集状态。
4)采集地面控制点5)采集地面检查点6)计算转换模型3.航空影像的正射校正对于空间分辨率很高的影像,如航片,进行几何校正时还要考虑地形等高程的影响,这个过程称为正射校正,需要与影像同区域的数字高程模型DEM。
遥感几何校正实验报告

遥感几何校正实验报告遥感几何校正实验报告一、引言遥感技术在地球科学和环境研究中起着至关重要的作用。
遥感图像的几何校正是确保图像的准确性和可用性的关键步骤之一。
本实验旨在通过对遥感图像进行几何校正,探索校正过程中的方法和技术。
二、实验目的1. 了解遥感图像的几何校正原理和意义;2. 掌握几何校正的基本步骤和技术;3. 分析几何校正对遥感图像质量的影响。
三、实验材料与方法1. 实验材料:- 遥感图像数据集;- 几何校正软件。
2. 实验方法:- 导入遥感图像数据集;- 对图像进行几何校正;- 分析校正前后图像的差异。
四、实验过程与结果1. 数据导入:在几何校正软件中导入遥感图像数据集,确保图像能够正确显示。
2. 几何校正:根据几何校正软件的操作指南,按照以下步骤进行几何校正:a) 选择合适的控制点:根据图像中的特征选择控制点,以确保校正的准确性;b) 校正图像:通过对控制点进行配准,对图像进行几何校正;c) 评估校正结果:查看校正后的图像,与原始图像进行对比,评估校正的效果。
3. 结果分析:a) 观察校正后的图像:比较校正前后图像的差异,注意观察图像的形状、位置和尺度是否发生变化;b) 分析校正效果:根据观察结果,评估几何校正的效果。
若图像形状、位置和尺度变化较小,说明校正效果较好;c) 讨论校正结果:讨论校正结果对后续遥感分析的影响,如地物提取、变化检测等。
五、讨论与总结几何校正是遥感图像处理的重要步骤,能够提高图像的准确性和可用性。
本实验通过对遥感图像进行几何校正,探索了校正过程中的方法和技术。
校正后的图像形状、位置和尺度变化较小,说明校正效果较好。
几何校正结果对后续遥感分析有重要影响,能够提高地物提取和变化检测的精度。
然而,几何校正过程中仍存在一些挑战和限制。
例如,控制点的选择和配准的准确性对校正结果至关重要。
此外,校正过程中可能出现图像畸变和信息丢失的情况,需要在校正结果的评估中进行综合考虑。
第三章遥感图像辐射校正和几何校正

(a) 原始影像
(b)同分辨DEM数据 (c)地形坡度角影像辐
射校正结果影像
14
辐射校正
由遥感器引起的误差或由太阳高度引起的误差,一般 在数据生产过程中由生产单位根据遥感器参数进行校正, 而不需要用户进行自行处理。用户应该考虑大气影响引 起的辐射畸变。
Gij
M
di D
(gij
mi )
式中:gij:某一像元被计算前的输入灰度值;M:整个图 像所有像元灰值的平均值;D:整个图像所有像元数灰度
值的标准偏差;mi:每条扫描线上像元灰度平均值;di: 每条扫描线上像元灰度的标准偏差
7
按照上面查找条带公式。如果第i行是一个条带,由于
条带上所有像元都是零级灰值,故mi和di计算出来也为 零值,最后计算的Gij的灰度值应该等于整个像幅灰度值
度,亮度为 。Lp
22
大气影响的定量分析
可见,由于大气影响的存在,实际到达传感器的辐射 亮度是前面所分析的三项之和,即
L L1 L2 Lp
L
RT
S ( E0T
cos
ED )
SLp
23
大气影响的定量分析
比较以下两个公式:
L'0
R
E0
S
cos
L
RT
S ( E0T
cos
ED )
SLp
大气的主要影响是减少了图像的对比度,使原始
f (x, y) g(x, y)
sin 如果不考虑天空光的影响,各波段图像可采用 相同的 角进行校正。 太阳方位角的变化也会改变光照条件,它也随成像 季节、地理纬度的变化而变化。太阳方位角引起的图 像辐射值误差通常只对图像细部特征产生影响,它可 以采用与太阳高度角校正相类似的方法进行处理。
ENVI遥感图像处理实验教程 实验三 几何校正(影像、地形图)ok

实验三 ENVI影像的几何校正本专题旨在介绍如何在ENVI中对影像进行地理校正,添加地理坐标,以及如何使用ENVI进行影像到影像的几何校正。
遥感图像的几何纠正是指消除影像中的几何形变,产生一幅符合某种地图投影或图形表达要求的新影像。
一般常见的几何纠正有从影像到地图的纠正,以及从影像到影像的纠正,后者也称为影像的配准。
遥感影像中需要改正的几何形变主要来自相机系统误差、地形起伏、地球曲率以及大气折射等。
几何纠正包括两个核心环节:一是像素坐标的变换,即将影像坐标转变为地图或地面坐标;二是对坐标变换后的像素亮度值进行重采样。
本实验将针对不同的数据源和辅助数据,提供以下几种校正方法:Image to Map几何校正:通过地面控制点对遥感图像几何进行平面化的过程,控制点可以是键盘输入、从矢量文件中获取。
地形图校正就采取这种方法。
Image to image几何校正:以一副已经经过几何校正的栅格影像作为基准图,通过从两幅图像上选择同名点(GCP)来配准另一幅栅格影像,使相同地物出现在校正后的图像相同位置。
大多数几何校正都是利用此方法完成的。
Image to image自动图像配准:根据像元灰度值自动寻找两幅图像上的同名点,根据同名点完成两幅图像的配准过程。
当同一地区的两幅图像由于各自校正误差的影像,使得图上的相同地物不重叠时,可利用此方法进行调整1. 地形图的几何校正(1)打开并显示地形图从ENVI主菜单中,选择file →open image file,打开3-几何校正\地形图\G-48-34-a.JPG。
(2)定义坐标从ENVI主菜单栏中,选择Map →Registration →Select GCPs:Image to map。
在image to Map Registration对话框中,点击并选择New,定义一个坐标系从ENVI主菜单栏中,选择Map →Registration →Select GCPs: Image to Map。
遥感图像的几何校正实验报告

实验报告实验名称:遥感图像的几何校正课程名称:《遥感导论》教师:院系:矿业工程学院班级:姓名:遥感图像的几何校正实验报告一、实验目的通过实习操作,掌握遥感图像几何校正的基本原理和和方法,理解遥感图像几何校正的意义。
二、实验环境操作系统:windows 8.1软件:ENVI 4.3三、实验内容ERDAS 软件中图像预处理模块下的图像几何校正几何校正的必要性:由于遥感平台位置和运动状态的变化、地形起伏、地球表面曲率、大气折射、地球自转等因素的影响,遥感图像在几何位置上会发生变化,产生诸如行列不均匀,像元大小与地面大小对应不准确,地物形状不规则变化等畸变,称为遥感图像的几何畸变。
产生畸变的图像给定量分析及位置配准造成困难,因此在遥感数据接收后需要对图像进行几何校正以使其能够反映出接近真实的地理状况。
几何校正的原理:遥感影像相对于地图投影坐标系统进行配准校正,即要找到遥感影像与地图投影坐标系统之间的数学函数关系,通过这种函数关系可计算出原遥感影像中每个像元在地图投影坐标系统上的位置从而得到校正后的图像遥感影像相对于地图投影坐标系统进行配准校正,即要找到遥感影像与地图投影坐标系统之间的数学函数关系,通过这种函数关系可计算出原遥感影像中每个像元在地图投影坐标系统上的位置从而得到校正后的图像。
在本次实验中采用的是Polynomial(多项式变换)的模型,通过在遥感影像和参考图像上分别选取相应的控制点,求出二元二次多项式函数:25243210'25243210'y b x b xy b y b x b b y y a x a xy a y a x a a x +++++=+++++=,得到变换后的图像坐标(x ′,y ′)与参考图像坐标的关系,从而对图像进行几何校正。
实验步骤:运行ENVI 软件第一步:显示图像文件从ENVI 主菜单中,选择File —— Open Image File 当Enter Data Filename文件选择对话框出现后,选择进入当前目录下的"几何校正"子目录,从列表中选择bldr_tm.img和bldr_sp.img文件。
几何校正实验报告(Image to Image方法和Image to Map方法)

遥感图像的几何校正姓名:学号:日期:2020.5.151.实验目的和内容目的:通过实习操作,掌握遥感图像几何校正的基本原理和和方法,理解遥感图像几何校正的意义。
内容:在ENVI软件中利用两种几何校正方法进行遥感图像的几何校正。
(1)Image to Image:用base.img作为基准影像,选择控制点来校正uncorrected.img。
(2)Image to Map:根据地形图上的信息选择控制点来校正地形图。
2.图像处理方法和流程Image to Image(用base.img作为基准影像,选择控制点来校正uncorrected.img)1、加载影像(1)点击主菜单>>File>>Open Image File。
(2)打开base.img和uncorrected.img。
(3)显示这两个图像:2、启动几何校正模块(1)点击主菜单的Map>>Registration>>Select GCPs:Image to Image。
(2)选择显示base.img文件的Display为基准影像(Base Image),显示uncorrected.img文件的Display为待校正影像(Warp Image),点击OK。
(3)点击OK后出现Ground Control Points Selection界面,点击Show List 可打开控制点列表窗口(Image to Image GCP List窗口)。
3、采集地面控制点(1)在两个Display中找到相同区域,在Zoom窗口中,将十字光标定位到两个图像的相同位置上。
(2)点击Ground Control Points Selection上的Add Point按钮,将当前找到的点加入控制点列表。
(3)添加好了第一个控制点。
(4)同上诉操作,可以添加好第二个、第三个控制点。
(5)在Base Image上面用十字光标定位一个点,点击Ground Control Points Selection上的Predict按钮,Warp Image上会自动预测相同位置。
遥感实验报告几何校正

遥感实验报告几何校正1. 引言遥感技术在地球科学领域中起着至关重要的作用,可以提供大量的空间信息。
然而,由于地球曲率、地表高程、投影效果等原因,遥感图像中存在一定的几何失真。
为了解决这些问题,需要对遥感图像进行几何校正,以确保图像的精确度和准确性。
本实验旨在通过软件工具进行遥感图像的几何校正,以便更好地分析和解读遥感图像所提供的信息。
2. 实验目标本实验的主要目标是对给定的遥感图像进行几何校正,达到以下几个具体目标:1. 去除图像中的地理畸变,使图像上的物体形状和比例与现实世界相符合;2. 将图像从传感器坐标系转换到地理坐标系,使图像可以与其他地理数据进行叠加分析;3. 评估图像几何校正的效果,验证几何校正的有效性。
3. 实验步骤3.1 数据准备在实验开始前,我们需要准备一幅遥感图像和其对应的地理坐标信息。
安装并配置合适的遥感图像处理软件,以便进行后续的操作。
3.2 图像去畸变首先,需要对图像进行去畸变处理,以消除地理畸变对图像造成的影响。
根据实际情况选择适合的去畸变算法,对图像进行处理,并保存处理后的图像。
3.3 坐标系转换将处理后的图像从传感器坐标系转换到地理坐标系。
选择合适的坐标转换方法和参数,进行坐标系转换,并保存转换后的图像。
3.4 评估几何校正效果通过对比几何校正前后的图像,评估几何校正的效果。
可以采用多种指标进行评估,如虚拟控制点对比、图像配准精度等。
4. 实验结果经过上述实验步骤,我们成功实现了对遥感图像的几何校正。
通过图像去畸变和坐标系转换,我们得到了一幅与现实世界相符合的几何校正后的遥感图像。
评估几何校正效果时,通过与虚拟控制点对比和图像配准精度的测量,我们发现几何校正的效果符合预期,并且达到了较好的精度要求。
5. 结论与展望本实验通过对遥感图像进行几何校正,成功消除了图像中的地理畸变,实现了图像的空间精确定位。
几何校正的结果具有较高的精度和准确性,可以为后续的遥感图像分析和解读提供可靠的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验法三遥感图像的几何校正一实验目的通过实验操作,掌握遥感图像几何校正的基本方法和步骤,深刻理解遥感图像几何校正的意义。
二实验内容ERDAS软件中图像预处理模块下的图像几何校正。
几何校正就是将图像数据投影到平面上,使其符合地图投影系统的过程。
而将地图投影系统赋予图像数据的过程,称为地理参考(Geo-referencing)。
由于所有地图投影系统都遵循一定的地图坐标系统,因此几何校正的过程包含了地理参考过程。
1、图像几何校正的途径ERDAS图标面板工具条:点击DataPrep图标,→Image Geometric Correction →打开Set Geo-Correction Input File对话框(图1)。
ERDAS图标面板菜单条:Main→Data Preparation→Image Geometric Correction→打开Set Geo-Correction Input File对话框(图1)。
图1 Set Geo-Correction Input File对话框在Set Geo-Correction Input File对话框(图1)中,需要确定校正图像,有两种选择情况:其一:首先确定来自视窗(From Viewer),然后选择显示图像视窗。
其二:首先确定来自文件(From Image File),然后选择输入图像。
2、图像几何校正的计算模型(Geometric Correction Model)ERDAS提供的图像几何校正模型有7种,具体功能如下:表1 几何校正计算模型与功能模型功能Affine 图像仿射变换(不做投影变换)Polynomial 多项式变换(同时作投影变换)Reproject 投影变换(转换调用多项式变换)Rubber Sheeting 非线性变换、非均匀变换Camera 航空影像正射校正Landsat Lantsat卫星图像正射校正Spot Spot卫星图像正射校正其中,多项式变换(Polynomial)在卫星图像校正过程中应用较多,在调用多项式模型时,需要确定多项式的次方数(Order),通常整景图像选择3次方。
次方数与所需要的最少控制点数是相关的,最少控制点数计算公式为((t+1)*(t+2))/2,式中t为次方数,即1次方最少需要3个控制点,2次方需要6个控制点,3次方需要10个控制点,依次类推。
3、图像校正的具体过程第一步:显示图像文件(Display Image Files)首先,在ERDAS图标面板中点击Viewer图表两次,打开两个视窗(Viewer1/Viewer2),并将两个视窗平铺放置,操作过程如下:(1) ERDAS图表面板菜单条:Session→Title Viewers(2)在Viewer1中打开需要校正的Landsat图像:nongdatu.img(3)在Viewer2中打开作为地理参考的校正过的SPOT图像:nongdacankaotu.img 第二步:启动几何校正模块(Geometric Correction Tool)(1) Viewer1菜单条:单击Raster → Geometric Correction命令。
(2)打开Set Geometric Model对话框(图2)。
(3)选择多项式几何校正模型为Polynomial。
(4)单击OK按钮。
(5)同时打开Geo Correction Tools对话框(图3)和Polynomial Model Properties 对话框(图4)。
在Polynomial Model Properties对话框中,定义多项式模型参数以及投影参数:(1)定义多项式次方(Polynomial Order)为3。
(2)定义投影参数:(Projection)(图略)。
(3)单击Apply按钮应用或单击Close按钮关闭。
(4)打开GCP Tool Reference Setup 对话框(图5)图2 Set Geometric Model对话框图5 GCP Tool Reference Setup 对话框图3 Geo Correction Tools对话框图4 Polynomial Model Properties对话框第三步:启动控制点工具(Start GCP Tools)首先,在GCP Tool Referense Setup对话框(图5)中选择采点模式:→选择视窗采点模式:Existing Viewer→OK→打开Viewer Selection Instructions指示器(图6)→在显示作为地理参考图像nongdacankaotu.img的Viewer2中点击左键→打开reference Map Information 提示框(图7);→OK→此时,整个屏幕将自动变化为如图8所示的状态,表明控制点工具被启动,进入控制点采点状态。
图6 Viewer Selection Instructions 图7 reference Map Information提示框图8 控制点采点窗口第四步:采集地面控制点(Ground Control Point)GCP的具体采集过程:在图像几何校正过程中,采集控制点是一项非常重要和繁重的工作,具体过程如下:1、在GCP工具对话框中单击Select GCP图标,进入GCP选择状态;2、在GCP数据表中,将输入GCP的颜色设置为比较明显的黄色。
3、在Viewer1中移动关联方框位置,寻找明显的地物特征点作为输入GCP。
4、在GCP工具对话框中,单击Create GCP图标,并在Viewer3中单击左键定点,GCP数据表将记录一个输入GCP,包括其编号、标识码、X坐标和Y坐标。
5、在GCP对话框中,单击Select GCP图标,重新进入GCP选择状态。
6、在GCP数据表中,将参考GCP的颜色设置为比较明显的红色,7、在Viewer2中,移动关联方框位置,寻找对应的地物特征点,作为参考GCP。
8、在GCP工具对话框中,单击Create GCP图标,并在Viewer 4中单击定点,系统将自动将参考点的坐标(X Reference、Y Reference)显示在GCP数据表中。
9、在GCP工具对话框中,单击SelectGCP图标,重新进入GCP选择状态,并将光标移回到Viewer1中,准备采集另一个输入控制点。
10、不断重复步骤1-9,采集若干控制点GCP,直到满足所选定的几何校正模型为止,而后,每采集一个Input GCP,系统就自动产生一个Ref.GCP,通过移动Ref.GCP可以优化校正模型。
采集GCP以后,GCP数据表如图9所示。
图 9 GCP Tool 对话框与GCP数据表第五步:采集地面检查点(Ground Check Point)以上采集的 GCP的类型均为Control Point(控制点),用于控制计算,建立转换模型及多项式方程。
下面所要采集的GCP类型是Check Point(检查点),用于检验所建立的转换方程的精度和实用性。
如果控制点的误差比较小的话,也可以不采集地面检查点。
(略)第六步:计算转换模型(Compute Transformation)在控制点采集过程中,一般是设置为自动转换计算模式(Compute Transformation),所以,随着控制点采集过程的完成,转换模型就自动计算生成。
下面是转换模型的查阅过程:在Geo-Correction Tools对话框中,点击Display Model Properties 图标,打开Polynomial Model Properties(多项式模型参数)对话框(图10),可以查阅模型参数,并记录转换模型。
图10 Polynomial Model Poperties对话框第七步:图像重采样(Resample the Image)重采样(Resample)过程就是依据未校正图像的像元值,计算生成一幅校正图像的过程。
原图像中所有删格数据层都要进行重采样。
ERDAS IMAGE 提供了三种最常用的重采样方法。
Nearest Neighbor:邻近点插值法,将最邻近象元值直接赋予输出象元。
Bilinear Interpolation:双线性插值法,用双线性方程和2×2窗口计算输出象元值。
Cubic Convolution:立方卷积插值法,用三次方程和4×4窗口计算输出象元值。
图像重采样过程:首先,在Geo-Correction Tools对话框中单击Image Resample 图标,打开 Resample (图像重采样)对话框(图2-11),在Image Resample对话框中,定义重采样参数。
→输出图像文件名(Output File):resample.img。
→选择重采样方法(Resample Method):Nearest Neighbor。
→定义输出图像范围(Output Corners):在ULX、ULY、LRX、LRY微调框中分别输入需要的数值。
→定义输出像元的大小(Output Cell Sizes):X值30/Y值30.→设置输出统计中忽略零值:即选中Ignore Zero in Stats复选框。
→设置重新计算输出默认值(Recalculate Output Defaults),设Skip Factor为10。
→单击OK按钮。
图11 Resample 对话框第八步:保存几何校正模式(Save rectification Model)在Geo-Correction Tools对话框中点击Exit按钮,退出几何校正过程,按照系统提示,选择保存图像几何校正模式,并定义模式文件(*.gms),以便下一次直接利用。
第九步:检验校正结果(Verify rectification Result)基本方法:同时在两个窗口中打开两幅图像,一幅是校正以后的图像,一幅是当时的参考图像,通过窗口地理连接(Geo Link/Unlink)功能及查询光标(Inquire Cursor)功能进行目视定性检验。
具体过程如下:①打开两个平铺图像窗口在菜单条单击File/Open/Raster Option命令,选择图像文件。
或在ERDAS图标面板单击Session/Tile Viewers命令,选择平铺窗口。
②建立窗口地理连接关系在Viewer1中右击,在快捷菜单中选择Geo Link/Unlink命令。
在Viewer2中单击,建立与Viewer1的连接。
③通过查询光标进行检验在Viewer1中右击,在快捷菜单中选择Inquire Cursor命令,打开光标查询对话框。
在Viewer1中移动查询光标,观测其在两屏幕中的位置及匹配程度,并注意光标查询对话框中数据的变化。