DNA芯片技术的原理与应用

合集下载

基因芯片技术简介

基因芯片技术简介

基因芯片技术简介引言随着基因组学的快速发展,基因芯片技术作为一种高通量、高效率的基因表达分析方法,越来越受到科学家们的关注和广泛应用。

本文将介绍基因芯片技术的定义、原理、应用领域以及发展趋势。

定义基因芯片技术,又称DNA芯片技术,是利用半导体芯片上固定携带有特定DNA序列或cDNA序列的探针,通过杂交技术测定样本中的基因表达水平的一种新兴技术。

它通过将大量DNA序列固定在芯片表面上,可以同时检测成千上万个基因的表达水平,从而实现了高通量、高灵敏度、高速度的基因表达分析。

基因芯片技术的原理主要包括芯片设计、样本处理、杂交和信号检测四个步骤。

芯片设计芯片设计是基因芯片技术的核心环节。

通过将感兴趣的DNA序列打印到芯片表面上,实现对这些DNA序列的同时检测。

芯片设计要考虑到实验的目的、样本来源、携带探针的芯片类型等因素。

样本处理样本处理是基因芯片技术中非常重要的一步。

首先,需要提取样本中的RNA,并转录成cDNA。

然后,对cDNA进行标记,常见的方法是采用荧光标记。

标记完成后,将标记的cDNA与芯片上的探针进行杂交。

杂交是将标记的cDNA与芯片上的DNA探针进行特异性结合的过程。

通过杂交反应,可以使标记的cDNA与芯片上的探针发生碱基配对,从而检测基因表达水平。

信号检测信号检测是基因芯片技术的最后一步。

常见的检测方法包括荧光扫描、激光检测和图像分析等。

这些方法可以量化样本中的基因表达水平,并生成可视化的热图或散点图,以方便科学家对数据进行分析和解读。

应用领域基因芯片技术在生物学、医学和农业等领域具有广泛的应用。

生物学研究基因芯片技术的高通量性能使其成为生物学研究的重要工具。

研究人员可以通过基因芯片技术分析不同组织、不同时间点或不同个体中的基因表达变化,探究基因在生物体发育、疾病发展等过程中的功能。

医学诊断基因芯片技术在医学诊断中有着重要的应用价值。

通过分析患者样本中的基因表达谱,可以为医生提供辅助诊断和治疗的信息。

基因芯片技术及其应用

基因芯片技术及其应用

基因芯片技术及其应用随着生物学、生命科学的发展,基因芯片技术越来越受到关注。

基因芯片又称为DNA芯片,是一种利用微阵列技术来检测基因表达水平的高通量方法。

基因芯片技术的发展带来了许多应用领域的新成果,包括疾病预测、药物研发等。

本文将介绍基因芯片技术及其应用。

一、基因芯片技术的原理基因芯片技术是一种高通量的生物技术,它利用微阵列生物芯片来检测基因表达的水平。

这种技术利用了DNA分子的特异性与完整性,它可以在任何生物样品中高效地检测出其蛋白质表达水平和基因组变异情况。

基因芯片技术的工作原理基于蛋白质表达水平与基因组变异情况的探测。

首先,需要将基因DNA序列通过逆转录过程转换成mRNA序列,进而使用荧光标记标记mRNA序列。

接下来将标记好的mRNA序列通过微阵列技术固定到芯片上,并使用高通量扫描技术来观察标记后荧光强度的变化程度。

荧光值越高,则说明该基因表达水平越高。

基因芯片技术不仅可以检测基因表达水平,还可以检测基因序列的变异情况,用于了解某种疾病或细胞状态的基因组变化情况。

比如,可以用这种技术针对某种疾病相关的单核苷酸多态性位点检测基因变异情况。

二、基因芯片技术的应用1. 癌症筛查基因芯片技术可用于癌症筛查,将肿瘤组织中的RNA与正常细胞组织的RNA进行比较,寻找表达水平具有显著差别的基因,进而确定这些基因是否与癌症发展相关。

利用这种方法可以更加准确地判断某个癌症的种类、发展程度等。

2. 个性化药物设计基因芯片技术可用于个性化药物设计,通过基因芯片可以确定某个病人,是否会对某种药物产生不良反应,从而确定是否使用该药物。

同时,可以利用基因芯片技术根据病人的基因组变异情况,设计出一种更加适合该病人的药物。

3. 遗传疾病筛查基因芯片技术可用于遗传疾病筛查,利用基因芯片技术可以检测出某些基因的表达水平是否异常,从而确定在某些疾病中,基因的表达水平是否存在异常。

4. 农业和环保应用基因芯片技术不仅可以应用在医学领域,还可以应用于农业和环保领域,例如种植业、畜牧业、水产养殖业等。

DNA芯片技术

DNA芯片技术

DNA芯片技术DNA芯片技术是一种基于基因信息和分子生物学原理的高通量检测技术,具有快速、准确、高通量和多样化等特点,在基因组学、生物医学研究和诊断检测等领域具有广泛的应用前景。

DNA芯片技术的基本原理是通过将大量的DNA片段固定在一个非常小的芯片上,然后使用探针对目标DNA片段进行杂交反应,通过检测探针与目标DNA的杂交程度来确定目标DNA的存在和数量。

DNA芯片技术可以同时检测成千上万个DNA序列,相比传统的分子生物学技术,具有高通量的优势。

DNA芯片技术的应用范围非常广泛。

在基因组学研究中,DNA芯片可以用于检测基因的表达水平、寻找与疾病相关的突变基因、分析基因表达的调控网络等。

在生物医学研究中,DNA芯片可以用于疾病的早期诊断、研究疾病的发病机制、评估药物疗效等。

在农业领域,DNA芯片可以用于植物和动物的基因组学研究、品质改良和遗传育种等。

此外,DNA芯片技术还可以应用于环境监测、食品安全和犯罪侦破等领域。

DNA芯片技术的发展离不开基因测序技术的进展。

在过去的几十年中,随着基因测序技术的不断发展和降低成本,DNA芯片的设计和制备变得越来越容易和经济。

目前,常见的DNA芯片包括基因表达芯片、SNP芯片、外显子芯片、甲基化芯片等。

随着技术的不断改进,芯片上可以固定的DNA序列数量也在不断增加,检测的敏感性和准确性也得到了显著提高。

DNA芯片技术的发展面临一些挑战。

首先,数据分析和处理是一个重要的问题。

由于芯片上会固定数以万计的DNA序列,产生的数据量非常庞大,如何高效地从大数据中提取有效信息是一个关键问题。

其次,样本制备和处理也是一个技术挑战。

DNA芯片技术对样本的质量和纯度要求较高,样本制备过程中的失真和偏差会影响最终的结果。

总之,DNA芯片技术是一种高通量的分子生物学技术,在基因组学、生物医学研究和诊断检测等领域具有广泛应用前景。

随着技术的不断进步和降低成本,DNA芯片技术将进一步推动基因领域的研究和应用,有望为疾病的早期诊断、个性化治疗和精准医学的发展提供重要支持。

dna芯片的基本方法和原理

dna芯片的基本方法和原理

dna芯片的基本方法和原理DNA芯片是一种基于生物分子相互作用原理的微阵列分析技术,可以在一个玻璃片或硅片表面上固定上千种DNA分子,用于高通量的DNA测序、基因表达分析、基因突变检测等领域。

下面将介绍DNA芯片的基本方法和原理。

DNA芯片的制备方法主要分为六个步骤:DNA选择、DNA标记、芯片制备、杂交反应、芯片成像和数据分析。

第一步是DNA选择。

DNA芯片需要将目标DNA序列固定在芯片表面,这需要首先从样品中提取目标DNA序列。

目标DNA可以是基因组DNA、全长cDNA、PCR扩增产物等。

DNA的选择也可以是针对特定基因、突变位点等。

第二步是DNA标记。

目标DNA需要标记一个荧光信号,以便于测量和定量。

标记有两种常见方法:直接标记和间接标记。

直接标记是将目标DNA末端直接连接上荧光染料;间接标记是在目标DNA上连接一个标记物,如生物素或荧光素,后续再与荧光标记的探针杂交。

第三步是芯片制备。

DNA芯片通常采用玻璃片或硅片作为芯片载体,表面经过特殊处理,如Aminosilanation等,使其能够与DNA分子固定。

目标DNA序列通过共价键或非特异性吸附固定在芯片上,形成一个以单链DNA为特征的微阵列。

第四步是杂交反应。

杂交反应是指将标记好的目标DNA和未标记的探针DNA一起加到芯片上,使它们互相配对结合。

这种配对可以是理论上的完全互补,也可以是部分互补。

标记的荧光在杂交反应中会与芯片上的DNA结合,形成荧光信号且强度与目标DNA浓度有关。

第五步是芯片成像。

芯片成像是用一个高分辨率的荧光显微镜对芯片进行扫描,使各个荧光信号分别对应到芯片上的特定位置。

荧光信号的强度和颜色会通过相应的仪器进行测量和记录,从而得到芯片成像的结果。

第六步是数据分析。

芯片成像后,需要对成像数据进行处理和分析。

这包括元数据的提取,噪音的去除,荧光强度的标准化,数据归一化,聚类分析等。

数据分析的目的是研究芯片上不同的DNA分子之间的相互作用关系,找出差异性基因和表达模式。

DNA芯片的原理和应用

DNA芯片的原理和应用

DNA芯片的原理和应用概述DNA芯片是一种用于分析和检测DNA序列的微芯片技术。

它采用高密度排列的DNA探针,能够迅速、准确地监测和识别DNA序列。

DNA芯片技术在生物学、医学和农业等领域具有广泛的应用前景。

原理DNA芯片的工作原理基于DNA的互补配对规则。

DNA芯片上存在着大量以已知DNA序列为基础的探针,这些探针能够与待检测样品中的DNA序列发生互补配对。

通过检测探针与样品中的DNA序列的结合情况,DNA芯片可以快速、准确地分析样品中的DNA信息。

具体的操作步骤如下:1.探针设计:首先需要设计合适的DNA探针,使其能够与待检测的DNA序列发生互补配对。

探针设计时需要考虑到探针的长度、碱基组成和互补配对的特异性。

2.样品处理:将待检测样品中的DNA提取、扩增、标记等处理,以便于与DNA芯片上的探针发生特异性的结合。

3.样品加工:将样品与DNA芯片上的探针进行反应。

通常采用液相杂交、固相杂交等方式使样品中的DNA序列与探针发生互补配对。

4.信号检测:通过光学、电化学等方式检测样品与探针结合的信号。

常见的检测方法有荧光检测、显色反应等。

5.数据分析:根据检测到的信号,分析样品中的DNA序列。

可以通过计算机技术对数据进行处理,进行DNA序列的测定、比对和注释。

应用DNA芯片技术在许多领域都有着广泛的应用。

以下列举了一些常见的应用领域:1.基因组学研究:DNA芯片可以用于对基因组的全面分析和研究。

通过检测样品中的DNA序列,可以分析基因的表达水平、变异情况等。

2.个性化医学:DNA芯片可以用于预测个体对药物的反应、预测疾病的风险等。

通过检测特定的DNA序列,可以为医生提供个性化治疗方案的依据。

3.人类遗传学研究:DNA芯片可以用于分析人类基因组中的遗传变异,探索基因与疾病之间的关联。

这对于研究复杂疾病的发病机制和治疗方法具有重要意义。

4.农业与植物育种:DNA芯片可以用于农作物的基因组分析和育种工作。

dna芯片的原理与应用

dna芯片的原理与应用

DNA芯片的原理与应用1. 什么是DNA芯片?DNA芯片是一种微阵列技术,它是一种实验室工具,用于检测和分析DNA分子的序列。

DNA芯片通过将数千或数百万个DNA片段固定在芯片表面上,提供了一种高通量、高效率的方法来研究DNA序列。

2. DNA芯片的原理DNA芯片主要包含了两部分:探针和检测芯片。

2.1 探针探针是DNA芯片上固定的DNA片段,它可以与待测样本中的DNA片段进行杂交反应。

探针的设计通常基于已知的基因序列或特定基因的已知变异情况。

探针的选择和设计是DNA芯片分析的关键步骤,它直接影响着芯片的灵敏度和特异性。

2.2 检测芯片检测芯片是DNA芯片上的芯片表面,它可以固定探针,并通过光学或电化学方法来检测杂交事件。

常见的检测方法包括荧光染料标记、射频标记等。

当待测样本中的DNA片段与探针杂交后,可以通过检测芯片上的信号来判断杂交事件的发生。

3. DNA芯片的应用DNA芯片在生物学和医学领域有着广泛的应用,主要包括以下几个方面。

3.1 基因表达分析DNA芯片可以用于研究基因的表达模式。

通过将不同组织或条件下的RNA提取出来,转化成cDNA,并标记上荧光标记物,然后与DNA芯片进行杂交反应。

通过检测芯片上的信号强度,可以确定不同基因的表达水平,从而了解基因在不同组织或条件下的活动情况。

3.2 基因突变检测DNA芯片可以用于检测基因的突变情况。

通过设计与突变位点相互匹配的探针,可以快速、高通量地检测基因的突变情况。

这对于研究遗传病的发生机制、个体基因信息的筛查等具有重要意义。

3.3 疾病诊断和预后DNA芯片可以用于疾病的早期诊断和预后评估。

通过检测芯片上与特定疾病相关的基因或基因组区域,可以提供疾病的分子诊断指标。

例如,在肿瘤领域,通过检测肿瘤相关基因的表达水平,可以为患者提供个体化的治疗方案。

3.4 药物研发DNA芯片在药物研发中也起到了重要的作用。

通过将不同药物作用下的基因表达模式与DNA芯片进行比较,可以筛选出与药物治疗反应相关的基因。

浅谈DNA芯片的基本原理及技术

浅谈DNA芯片的基本原理及技术

浅谈DNA芯片的基本原理及技术摘要本文主要从基本原理、分类,其技术原理,主要应用,发展前景和存在问题5个方面对DNA芯片的相关知识进行介绍,以了解DNA芯片的基本知识。

关键词DNA芯片基本原理技术发展前景从人类基因组计划启动至今, 已完成了人类基因组全序列的测定, 并且已基本构建了人类基因组序列框架图。

目前人们正在由研究基因的结构及染色体定位的结构基因组学, 向研究基因表达调控及其在生物体中作用的功能基因组学转变。

长期以来, 人们只能有限地研究一个基因或mRNA, 对于较大基因组和巨大的基因组序列数据库则需要新的有效的手段来处理, 常用的凝胶电泳无法达到这个要求, DNA芯片就这样应运而生。

DNA芯片技术是多种学科、多种技术融合而成的, 在基因组研究、基因序列分析、发现新基因、基因表达研究、基因诊断等领域有较大的应用价值。

1 DNA芯片的基本原理1991年底, 美国加州旧金山Affymatrix公司结合照相平板印刷、计算机、半导体、激光共聚焦扫描、寡核苷酸DNA合成、荧光标记探针杂交及其它分子生物学技术创造了世界上第一块DNA 芯片。

DNA芯片利用核酸杂交原理来检测未知分子, 将寡核苷酸或寡核苷酸片段按照一定的顺序排列在固相支持物上组成密集的分子阵列, 再用标记的目的材料DNA 或cDNA 进行杂交, 通过检测标记信号的分布谱型得到分子杂交情况, 并经计算机分析处理, 得到大量的序列或表达信息。

DNA芯片所用的固相支持物有硅片、尼龙膜、载玻片等, 通常把以硅片为支持物的方法称为芯片。

以其他材料为支持物的方法称微阵列。

2 DNA芯片的分类DNA芯片产生的基础是分子生物学、微电子技术、高分子化学合成技术、激光技术和计算机科学的发展及其有机结合。

根据DNA芯片制作过程中主要技术的区别,可以将DNA芯片分为以下四类:2.1 光引导原位合成技术生产寡聚核苷酸微矩阵Affymetrix公司采用了照相平版印刷技术结合光引导原位寡聚核苷酸合成技术制作DNA芯片,生产过程同电子芯片的生产过程十分相似。

DNA芯片技术的原理与应用

DNA芯片技术的原理与应用

基因测序:大规模、高通量基因 测序推动基因组学研究
添加标题
添加标题
添加标题
添加标题
药物研发:加速药物筛选和研发 降低研发成本
个性化医疗:根据个体基因信息 制定个性化治疗方案提高治疗效 果
感谢观看
汇报人:
阵列
化学合成技术: 通过化学合成 方法制造DN
片段
生物合成技术: 利用生物合成 方法制造DN
片段
芯片检测技术: 利用荧光标记 技术检测DN 芯片上的DN
片段
DN芯片上的分子识别机制
原理:利用DN分子与互补DN 分子之间的特异性结合
过程:将待测DN分子与芯片上 的DN探针进行杂交形成双链 DN
检测:通过荧光标记或电化学 方法检测杂交信号
技术挑战:DN芯片技术需要高精度、高灵敏度的检测设备以及复杂的数据 处理和分析方法。
成本挑战:DN芯片技术的研发和生产成本较高需要投入大量的资金和人力 资源。
应用挑战:DN芯片技术在临床诊断、药物研发等领域的应用还需要进一步 推广和普及。
解决方案:通过技术创新降低成本提高检测精度和灵敏度;加强与医疗机 构、制药企业的合作推动DN芯片技术的应用和普及。
基因组测序
原理:利用DN芯片技术对基因组进行测序 应用:用于研究基因突变、遗传病、肿瘤等 优势:快速、准确、成本低 挑战:数据量大需要强大的数据处理能力
药物筛选与个性化医疗
DN芯片技术在药物筛选中的应用:通过检测基因表达水平筛选出有效的药物 个性化医疗:根据患者的基因信息制定个性化的治疗方案 药物基因组学:研究基因与药物反应之间的关系为个性化医疗提供科学依据 药物研发:通过DN芯片技术加速药物研发进程降低研发成本
04
DN芯片技术的优势与挑战
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.2 基因突变及多态性的检测
将DNA芯片技术用于检测分子突变,能准确地确 定突变位点和突变类型,检测多个基因乃至整个基因 组的突变。Hacia等采用含有96000个寡核苷酸探针芯片 研究遗传性乳腺癌和卵巢癌易感基因BRCA1外显子11 位点可能发生的突变,结果在15例患者样品中检测到 14例患者存在不同的突变(包括点突变、插入、缺失 等突变),而在20个对照样品中均没出现假阳性,同 时还检测出了8个单核苷酸多态(SNP)。在多态性研 究方面,Kozal等应用基因芯片研究未曾接触蛋白质酶 抑制剂的HIV患者中HIV—lclade蛋白质酶多态,总共 分析了114例样本,发现蛋白质酶基因存在很大程度的 多态性,所示结果与sanger法检测结果一致性达98%。
DNA芯片技术的原理与应用
主要内容
DNA DNA


























1 DNA芯片技术的一些概况
1.1 DNA芯片技术的概念和基本原理
DNA芯片也称DNA微阵列,是生物芯片 的一种。基因芯片原理最初是由核酸的 分子杂交衍生而来的,即应用已知序列的 核酸探针对未知序列的核酸序列进行杂 交检测
该方法优点是芯片制造速度快,成本低,而且芯片之 间制造误差小。其缺点是与原位合成法相比,构成 方阵的DNA片段需要先合成、纯化,以及在制造 DNA芯片前必须将如此大量具有微小差别的片段 分别保存,并且需要特制的自动点样装置。
点样法 即预先合成寡核苷酸,肽核苷酸或分 离得到cDNA,再通过点样机直接将其点到芯片上。 寡核苷酸或肽核苷酸的合成主要是通过多孔玻璃合 成法。肽核苷酸虽然在制备上比较复杂,但是它与 DNA探针相比,由于PNA(肽核酸)与DNA结合 的复合物更加稳定和特异,因而更加有利于单碱基 错配基因的检测。
1.2 DNA芯片分类
据不同分类标准,DNA芯片的分类如下: ❖ (1)根据固相支持物的不同,DNA芯片分为无机(玻璃、硅片、
陶瓷等)和有机(聚丙烯膜、硝酸纤维素膜、尼龙膜等)芯片。 ❖ (2)根据芯片上所用探针不同分为寡核苷酸芯片和cDNA 芯片。 ❖ (3)根据芯片点样方式不同,可分为原位合成芯片、微矩阵芯
采取样本 核酸提取
反转录
扩增放大
读取信息,诊断结果
样品标记
洗脱
杂交反应
2.4 在临床上的应用
2.4.1疾病诊断 人类的疾病与遗传基因密切相关,通过分析比较正常人 和病人的基因表达图谱的差异可以得出病变的基因信息, 大规模筛查出由基因突变引起的疾病,目前DNA芯片已 被广泛应用于癌症相关基因突变的快速检测。
分析:采用激光扫描或激光共聚焦显微镜采集杂交信 号(位置、强度、颜色),并与对照比较,经相关软 件进行图像和数据处理。即可得也待测样品的信息。 经以上获得的数据十分庞大,还需进行分析,比较, 归纳,才能得出明晰的结论。
DNA芯片的应用领域
科学研究
临床疾病诊断
药物研究开发
军事应用
法医学鉴定
健康管理
2.3 测序
通过与一组已知序列的寡核苷酸探针杂交,利用杂交 谱来重建待测DNA序列,该技术为大规模测序提供了 方便、快捷、准确的手段,同时也有助于了解基因表 达模式、基因突变和多态性,发现新基因以及克隆特 异性基因。利用固定的探针与生物样品的靶序列进行 分子杂交,得到特定的杂交图谱,进而分析出待测样品的 序列,称为杂交测序(Sequencing by hybridization, SBH)。 Chee等人用含135000个核苷酸探针(每个探针的长度 为25个核苷)的阵列测定了全长为16.6kb的人线粒体 基因序列,准确率达99%。
分离纯化:样品来源于活的细胞,使用一定方 法分离并纯化DNA或RNA(特别是mRNA)。 只有达到一定纯度的样品,才能保证后续操作 的正确。
样品的扩增:扩增的目的在于获得足够的 样品量。现已发展出固相PCR系统。
样品的标记:主要采用荧光标记法,也可 用生物素,或放射性核标记。标记的方式 采用PCR或RT-PCR。常用的荧光色素为 Cy3、Cy5。用Cy3、Cy5标记dNTP,经 PCR后,产物即可被标记。待测样品和对 照可采用双色荧光标记。
片(分喷点和针点)和电定位芯片3类。 ❖ (4)根据用途的不同分类为基因表达芯片和基因测序芯片。
1.3 DNA芯片的优点
作为新一代基因诊断技术,DNA芯片的突出特 点在于快速、高效、敏感、经济,平行化、自 动化等,与传统基因诊断技术相比,DNA芯片 技术具有明显的优势: (1)快速准确 (2) 检测效率高 (3)基因诊断的成本降低。 (4)自动化程度高 (5) 避免了交叉感染 (6)多功能 (7)高度的平行性
Moch等用532个肾癌组织标本构建了5184点cDNA表达 谱芯片,通过与正常肾组织进行比较,在癌细胞中筛选 出89条基因差异表达,其中有一条编码波形蛋白基因, 利用免疫组织化学技术对这条波形蛋白基因表达进行研 究,发现它与患者的预后呈显著的负相关,而与肿瘤的 分级和分期无关。
2.4.2 药物筛选
1.4 DNA芯片的制备过程
DNA芯片的制备
光蚀刻合成法 电压印刷法
DNA
点样法
芯 片
为了提高结果的准确性,来自血液或组织中的 样品的制备 DNA/mRNA样本须先行扩增,然后再被荧光素

或同位素标记成为探针。

的 步 骤
杂交 杂交条件的选择要根据芯片上核酸片段的长短及其 本身的用途来定。
激光共聚焦荧光检测系统 杂交图谱的检测和读出 CCD摄像原理 检测系统
质谱法
1.4.1 DNA芯片的制备
原位合成法(in situ synthesis) 借鉴半导体照相 平版印刷技术,在固相载体上原位合成寡核苷酸探 针序列。主要有光蚀刻法及压电印刷法。
光蚀刻法基本过程为:光有选择地照射到有光掩蔽 剂保护的玻璃片上,以去掉玻璃片上的光敏集团,激 活DNA合成过程,在去掉光敏集团的特定部位偶联 一个光保护碱基,再将第二个光掩蔽剂置于这个受 光保护的碱基上,如此不断地去保护和偶联,就可以 得到寡核苷酸片断,许多这样的不同序列的片段就 构成了DNA方阵。
原位合成(In Situ
Synthesis) 光定向合成寡核苷酸
Light directed oligonucleotide synthesis.
A solid support is derivatized with a covalent linker molecule terminated with a photolabile protecting group. Light is directed through a mask to deprotect and activate selected sites, and protected nucleotides couple to the activated sites. The process is repeated, activating different sets of sites and coupling different bases allowing arbitrary DNA probes to be constructed at each site.
1.4.3 分子杂交
芯片的杂交:将已知序列的DNA探 针显微固化于支持物表面,将已标记 好的样品与之进行杂交,杂交过程一 般在30分钟完成。
电子基因芯片:杂交速度更快。 采用肽核酸(peptide nucleic acid, PNA)探针可消除DNA二级结构的 影响。
1.4.4 遗传信息检测
原理:待测样品与支持物上探针列阵杂交后,荧光标 记的样品结合在芯片的特定位置,未结合的探针被除 去;样品与探针严格配对的杂交分子,热力学稳定性 高,产生的荧光信号强,不完全配对的,荧光信号弱; 不能杂交不产生荧光信号。
环境检测 食品检测 动植物检疫 运动医学
2 DNA芯片的应用概况
2.1 基因表达的分析与检测 将不同条件下某生物体中转录出的mRNA标记后与 代表它所有基因而制成的DNA芯片杂交,通过分析 杂交位点及其信号强弱,就可得出不同条件下各基 因的表达情况,还可鉴定出某些未知功能基因,发现 新基因,这一应用目前已成为DNA芯片研究中的一 个重点和热点。 DNA芯片具有高度的敏感性和特异性,可自动、 快速地同时检测成千上万个基因的表达,基因表 达的分析研究有利于揭示不同层次上多基因协同 作用的生命过程。
来自某一细胞的cDNA必须进行预处理,纯化, 扩增以及分类,然后再利用机械手把它们准确地固 定在基板的相应位置上,为了保证cDNA芯片检测 的准确性,在制备cDNA芯片以前必须提高低表达 基因cDNA的丰度,降低高表达基因cDNA的丰度。
1.4.2 样品的制备
样品的制备包括:样品的分离纯化,扩增,标 记
近的建立和应用,以及高通量自 动化药物筛选技术的出现,意味着大批量 的化合物可以在很短时间内快速地进行
压电印刷法的基本原理类似于目前采用 的喷墨打印机:打印头在方阵上移动,在方 阵每点上电流使喷头放大,并将装有机某 种碱基的试剂滴在晶片表面,然后固定,在 洗脱和去保护后另一轮寡核苷酸的延伸 就可以继续进行。压片印刷法由于不需 要与载体表面直接接触,故有很高的效率, 但制造工艺还不太成熟。

喷墨打印技术
Macroarray
Microarray
近7(2011.9前)年来公开发表的与基因芯片相关的学术论文
10000 9000 8000 7000
6626
7397
7941
8326
8943
9327
9839
6000
5000
4000
相关文档
最新文档