雷达目标检测性能分析
雷达系统中的多目标跟踪算法性能评估

雷达系统中的多目标跟踪算法性能评估引言在雷达系统中,多目标跟踪算法对于有效的目标检测和跟踪至关重要。
随着雷达技术的快速发展,多目标跟踪算法也呈现出不断提高的趋势。
本文将深入探讨雷达系统中的多目标跟踪算法性能评估的方法和技术,以帮助研究人员和工程师们更好地评估和改进算法的性能。
1. 多目标跟踪算法的概述多目标跟踪算法是指通过使用雷达系统的输入数据,对多个目标进行检测、跟踪和预测的算法。
该算法通常有三个主要步骤:目标检测、数据关联和状态估计。
目标检测的目的是识别并定位出所有存在的目标,数据关联则是通过匹配目标在连续帧之间的轨迹,以确定目标的运动轨迹,最后通过状态估计来预测目标的位置。
2. 多目标跟踪算法性能评估的指标为了评估多目标跟踪算法的性能,我们可以使用以下指标:2.1 检测精度检测精度是指算法能够准确识别和定位目标的能力。
常用的指标包括准确率、召回率和F1分数等。
2.2 跟踪精度跟踪精度是指算法能够正确跟踪目标并预测其位置的能力。
常用的指标包括平均跟踪误差、重叠率和重叠跟踪成功率等。
2.3 多目标处理能力多目标处理能力是指算法在同时处理多个目标时的效率和稳定性。
常用的指标包括处理速度、目标数量和系统稳定性等。
3. 多目标跟踪算法性能评估的方法为了评估多目标跟踪算法的性能,常用的方法包括仿真实验和实际测试。
3.1 仿真实验仿真实验是一种通过模拟雷达系统输入数据来评估算法性能的方法。
通过使用已知的真实轨迹和合成的雷达数据,可以对算法在不同情境下的表现进行评估。
在仿真实验中,可以根据需要对算法的参数进行调整以获得最佳性能。
3.2 实际测试实际测试是指在真实环境中使用实际雷达系统进行算法性能评估的方法。
通过收集真实场景下的雷达数据并使用算法进行目标检测和跟踪,可以评估算法在实际应用中的性能。
这种方法更接近实际应用,但受到数据获取的困难和成本的限制。
4. 多目标跟踪算法性能评估的挑战在评估多目标跟踪算法的性能时,仍然存在一些挑战和困难。
网络雷达对抗系统对x^2分布目标的检测性能分析

Ke y wo r d s : n e t w o r k r a d r a c o u n t e r — m e a s u r e s y s t e m( N R C S ) ; m u h i p l e p u l s e s ; d e t e c t i o n t h r e s h o l d ; f l a s e a l a r m p r o b a b i l i t y ; d e t e c —
现 代 雷 达
・
信 4/ 数据 处 理 ・
中 图 分 类 号: T N 9 5 7
文 献 标 志 码: A
文 章 编 号: 1 o o 4 — 7 8 5 9 { 2 0 1 3 ) 0 4 — 0 0 3 0 — 0 5
网络 雷达 对 抗 系统 对 分布 目标 的检 测 性 能分 析
改善。
关键词 : 网络雷达对抗系统 ; 多脉冲 ; 检测 门限; 虚警 概率 ; 检测概率
An a l y s i s o f NRCS De t e c t i o n Pe r f o r ma nc e o n X Ta r g e t
HA N Gu o x i , HE J u n, W AN G J i a n l u
韩国玺, 何 俊, 王建路
(电子 工程 学院 指 挥 系, 合 肥 2 3 0 0 3 7 )
摘要 : 在奈曼一 皮尔逊检测准则下 , 以 目标截 面积 的统计模型服从 分 布为基础 , 着重研究 了有源 MI MO模式 网络 雷达对
ห้องสมุดไป่ตู้
抗 系统在多脉冲条件下 的检测性能 , 给出了慢起伏和快起伏 分布 目标模型下虚警 概率和检测概率表 达式 , 并对 不同条 件下的检测性 能进行 了仿真分析 。理论与仿真分析表明 , 有源 MI M0模 式网络雷达对抗系统对慢起伏 分布 目标的检测 性能优于快起伏 分布 目标 ; 同时 , 随着脉冲积累数和 自由度 的增加 , 慢起 伏与快起伏 分 布 目标 的检测性 能都得 到 了
MIMO雷达检测性能分析

确 6 式 I 示2N 由 的 个 机 定。 中 删 表 M +自 度 一 随 变
不 同 方 向 。而 且 不 存 在 相 干 处 理 增 益 , 合 成 MN个 独 立 的 可
“ 达 ”结 果 MI 雷 . MO雷 达 克 服 了 因 目标 闪 烁 而 引 起 的 深 度 衰 落。
1 . 多脉 冲 、 2 白噪 声 背 景 下 两 种 雷 达信 号模 型嘲
c c 一 嘉 ) … + 孚
_l -
实 际 工 作 的雷 达 . 是 在 多 个 脉 冲 观 测 的 基 础 上 进行 检 都
测 的 ,因 此 可 以 讲 脉 冲 积 累 的方 法 应 用 到 M MO 雷 达 当 中 。 I
A s a t M hpe n u- lpeO tu ( MO rd r s h c n re c f e d r eh oo y B s gsai b t c: u il I p t t l up t MI ) a a e e e t megn e n w r a c n lg . yu i t l r Mu i it r e oa a t n p a
x-
i 、 / M吾
式 中 , l2 … , 。 i ,, 三 =
(H f )
’
//, I l ( () 、 Ml ) , n日 。 l + 日 0 n 。 1 0 6 ( ) 2
式中 , ̄ N( ,) n C O I ( )I , a C O 1 和  ̄ N( , I I 这产生下列 Ⅱ )
传 统 雷 达 的点 源 目标 模 型 已 经不 再 适 用 , 里 需 要 使 用 一 种 这 新 的 雷 达 目标 模 型一 分 布源 模 型 。MI MO雷 达 的 分 布 源 模 型
雷达目标识别与跟踪算法性能评估研究

雷达目标识别与跟踪算法性能评估研究摘要:雷达目标识别与跟踪是雷达技术中的重要研究领域。
本文致力于对雷达目标识别与跟踪算法的性能进行评估研究,旨在提高雷达系统的性能和准确性,为各个领域中的雷达应用提供参考。
引言:雷达技术作为一种主要的探测和感知技术,广泛应用于军事、航空、导航以及交通等领域。
目标识别与跟踪作为雷达技术中重要的一环,其准确性和性能评估关系到整个雷达系统的工作效果。
一、雷达目标识别算法概述目标识别是雷达技术中的一个基本问题,它主要包括目标检测、目标定位与目标识别三个步骤。
目标识别算法的性能评估是评估目标识别准确性的关键指标,通常包括目标检出率、误检率、目标定位误差等指标。
1.1 目标检测目标检测是雷达目标识别算法中的第一步,其目的是从雷达回波中区分出目标和噪声。
常用的目标检测算法包括恒虚警率检测算法、小波变换、相关算法等。
1.2 目标定位目标定位是雷达目标识别中的第二步,其目的是在给定的雷达回波中确定目标的位置。
常用的目标定位算法包括匹配滤波算法、互相关算法、波束形成算法等。
1.3 目标识别目标识别是雷达目标识别算法中的最后一步,其目的是对已经定位的目标进行分类和识别。
常用的目标识别算法包括神经网络算法、支持向量机算法、模板匹配算法等。
二、雷达目标跟踪算法概述雷达目标跟踪是在已经识别和定位的目标基础上,通过连续观测和分析,实现目标位置的预测和更新。
雷达目标跟踪的性能评估是评估跟踪准确性和稳定性的重要指标,通常包括跟踪准确率、跟踪失败率、位置预测误差等指标。
2.1 线性滤波器算法线性滤波器算法是雷达目标跟踪算法中的一类常见算法,包括卡尔曼滤波器算法、粒子滤波器算法等。
这些算法基于状态空间模型进行目标跟踪,通过对连续观测序列进行预测和更新来实现目标跟踪。
2.2 非线性滤波器算法非线性滤波器算法主要包括扩展卡尔曼滤波器算法、无迹卡尔曼滤波器算法等,这些算法通过引入非线性模型和非高斯噪声来改进传统线性滤波器算法的跟踪性能。
云雨杂波环境下对空雷达目标检测能力分析

云雨杂波环境下对空雷达目标检测能力分析230088孔径阵列与空间探测安徽省重点实验室安徽合肥 230088摘要:杂波会对雷达正常工作造成严重影响,从而导致雷达检测性能的不稳定。
因此,探讨不同体制雷达在杂波影响下检测目标的性能如何变化具有重要意义,本文分析了云雨杂波环境下对空雷达目标检测能力。
关键词:杂波环境;对空雷达;目标检测能力雷达工作时所遇到的干扰通常可分为有源干扰和无源干扰两大类。
对于压制式干扰来说,有源干扰一般是指人为施放的各种噪声干扰。
现代噪声产生技术已非常成熟,所产生的噪声已十分接近于白噪声,因此,在分析噪声干扰对雷达目标检测性能的影响时,一般都将其当作白噪声看待。
一、地杂波对雷达目标检测性能的影响分析1.雷达杂波模型。
雷达接收到的杂波非常复杂。
研究发现杂波服从一定的分布规律,最常见的有以下几种杂波分布模型:(1)指数(Index)分布。
设x表示杂波回波的包络振幅,则x的指数分布为(1)1.瑞利(Rayleigh)分布。
在雷达可分辨范围内,当散射体的数目很多时,根据散射体反射信号振幅和相位的随机特性,一般可认为它们合成的回波包络振幅服从瑞利分布。
若以x表示瑞利杂波回波的包络振幅,则x的概率密度函数为(2)1.对数-正态(Log-Normal)分布。
设x表示杂波回波的包络振幅,则x的对数-正态分布为(3)其中σ是lnx的标准差,xm是x的中值。
(4)韦布尔(Weibull)分布。
设x表示杂波回波的包络振幅,则x的韦布尔分布为(4)其中xm是分布的中值,它是分布的尺度(比例)参数;n是分布的形状(斜度)参数,n的取值范围一般为02.杂波对雷达目标检测的影响。
地杂波(海杂波)的分布不是正态分布,因此不是最佳干扰波形。
干扰(包括噪声)情况下求雷达的作用距离一般采用查莱斯(Rice)曲线的办法,该曲线应用的前提是干扰(或噪声)为正态分布。
当干扰不是正态分布时,在同样干扰功率下,其干扰效果必然不如正态噪声干扰。
球载雷达探测低空小目标的性能分析

摘 要 : 载雷达具有较强 的低空和超低空探测能力 。由于雷达探测平 台的升高 , 球 导致 雷达波束会直接 照射地面 , 另
外 移 动 工 作 的球 载雷 达 平 台 会 使 地 杂 波 频 谱 展 宽 , 以 球 载 雷 达 接 收 到 的地 杂 波 强 度 比地 面 雷 达 多 1 B左 右 , 所 Od 增 加 了探 测 低 空 小 目标 的难 度 。从 雷 达 对 探 测 目标 所 受 制 约 的 因 素 出 发 , 影 响 到 球 载 雷 达 在 探 测 低 空 小 目标 时 的 对
境 H益 复杂 , 雷达 面临 着 亟待 解 决 的“ 四大 ” 胁 问 威
题 。其 中 , 空和超 低 空突 防 , 低 尤其 是低 空小 目标 的 探 测 已成 为雷 达面 临 的“ 四大 ” 威胁之 首 。地面 低空 雷 达 由于受地 球 曲率 的影 响 , 对低空 、 超低 空飞 行 的 目标探测 距 离较近 , 能提供 足够 的预警 时 间 , 只 不 而
各 因 素进 行 了综 合 分 析 和 仿 真 , 球 载 雷达 的设 计 提 供 了一 定 的指 导 作 用 。 为
关键词: 球载雷达 ; 低空小 目标 ; 巡航导 弹; 改善因子
中 图分 类 号 : N 5.3 T 997
文 献标识 码 : A
文 章 编 号 :N 211(020—08 6 C 3—4321)203— 0
力 。进入 2 0世 纪 8 0年代 以来 , 随着军 事技 术 、 战术 理论 以及 常规武 器 现代 化 的发 展 , 国均 十 分 重视 各 发 展本 国的球 载雷 达 系统 。它 以独有 的经 济性 、 隐
MIMO雷达的MTI处理及性能分析

MIMO雷达的MTI处理及性能分析MIMO(多输入多输出)雷达的MTI(移动目标指示)处理是利用MIMO雷达系统的多通道接收信号,在时域上实现目标速度信息的提取与处理。
MTI处理是雷达系统中常用的一种信号处理技术,主要用于探测和追踪移动目标。
MIMO雷达系统在传统雷达系统的基础上增加了多个发射和接收天线,可以提供更高的波束形成能力和灵敏度,从而可以更好地满足对目标的探测和跟踪要求。
在MTI处理中,MIMO雷达系统通过对多通道接收信号进行时延和相位差分处理,可以提取出目标的速度信息。
MTI处理主要包括以下几个步骤:1.零多普勒频移:利用多通道接收信号的相位差分,对雷达回波信号进行零多普勒频移。
这可以去除地物回波信号的零频偏移,突出移动目标信号。
2.时域滤波:对零多普勒频移后的信号进行时域滤波处理,以去除不感兴趣的杂波干扰。
常用的时域滤波方法包括矩形窗滤波、哈希窗滤波等。
3.目标检测:对滤波后的信号进行目标检测,以确定目标的存在与位置。
4.目标速度估计:利用多通道接收信号的相位差分,可以提取出目标的相对速度信息。
通过测量不同通道的相位差分,可以估计出目标的速度值。
MIMO雷达的MTI处理可以提供更准确和可靠的目标速度信息,有助于实现对多种目标的高效探测和追踪。
MIMO雷达系统的多通道接收可以提供更多的信息,增强相位差分的可观测性。
同时,MIMO雷达系统的波束形成能力和灵敏度也得到了提高,可以更好地抑制非移动目标干扰。
性能分析方面,主要从以下几个方面进行评估:1.目标探测概率:指MIMO雷达系统对目标的探测能力。
通过统计分析目标存在时系统的虚警概率和正确检测概率,可以评估系统的目标探测性能。
2.距离测量精度:指MIMO雷达系统对目标距离的测量精度。
通过统计分析目标距离的测量误差,可以评估系统的距离测量性能。
3.速度测量精度:指MIMO雷达系统对目标速度的测量精度。
通过统计分析目标速度的测量误差,可以评估系统的速度测量性能。
雷达目标多维特性分析与应用分析

雷达目标多维特性分析与应用分析2.中国舰船研究设计中心湖北武汉4300643.武汉蓝海科创技术有限公司湖北武汉430000摘要:对于雷达所反馈出的图像而言,能够以多维空间的函数形式进行表达,但是雷达的实际反馈结果通常将多维图像进行降维呈现,因此只能表现出实物的投影或切面。
为了更好的在雷达观测过程中体现出相应的多位特性,需要有关人员进一步从三维散射率分布函数出发,在傅里叶变换对关系的作用下推导出不同维度的雷达图像与三维函数之间的关系,从而将实际图像在雷达检测过程中更好的进行还原。
因此,了解多维散射模型与低维雷达观测的原理及算法,并基于三色中心模型的目标特性进行分析,才能更好的掌握雷达目标多维特性,从而使其在实际应用过程中有效还原图像的多维形象,促进雷达观测效果提升。
关键词:雷达目标;多维特性;雷达图像;散射中心模型引言:在雷达的实际应用过程中,为了将具有隐蔽性或距离很远的物体清晰的呈现出来,需要雷达通过特定技术来接受自身所释放的信号,从而在一定程度上反映出被测物体的位置与形象。
但是由于信号反馈在经历过较远距离后很难精准描绘出目标的多维特性,故导致雷达在呈像方面只能对目标物体进行降维处理,极大程度上降低了雷达使用方的信息获取率。
为此,如何加强雷达对于目标多维性的分析,成为有关研究人员的主要工作任务。
故本文主要分析雷达在分析目标多维性的过程中所需要使用的对应算法,并简单描述雷达目标多维性的应用。
1.多维散射模型与低维雷达观测就目前人类所处的环境而言,物体所能承受的最大维度即是三维空间,因此雷达目标多维性的分析需要假设待测目标处于三维空间,并以此建立三维空间的散射率分布函数,作为其目标特性的简化模型,后通过该模型讨论目标特性与雷达观测的关系。
首先,在研究目标散射特性的过程中最常见的模型即是散射率空间分布函数,该分布函数可以很好的表达出目标的后向散射幅度在三维空间中的分布情况,能够为该研究提供非常有利的支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
雷达目标检测实例
雷达对Swerling起伏目标检测性能分析
1.雷达截面积(RCS)的涵义
2.目标RCS起伏模型
3.雷达检测概率、虚警概率推导
4.仿真结果与分析
雷达通过发射和接收电磁波来探测目标。
雷达发射的电磁波打在目标上,目标会将入射电磁波向不同方向散射。
其中有一部分向雷达方向散射。
雷达截面积就是衡量目标反射电磁波能力的参数。
雷达截面积(Radar Cross Section, RCS)定义:
22o 24π4π4π4π()4πo i i P P R m P P R
σ=== 返回雷达接收机单位立体角内的回波功率入射功率密度
在远场条件下,目标处每单位入射功率密度在雷达接收机处每单位立体角内产生的反射功率乘以4π。
R 表示目标与雷达之间的距离,P o 、P i 分别为目标反射回的总功率和雷达发射总功率
☐目标RCS和目标的几何横截面是两个不同的概念☐复杂目标在不同照射方向上的RCS不同
☐动目标同一方向不同时刻的RCS不同
飞机舰船
目标RCS是起伏变化的,目标RCS大小直接影响着雷达检测性能。
为此,需用统计方法来描述目标RCS。
基于此,分析雷达目标检测性能。
Swerling 模型是最常用的目标RCS 模型,它包括Swerling 0、I 、II 、III 、IV 五种模型。
其中,Swerling 0型目标的RCS 是一个常数,金属圆球就是这类目标。
Swerling Ⅰ/Ⅱ型:
1
()exp()p σσσσ=- 指数分布Swerling Ⅰ:目标RCS 在一次天线波束扫描期间是完全相关的,但本次和下一次扫描不相关(慢起伏),典型目标如前向观察的小型喷气飞机。
Swerling Ⅱ:目标RCS 在任意一次扫描中脉冲间不相关(快起伏),典型目标如大型民用客机。
05101520253035404500.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
脉冲序号
R
C S 05101520253035404500.20.40.60.811.21.41.61.8脉冲序号R C S
Swerling I :
目标RCS 在一次扫描内
各脉冲完全相关,扫描
间脉冲不相关。
Swerling II :目标RCS 在一次扫描内各脉冲间不相关。
Swerling III 、IV 型:
()2242exp p σσσχσσ⎛⎫=- ⎪⎝⎭
4自由度的分布Swerling III :慢起伏,典型目标如螺旋桨推进飞机、直升机等。
Swerling IV :快起伏,典型目标如舰船、卫星、侧向观察的导弹与高速飞行体。
05101520253035404500.2
0.4
0.6
0.8
1
1.21.4
1.6
1.8
2
脉冲序号R C S 05101520253035404500.20.40.60.811.21.41.61.82脉冲序号R C S Swerling III :
目标RCS 在一次扫描内各脉冲完全相关,扫描间脉冲不相关。
Swerling IV :目标RCS 在一次扫描内各脉冲间不相关。
Swerling 起伏模型
概率密度函数
去相关性
扫描间脉冲间
指数分布Swerling I Swerling II
Swerling III Swerling IV 冲击函数Swerling0,RCS为定值,无去相关性
2.目标RCS起伏模型
3.雷达检测概率、虚警概率
雷达接收信号为:
01::H z w
H z s w
= =+雷达接收信号功率2y z =的概率密度函数为
()0221exp w w y p y H σσ⎛⎫=- ⎪⎝⎭()2~0,w w σj s Ae ϕ=()2
1022221,exp w w w A y y A p y A H I σσσ⎛⎫⎛⎫+=- ⎪ ⎪ ⎪⎝⎭⎝⎭()0I 为0 阶第一类修正贝塞尔函数。
其中,保铮,等译. 概率、随机变量与随机过程,西安交大出版社,2004
单次观测,雷达虚警概率为
()00d f P p y H y e ηη∞-==⎰单次观测,雷达检测概率为
()()10,d d d P p y A H p A A y
η∞
∞=⎰⎰2
0w
ηησ=()22344πi t r r PG G P A R
λσ==根据雷达方程,雷达接收目标回波功率为
2A σ∝所以有简化起见2
A σ=()()11022221,,exp w w w y A y p y H p y A H I σσσσσσσ⎛⎫⎛⎫∂+==- ⎪ ⎪ ⎪∂⎝⎭⎝⎭
()()11,d ,d p y H p y A H A σσ=
()002221exp 22d P ηξηξξ⎡⎤⎛⎫ =+-⎢⎥ ⎪++⎝⎭⎢⎥⎣⎦
对Swerling I/II 目标,0exp 1d P ηξ⎛⎫=- ⎪+⎝⎭
对Swerling III/IV 目标,
222w A ξσ=为目标平均信噪比()2,2ln d f P Q P ξ=-单次观测,雷达检测概率为
()()10
,d d d P p y H p y ησσσ∞∞=⎰⎰对Swerling 0目标,
Marcum Q 函数
多次观测,雷达接收信号为:
()()
()()()01::H z n w n H z n s n w n = =+非相参积累后,雷达接收信号功率()()112
00N N n n y z n y n --=='==∑∑的概率密度函数为
0,1,,1
n N =-()()102201
exp N n w w y n p y H σσ-=⎡⎤'=-⎢⎥
⎣⎦∏()()()110222021
,exp N n w w w y n y n p y H I σσσσσσ-=⎡⎤+⎡⎤'⎢⎥=-⎢⎥⎢⎥⎣⎦⎣⎦∏
1011exp 1N d P N N ηξξ-⎛⎫⎛⎫=+- ⎪ ⎪+⎝⎭⎝⎭()11,11d P I N N ξ⎡⎤=--⎢⎥+⎢⎥⎣⎦()20022211exp 1212N d N P N N N N ηηξξξξ--⎡⎤⎛⎫⎛⎫=++--⎢⎥ ⎪ ⎪++⎝⎭⎝⎭⎣⎦
()()()()()()002100000002!1,2!!!11,2!!r N k c N N k N k r d r N k c N N k r N k e c N c c N c k N k c r P e c N c c N c k N k c r ηηηηηη----==--∞==-⎧-⎛⎫ >-⎪ ⎪-⎝⎭⎪=⎨⎪-⎛⎫- <- ⎪⎪-⎝⎭⎩
∑∑∑∑对Swerling I 型目标,
对Swerling II 型目标,对Swerling III 型目标,
对Swerling IV 型目标,
邢孟道,等译. 雷达信号处理基础,电子工业出版社,2008
虚警概率:1,1f T P I N N ⎡⎤=--⎢⎥⎣⎦
仿真参数:分析结论:
1、雷达检测概率随着目标信噪比的增大而增大;
2、雷达检测概率随着虚警概率的增大而增大。
噪声功率为1,10-1010-810-6
10-410-2100
00.10.20.30.40.50.60.70.80.91虚警概率检测概率 ξ=0dB ξ=5dB ξ=10dB ξ=15dB Swerling I 0246810121416182000.1
0.2
0.3
0.4
0.50.60.70.8
0.9
1
信噪比 (dB)检测概率 理论仿真
Swerling I 310f P -=1
N =
分析结论:
1、雷达检测非起伏目标检测性能最好;
2、单脉冲检测,雷达对Swerling III/IV 型目标的检测性能优于对Swerling I/II 型目标的检测性能。
0246
8101214161820
00.1
0.2
0.3
0.4
0.50.60.70.8
0.9
1
信噪比(dB)检测概率 Swerling 0Swerling I/II Swerling III/IV
检测概率随SCR 变化曲线
610f P -=
610
f P -=8N =分析结论:
对于起伏目标,非相参积累后,雷达对Swerling IV 型目标的检测性能最好,其次分别是Swerling II 、Swerling III 、Swerling I 。
仿真参数:012345678910
00.1
0.2
0.3
0.4
0.50.60.70.8
0.9
1
信噪比 (dB)检测概率
Swerling I Swerling II Swerling III Swerling IV
小结
☐雷达截面积(RCS)
描述目标反射电磁波能力的参数☐RCS起伏模型
Swerling0、I-IV
☐雷达检测概率、虚警概率
☐仿真结果与分析。