《河内塔问题》PPT

合集下载

河内塔问题讲题稿

河内塔问题讲题稿

小学数学讲题稿河内塔问题浏阳市新文学校周小芬大家上午好,今天我的讲题内容是河内塔问题。

如图所示:有编号为1、2、3号的三根杆子,在1号杆上有呈金字塔状排列的三颗珠子,你能借助2号把1号杆上的珠子移到3号杆而不改变珠子的上下顺序吗?最少移动多少次?移动规则如下:(1)每次只能移动一颗珠子;(2)大珠子不能放到小珠子上面。

如果A杆上有4个珠子呢?至少移动多少次?一、题目分析河内塔问题源于印度的一个神话,本题动手操作性和综合性强,学生不容易根据题目中的已知条件和问题,找到解题方法。

因此我的教学思路是:1.认真分析题目条件和要求。

2.让学生边操作边思考,并做好记录,逐步总结出规律和方法。

3.一题多解,发散思,拓展延伸。

在学生动手操作之前,先强调操作的要求:1、不改变上下顺序;2、保证移动次数的最少;3、隐藏的已知条件是:1、2、3号杆都可以作为珠子的临时中转杆;约束条件是:中转杆上的珠子必须保持金字塔状。

二、由学生容易进入的误区探究出珠子移动次数最少的规律(题目的已知条件中要求借助2号杆,那么学生很容易理解成只能用2号杆作为中转,所以会在每次移动时先将最上面的那颗最小的珠子移入2号杆,但是,这样移动,能保证是最少的移动次数吗?)给学生足够的操作探究的时间,让不同层次的学生尝试用自己的方法去解决这个问题。

全班交流,会出现大致以下情况:1、每次都先将最小珠移至2号杆,导致部移动次数不都是最少。

2、有学生举棋不定,无从入手。

3、有学生会将珠子在三根杆上来回移动,重复多次。

4、有学生将珠子移入中转杆时,顺序颠倒。

5、有学生会总结出最少移动次数的操作方法。

6、其他。

比较结果,得出最优策略,结果如下:结果如下探究出珠子移动次数最少的规律:1、1号杆珠子为单数,最小珠先移入3号杆中转2、1号杆珠子为双数,最小珠先移入2号杆中转三、发现规律,拓展升华根据所得出的结果找出河内塔问题的最终规律:利用递推法,根据前一项和后一项珠子移动的最少次数,递推出它的规律是:后一项珠子移动次数是前一项的2倍多1;根据珠子移动的最少次数,发现它组成了一个规律为2的n次方减1的数列。

《Hanoi塔问题》课件

《Hanoi塔问题》课件
游戏设计与人工智能
在游戏设计和人工智能领域,Hanoi塔问题可以作为解决游戏策略和决策问题的 模型。例如在围棋、象棋等游戏中,可以利用Hanoi塔问题的解法来设计更强大 的游戏AI。
PART 04
Hanoi塔问题的扩展和变 种
REPORTING
带限制的Hanoi塔问题
总结词
带限制的Hanoi塔问题是指在移动盘 子时,需要满足一些特定的限制条件 。
分治策略解法的优点是能够将问题分 解为更小的子问题,降低问题的复杂 度。但缺点是需要仔细设计子问题的 分解方式和合并方式,以确保能够正 确地解决问题。
PART 03
Hanoi塔问题的应用
REPORTING
在计算机科学中的应用
算法设计
Hanoi塔问题可以作为解决复杂算法问题的模型,例如在解决图论、动态规划 等算法问题时,可以利用Hanoi塔问题的特性来设计更高效的算法。
决。
在Hanoi塔问题中,递归解法的基本思 路是将问题分解为三个子问题:将n个 盘,最后将第n个盘子从
A柱移动到B柱。
递归解法的优点是思路简单明了,易于 理解。但缺点是对于大规模问题,递归 解法的时间复杂度较高,容易造成栈溢
出。
动态规划解法
动态规划解法是一种通过将问题分解为子问题并存储子问题的解来避免重复计算的方法。
数学模型的应用
汉诺塔问题可以通过数学模型进行描述和解决,如使用递归公式或动态规划方法。理解如何将实际问题转化为数 学模型,并运用数学工具进行分析和解决,是数学应用的重要能力。
对解决问题的方法论的启示
解决问题的思维方式
汉诺塔问题提供了一种独特的思维方式,即通过不断将问题分解为更小的子问题来解决。这种思维方 式有助于我们在面对复杂问题时,能够更加清晰地理解和分析问题,从而找到有效的解决方案。

小学人教四年级数学策略(汉诺塔)

小学人教四年级数学策略(汉诺塔)

河内塔游戏活动目标:1.本活动以河内塔做为媒介,从“玩”入手,让学生在“玩”的过程中,体会最佳策略,初步感受递推法解决实际问题的方法。

2.能用有条理的、清晰的语言阐述自己的想法,学会用简单的方式记录活动过程3.培养学生的观察、分析、比较,综合思考能力。

活动材料:河内塔玩具、活动单活动过程:活动一:(初步感知尝试把玩)1.师:出示河内塔玩具谈话:今天老师给大家带来了一个玩具,见过吗?你知道这个玩具叫什么吗?课题:“河内塔”想知道这个玩具怎么玩吗?2.(课件出示游戏玩法)任务:将一根柱上的圆盘全部移动到另一根柱上。

规则:1.每次只能移动一个盘子,只能在3个柱子之间移动;2.移动过程中,小盘子一定要放在大盘子的上面,不可颠倒;3.读一读,问:谁看懂了游戏规则,和大家说一说。

4.在学生介绍的基础上老师结合操作介绍游戏规则问:你想玩吗?那我们也来玩一玩。

老师给你3分钟时间,请边玩边注意这个游戏的规则。

(完好后把盘放回信封)5.你知道吗,很多的数学家都研究过这个游戏。

关于它还有一个古老传说,想不想听听。

传说印度教的主神梵天在创造世界的时候,在一块黄铜板上插着三根宝石针,并且在其中一根针上从下到上地穿好了由大到小的64片金片,不论白天黑夜,总有一个僧侣在按照下面的法则移动这些金片:一次只移动一片,不管在哪根针上,小片必须在大片上面。

僧侣们预言,当所有的金片都从梵天穿好的那根针上移到另外一根针上时,世界就将在一声巨响中灭亡……师:传说中的河内塔上只有64个盘子,按照上面的规则移动完成后,我们的世界怎么可能灭亡呢?这中间究竟蕴含了什么样的奥秘呢?今天我们也来研究一下河内塔,揭开这个古老传说中的奥秘吧。

这个河内塔上有64个金环,要是直接移动是不是有些麻烦,那你想从几个开始?7.在学生回答的基础上小结:对于复杂的问题,我们可以从它最简单的形式开始研究,在研究的过程中找到规律就好办了。

活动二:一盘游戏(学生说一说,教师简单演示过程)活动三:二盘游戏1.学生分组活动,两人一组轮流玩。

03—《河内塔游戏探秘》

03—《河内塔游戏探秘》

附件3:小课题封面格式序号2014年温州市小学数学小课题评比学校:温州市瓯海实验小学南瓯校区成员姓名:陈奥小课题题目:河内塔游戏探秘指导教师:季迅群河内塔游戏探秘一、提出问题曾经在数学书上有个叫“河内塔问题”数学游戏。

它就是由三个杆子,分别是1号杆,2号杆和3号杆,1号杆上有三颗珠子,是从小到大排列的。

这个问题引起了我的兴趣,于是,我对河内塔游戏产生了浓厚的兴趣,去查找了资料,了解到:它源自古印度神庙中的一段故事。

传说在古老的印度一座庙宇中放置了一块上面插有三根长木钉的木板,在其中的一根木钉上,从上至下被放置了64片直径由小至大的圆环形金属片。

古印度教的天神指示他的僧侣们将64片的金属片移至三根木钉中的其中一根上。

规定在每次的移动中,只能搬移一片金属片,并且在过程中必须保持金属片由上至下是直径由小至大的次序,直到有一天,僧侣们能将64片的金属片依规则从指定的木钉上全部移动至另一根木钉上,那么,世界末日即随之来到,世间的一切终将被毁灭。

二、展开探索1.探索(一)三颗珠子三根杆子的游戏三颗珠子的移动挺简单的,但要注意的是:为了做到移动次数最少,第一次移动必须把最小的珠子移动到最后一个柱子。

如果移动到第2个柱子上,虽然最后也能完成任务,但是就达不到“移动次数最少”的要求。

详细移动过程如下:第一次移动第二次移动第三次移动第四次移动第五次移动第六次移动第七次移动2.探索(二) 四颗珠子三根杆子的游戏四颗珠子能不能移呢?我尝试了几次,最下面的一颗珠子好像没有办法拿出来。

但后来灵机一动:如果把上面三颗珠子先用刚才的方法移到其他柱子上。

不就可以拿起最下面的一颗珠子了嘛!经过尝试,我发现:三颗珠子先用刚才的方法移到第2号柱子上步骤是最少的。

一共需要15次。

步骤具体如下:第一次移动第二次移动第三次移动第四次移动第五次移动第六次移动第七次移动第八次移动第九次移动第十次移动第十一次移动第十二次移动第十三次移动第十四次移动第十五次移动移动中,我发现:在这十五次里,有七次是上面的三颗珠子移到2号杆上,有一次是把最大的珠子移到3号杆上,剩下的七次是把2号杆上的三颗珠子移到3号杆上的最大珠子上面。

【算法】汉诺塔问题

【算法】汉诺塔问题

【算法】汉诺塔问题汉诺塔问题是⼀个经典的问题。

汉诺塔(Hanoi Tower),⼜称河内塔,源于印度⼀个古⽼传说。

⼤梵天创造世界的时候做了三根⾦刚⽯柱⼦,在⼀根柱⼦上从下往上按照⼤⼩顺序摞着64⽚黄⾦圆盘。

⼤梵天命令婆罗门把圆盘从下⾯开始按⼤⼩顺序重新摆放在另⼀根柱⼦上。

并且规定,任何时候,在⼩圆盘上都不能放⼤圆盘,且在三根柱⼦之间⼀次只能移动⼀个圆盘。

问应该如何操作?当只有⼀个盘⼦时这是最简单的情况:只需将1号盘⼦从X塔移动到Z塔就OK于是我们可以写出如下的函数,来模拟完成这个过程。

假设盘⼦是⽤1,2,3...按照⼤⼩编码代表的,⽽塔则是⽤⼀个字符char表⽰的。

//将编号为 number 的盘⼦从 from 塔座移到 to 塔座void move(int number , char from , char to){std::cout<<"move dish "<<number<<": "<<from<<"--->"<<to<<std::endl;}有两个盘⼦时有2个盘⼦,⽬标是:将X塔上的盘⼦借助Y移动到Z盘⼦上。

特别的,为了好描述,我把X塔叫做源塔,因为盘⼦起初在这个塔上,把Y塔叫做辅助塔,因为Y塔只是起个过渡作⽤。

把Z盘叫做⽬标塔,最后所以的盘⼦都在这个塔上。

我们可以写出伪代码move(1,X,Y);move(2,X,Z);move(1,Y,Z);有三个盘⼦时在盘⼦数⼤于2的时候,⽆论有多少个盘⼦,我们眼⾥只有2个盘⼦:即最底层的最⼤的盘⼦,和它上⾯的所有盘⼦组和形成的⼀个盘,我们可以把它看做是2.5号盘。

这样考虑的好处是:⽆论有多少盘⼦,都可以⽤2个盘⼦的思路去做。

简化了思路。

因此,步骤是:1、将2.5号盘借助Z塔移动到Y塔上。

注意,处理这步操作时,X是源塔,Z是辅助塔,Y是⽬标塔2、将3盘移动到Z塔上,3、将2.5盘借助X塔移动到Z塔上。

河内塔问题

河内塔问题
讨论:大、中、小三个珠子如何移? 最少移动多少次?
三个珠子的移动图解:三个珠子的移动只有两种移动方法: 如果第一次移动时,把最小红珠子放到③号杆上是优选法。 如下: • (一)原题图: (二)移动第一次:

• (三)移动第二次: •
(四)移动第三次:
(五)移动第四次:
(六)移动第五次:
(七)移动第六次:
河内塔问题
河内塔问题
• 传说中开天辟地的神勃拉玛在贝拿勒斯的圣庙 里留下了三根金刚石的棒,第一根上面套着64个 金环,最大的一个在底下,其余的一个比一个小, 依次叠上去。庙里的众僧不倦地把它们一个个地 从这根棒搬到另一根棒上,规定可利用中间的一 根棒作为帮助,但每次只能搬一个,而且大的不 能放在小的上面。相传神同时发了咒语,当所有 的金环全部移完时,就是世界末日到来的时候。 那么,众僧们要移动多少次呢?

河内塔问题移动次数最少的规律 珠子的个数∕个 最少移动的次数∕次 1 1 2 3 3 3+1+3=7 4 7+1+7=15 5 15+1+15=31 6 31+1+31=63 ┋ ┋ n-1 n 2 +1 1, 3, 7, 15, 31, 63,…… 规律:后一项总是前一项的2倍多1.
64个金环,众僧们要移动 2×2×2×…×2+1
(八)移动第七次:
“河内塔问题” 有①号、②号、③号三根杆子,你能借助 ②号杆把①号杆上的3颗珠子移到③号杆而不 改变珠子的上下顺序吗?最少移动多少次? 移动规则如下: (1)每次只能移动一个珠子; (2开始第一个珠子要放在②号杆上:
• (一)原题图: • (二)第一次移动:
• (三)第二次移动:
(四)第三次移动:
• (五)第四次移动: •
(六)第五次移动:

组合数学第三讲

组合数学第三讲
假设序列{ak }的母函数为 A(x) a0 a1x a2x2 an xn , 序列{bk }的母函数为 B(x) b0 b1x b2 x2 bn xn 。
性质 1
若 bk
0 akl
k l ,则 B(x) xl A(x) k l
l 1
性质 2 若 bk akl ,则: B(x) [ A(x) ak xk ] / xl k 0
故有: x
G(x) 1 x x2 作部分分式分解得:
x4: F4 F3 F2 x5: F5 F4 F3 x6: F6 F5 F4
G(x) x 1 x
x2
1
1
1
5
1
1
2
5
x
11 2
5
x
+)
。。。
记 1 5 , 1 5 ,则有:
2
2
G(x)
1 5
(
)x
(
2
2)x2
所以得:
序列和母函数是一一对应的。 为方便起见记序列 c0 , c1, c2 , , cn , 为{ ci } 。
例 2.3 (1 a1x)(1 a2x) (1 an x) 1 (a1 a2 an )x (a1a2 a1a3 an1an )x2 a1a2 anxn
令 a1 a2 an 1 ,即可得:
代入 B(x) b0 b1x b2 x2 bn xn 有:
B(x) A(1)(1 x ) a0x(1 x ) a1x2 (1 x )
A(1) 1 x
[a0
a1x
a2
x2Βιβλιοθήκη ]x(1 x x2 )
A(1) xA(x) A(1) xA(x)
1 x 1 x
1 x

河内塔问题最后修改稿课件

河内塔问题最后修改稿课件

05
河内塔问题的应用与 拓展
在计算机科学中的应用
1 2
算法设计与分析
河内塔问题是经典的递归算法案例,通过分析其 算法复杂度,可以帮助学生深入理解递归思想及 时间、空间复杂度概念。
程序语言实现
通过使用不同程序语言实现河内塔问题的求解, 可以帮助学生掌握各种语言特性及编程技巧。
3
人工智能与搜索算法
河内塔问题可以作为搜索算法、人工智能等领域 的研究对象,通过对其进行求解优化,可以推动 相关领域的发展。
解法选择
对于较小规模的问题,可以使用递归解法;对于大规模问题,建议使用非递归 解法以避免栈溢出。
03
河内塔问题的拓展与 变形
多塔问题
增加塔的数量
在原有三塔的基础上,增 加更多的塔,使问题更加 复杂。
规则调整
随着塔数量的增加,移动 规则也需要相应调整,如 限制每次移动的盘子数量 等。
策略变化
多塔问题可能需要更复杂 的策略来解决,如分组移 动、递归等。
对参与者的致谢
导师指导
感谢导师在选题、研究 和论文撰写过程中的悉 心指导和宝贵建议。
同学帮助
感谢同学们在研究过程 中提供的帮助和支持, 共同解决问题,共同进 步。
资源支持
感谢学校提供的实验室 、图书等资源,为研究 的顺利进行提供了有力 保障。
THANK YOU
在其他领域的应用
心理学与认知科学
通过研究人类对河内塔问题的认 知过程及解决策略,可以揭示人 类思维的特点及规律,为心理学 和认知科学研究提供素材。
教育与培训
通过设计基于河内塔问题的教育 游戏或培训课程,可以帮助学生 提高逻辑思维能力、创新能力和 解决问题的能力。
06
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汉诺塔问题
我叫汉诺塔
• 传说中开天辟地的神勃拉玛在贝拿勒斯的圣
庙里留下了三根金刚石的棒,第一根上面套着 64个金环,最大的一个在底下,其余的一个比一 个小,依次叠上去。庙里的众僧不倦地把它们一 个个地从这根棒移到第三根棒上,规定可利用中 间的一根棒作为帮助,但每次只能移一个,而且 大的不能放在小的上面,等将全部金盘移到第三 根上时就成功了。相传神同时发了咒语,当所有 的金环全部移完时,就是世界末日到来的时候。 那么,众僧们要移动多少次呢?后来,这个传说 就演变为汉诺塔游戏,也叫河内塔游戏。
最少移动的次数 1 3 3+1+3 = 7 7+1+7 = 15 15+1+15=31 31+1+31=63 ┋
• 64个金环,众僧们要移动 1844 6744 0737 0951 1615次
京 兆 亿 万
读作:一千八百四十四京 六千七百四十四兆 零七百三十七亿 零九百五十一万 一千六百一十五
数级: 个级 万级 亿级 兆级 京级 垓级 ┋
三个珠子的移动图解:三个珠子的移动只有两种移动方法: 如果第一次移动时,把最小红珠子放到③号杆上是优选法。 如下: • (一)原题图: 移动第一次:


移动第二次:
移动第三次:

• •
移动第四次:
移动第五次:Leabharlann • •移动第六次:
移动第七次:
四个珠子的移动图解:
四个珠子:开始第一个珠子要放在②号杆上: • (一)原题图: • 第一次移动:

第二次移动:
第三次移动:
• •
第四次移动:
第五次移动:
• (七)第六次移动:
(八)第七次移动:
• •
第八次移动:
第九次移动:

第十次移动:
第十一次移动:
• •
第十二次移动:
第十三次移动:

第十四次移动:
第十五次移动:

河内塔问题移动次数最少的规律
• • • • • • • •
珠子的个数 1个珠子 2 3 4 5 6 ┋
活动要求:
1、同桌两个同学轮流操作,一人操作时另一人记录。 2、每完成一次操作后两人交换。
3、从两个盘子开始操作,尽量用最少的步数完成你的操作。
4、在操作相同个数的盘子时,同桌的同学比一比,看谁用 的 步数更少。
5、记住,每完成一次操作,都要做好记录哦。
“河内塔问题”
1、河内有①号、②号、③号三个柱子,你能 借助②号柱把①号柱上的珠子移到③号柱而不 改变珠子的上下顺序吗? 最少移动多少次? 移动规则如下: (1)每次只能移动一个金盘; (2)大金盘不能放到小金盘上面。
假如僧侣们每秒钟移动一次金片,夜以继日 废寝忘食地照这样干下去,需要干多少年?
一年有多少秒? 31536000(秒) 60×60×24×365 =31536000 需要多少年? 1844 6744 0737 0951 1615÷
≈5846亿年
太阳的寿命最多还有100~150亿年
地球存在至今不过45亿年
相关文档
最新文档