2020年辽宁省大连市高三双基考试数学(理科)试题及答案

合集下载

辽宁省大连市2020届高三数学上学期教学质量检测试题理(PDF)

辽宁省大连市2020届高三数学上学期教学质量检测试题理(PDF)

%
!(!*"*&#A
"% !
(
*
(*(w
/
!
%
!
( * (*%!,(6
A
!
&!*%%56&!*(v
*%" A ! %%56#
=#$ $6 7 %9 :)0"!(#%,:)0 A :)0!;<:(
;<:!:)0%,:)0(2 i x J W ? ;<: A :)0!(
rx-y+2 注。 14.若实数 x,y 满足不等式组才 2x十y-2�0 ,存在可行解 (x,y) 满足 mx-y-6m = O,则实数 m 的最小值
L4x-y-4《0

15. 在水平桌面上,有两两相切且半径均为 2 的四个黑球,有 一 个自球与这四个黑球均相切,则该自球球面上的
点到桌面距离的最大值为
C.11
D.12
①当 k=l 时, f(x) 注 0 恒成立;②当护 2 时,只川的零点为 Xo 且 一 I<岛<寸:③当是 = +时, x = l 是
J(x) 的极值点;④若 f(x) 有三个零点,则实数h的取值范围为(0,去)
A. ①②④
B.①③
C.②③④
D.②④
第E卷
二、填空题:本大题共 4 小题,每小题 5 分. 13.已知函数列。 =ax3 -ax(α>O)的图象在 x= O 和工 = 1处的切线互相垂直,则“ =
#(v(.""#%"(6A"%"(8(""#o"& 2("#P
Q(o ""(( 2 #P (8 (""#'

辽宁省大连市2020届高三下学期第三次模拟考试数学(理)试题(含答案解析)

辽宁省大连市2020届高三下学期第三次模拟考试数学(理)试题(含答案解析)

辽宁省大连市2020届高三下学期第三次模拟考试数学(理)试题(含答案解析)高考真题高考模拟高中联考期中试卷期末考试月考试卷学业水平同步练习辽宁省大连市2020届高三下学期第三次模拟考试数学(理)试题(含答案解析)1 已知集合,,则下列选项正确的是()A. B.C. D.【答案解析】 D【分析】计算,根据集合的包含关系,交集并集运算依次判断每个选项得到答案. 【详解】,,,则,,AB错误;,C错误;,D正确.故选:D.【点睛】本题考查了解指数不等式,集合的包含关系,交集并集运算,意在考查学生的计算能力和综合应用能力.2 设,,,则a、b、c的大小关系为()A. B.C. D.【答案解析】 C【分析】由指数函数的性质和对数函数的性质,分别求得的取值范围,即可求解.【详解】由指数函数的性质,可得,,由对数函数的性质,可得,所以.故选:C.【点睛】本题主要考查了指数函数和对数函数的性质的应用,其中解答中熟记指数函数和对数函数的图象与性质是解答的关键,着重考查推理与运算能力.3 已知平面,,直线,直线,则下列命题正确的是()A. B.C. D.【答案解析】 C【分析】根据空间线面、面面的位置关系,对选项进行逐一判断得出答案.【详解】选项A. 由直线,直线,,则与可能异面,可能平行.则选项A错误.选项B. 由直线,直线,,则与可能平行,可能相交,可能异面,则选项B错误.选项C. 由直线,,则选项C正确.选项D. 由直线,直线,则与可能平行,可能相交,则选项D错误. 故选:C【点睛】本题考查空间线面、面面的位置关系的综合应用,属于基础题.4 已知随机变量X服从正态分布,且,则()A. 0.6B. 0.2C. 0.4D. 0.35【答案解析】 B【分析】根据随机变量X服从正态分布,可知正态曲线的对称轴,利用对称性,即可求得.【详解】∵随机变量服从正态分布,∴正态曲线的对称轴是,∵,∴.故选:B.【点睛】本题考查的知识点是正态分布曲线的特点及曲线所表示的意义,考查逻辑思维能力和计算能力,属于常考题.5 为了普及垃圾分类的知识,某宣传小组到小区内进行宣传.该小组准备了100张垃圾的图片,其中可回收垃圾40张.为了检验宣传成果,该小组从这100张图片中选取20张做调查问卷,则这20张中恰有10张可回收垃圾的概率是()A. B.C. D.【答案解析】 B【分析】由题知,该小组从这100张图片中选取20张共有个结果,而这20张中恰有10张可回收垃圾的共有个结果,由古典概率公式计算即可得结果.【详解】由题知,该小组从这100张图片中选取20张共有个结果,而这20张中恰有10张可回收垃圾的共有个结果,由古典概率公式得这20张中恰有10张可回收垃圾的概率为.故选:B【点睛】本题主要考查古典概率,属于基础题.6 与双曲线有共同的渐近线,且焦点在y轴上的双曲线的离心率为()A. 2B.C.D.【答案解析】 A【分析】设双曲线的方程,根据题意,求得,再结合离心率的计算公式,即可求解.【详解】由题意,双曲线,可得其渐近线方程为,又由与双曲线有共同的渐近线,且焦点在轴上,设双曲线的方程,则,所以离心率为.故选:A.【点睛】本题主要考查了双曲线的标准方程及其几何性质,其中解答中熟记双曲线的几何性质,准确计算是解答的关键,着重考查推理与运算能力.7 在展开式中,含的项的系数是()A. -39B. -9C. 15D. 51【答案解析】 A【分析】首先将利用二项式定理展开,再求含的项的系数即可.【详解】因为所以含的项的系数为.故选:A【点睛】本题主要考查利用二项式定理求指定项的系数,属于简单题.8 已知数阵中,每行的三个数依次成等比数列,每列的三个数也依次成等比数列,若,则该数阵中九个数的积为()A. 36B. 256C. 512D. 1024【答案解析】 C【分析】根据等比中项的性质计算可得;【详解】解:依题意可得,,,,因为所以故选:C【点睛】本题考查等比数列的性质的应用,属于基础题;9 已知一个正四面体和一个正四棱锥,它们的各条棱长均相等,则下列说法:①它们的高相等;②它们的内切球半径相等;③它们的侧棱与底面所成的线面角的大小相等;④若正四面体的体积为,正四棱锥的体积为,则;⑤它们能拼成一个斜三棱柱.其中正确的个数为()A. 1个B. 2个C. 3个D. 4个【答案解析】 B【分析】①正四面体的高,正四棱锥的高,所以该命题错误;②设正四面体的内切球半径为.设正四棱锥的内切球半径为则.所以该命题不正确;③在正四面体中,就是侧棱和底面所成的角,.在正四棱锥中,就是侧棱和底面所成的角,,所以该命题不正确;④计算得.所以该命题正确;⑤把一个斜三棱柱分解成一个正四面体和正四棱锥,所以该命题正确.【详解】设正四面体和正四棱锥的棱长都为2,①,如图1,,所以正四面体的高.如图2,正四棱锥的棱长都为2,它的高,所以该命题不正确;②设正四面体的内切球半径为则,所以.设正四棱锥的内切球半径为则,所以.所以该命题不正确;③如图1,在正四面体中,就是侧棱和底面所成的角,.如图2,在正四棱锥中,就是侧棱和底面所成的角,,所以该命题不正确;④若正四面体的体积为,,正四棱锥的体积为,,则.所以该命题正确;⑤如图3,是一个斜三棱柱,其中四棱锥是一个棱长都为2的正四棱锥,四面体是棱长都为2的正四面体,所以它们能拼成一个斜三棱柱.所以该命题正确.故选:B.【点睛】本题主要考查几何体的体积的计算,考查几何体的内切球问题,考查直线和平面所成的角的计算,意在考查学生对这些知识的理解掌握水平和空间想象计算能力.10 设,则是的()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案解析】 A分析:根据条件分别做出和,以及的图象,利用数形结合进行判断,即可得到结论.详解:由得或,作出函数和,以及的图象,如图所示,则由图象可知当时,,当时,,因为,所以“”是“”的充分不必要条件,故选A.点睛:本题主要考查了充分条件和必要条件的判定问题,其中正确作出相应函数的图象,利用数形结合法求解是解答的关键,着重考查了数形结合思想方法的应用,以及推理与论证能力.11 在直线:上有两个点A、B,且A、B的中点坐标为(4,3),线段AB的长度,则过A、B两点且与y轴相切的圆的方程为()A. 或B. 或C或D. 或【答案解析】 C【分析】首先求出线段的垂直平分线方程,设出圆心坐标和半径,再利用圆的弦长性质得到圆心坐标和半径,即可得到圆的标准方程.【详解】由题知:线段的垂直平分线方程为:,即.设圆心,因为圆与轴相切,所以,如图所示:因为,所以,整理得:,解得或.当时,圆心,,圆.当时,圆心为,,圆.故选:C【点睛】本题主要考查直线与圆的位置关系中的弦长问题,数形结合为解决本题的关键,属于中档题.12 函数f(x)是定义在R上的奇函数,且函数为偶函数,当时,,若有三个零点,则实数b的取值集合是()A. , B. ,C. ,D. ,【答案解析】 C【分析】由条件可推得函数是以4为周期的周期函数,且图象关于直线对称,关于原点对称,作出函数与函数的图象,结合图象即可得实数的范围.【详解】由已知得,,则,所以函数的图象关于直线对称,关于原点对称,又,进而有,所以得函数是以4为周期的周期函数,由有三个零点可知函数与函数的图象有三个交点,当直线与函数图象在上相切时,即有两个相等的实数根,即,由得,,当时,,作出函数与函数的图象如图:由图知当直线与函数图象在上相切时,,数形结合可得在有三个零点时,实数满足,再根据函数的周期为4,可得所求的实数的范围.故选:C【点睛】本题主要考查了函数的奇偶性和周期性的应用,函数的零点和方程的根的关系,体现了转化与化归的思想和数形结合的思想.13 设x,y满足约束条件,则的最大值为______.【答案解析】 2【分析】画出约束条件所表示的平面区域,结合平面区域确定目标函数的最优解,代入,即可求解.【详解】由题意,画出约束条件所表示的平面区域,如图所示,目标函数,可化为直线,当直线过点时,此时在轴上的截距最大,此时目标函数取得最大值,又由,解得,所以目标函数的最大值为.故答案为:2.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力.14 已知i是虚数单位,则______.【答案解析】【分析】根据虚数的计算规律,合理利用数列的求和,即可求解.【详解】由题意,故答案为:.【点睛】本题主要考查了复数的运算性质的应用,其中解答中合理利用复数的运算性质是解答的关键,着重考查推理与运算能力.15 对数是简化繁杂运算的产物.16世纪时,为了简化数值计算,数学家希望将乘除法归结为简单的加减法.当时已经有数学家发现这在某些情况下是可以实现的.比如,利用以下2的次幂的对应表可以方便地算出16×256的值.456789101112163264128256512102420484096首先,在第二行找到16与256;然后找出它们在第一行对应的数,即4与8,并求它们的和,即12;最后在第一行中找到12,读出其对应的第二行中的数4096,这就是16×256的值.用类似的方法可以算出的值,首先,在第二行找到4096与128;然后找出它们在第一行对应的数,即12与7,并求它们的______;最后在第一行中找到______,读出其对应的第二行中的数______,这就是值.【答案解析】差 ; 5 ; 32【分析】题设中给出的是第一行数的加法与第二行数的乘法的对应关系,类比到所求的问题中就是第一行数的减法与第二行数的除法之间的对应关系,从而可求规定的值.【详解】题设中给出的计算方法是:第一行数中两数的和与与第二行数的对应的两数的乘积是匹配的,因此,若在在第二行找到4096与128,要求它们的商,可以找出它们在第一行对应的数,即12与7,它们的差(5)在第二行中对应的数(32)即为.故答案为:差,5,32.【点睛】本题考查类比推理,一般地,类比推理有结论的类比、公式定理的类比,也有解题方法的类比,解题中注意寻找两类问题的相似之处.16 在△ABC中,点P满足,过点P的直线与AB,AC所在直线分别交于E,F.若,,,则的最小值为______.【答案解析】 4【分析】根据题意画出图形,结合图形利用平面向量的线性运算与共线定理,再利用基本不等式,即可求解.【详解】如图所示,在中,,点满足,所以,即,可得,因为,,所以,因为三点共线,所以,,所以,当且仅当,即时等号成立,所以的最小值为4.【点睛】本题主要考查了平面向量的线性运算与向量的共线定理,以及基本不等式的应用,其中解答中熟记向量的线性运算和共线定理,得到的关系式是解答的关键,着重考查推理与运算能力.17 已知函数且当时,最小值为.(1)求函数f(x)的单调减区间;(2)△ABC的内角A、B、C的对边分别为a、b、c.且满足,,,求△ABC的面积.【答案解析】(1),;(2).【分析】(1)先将函数化简得,由时,的最小值为,得函数的周期,从而求出,再求函数的单调减区间.(2)由可得,又,所以,根据正弦定理可得边长,再由面积公式求三角形面积.【详解】解:(1),∵时,的最小值为,∴周期,∴,∴,∴.令,,得,,单调递减区间为,.(2),得,∵,∴,∴,∴,∴,由得,,.【点睛】本题考查三角函数的恒等变形和三角函数的图像性质,考查正弦定理和三角形的面积,属于中档题.18 多面体ABC﹣DEF中,△DEF为等边三角形,△ABC为等腰直角三角形,平面,平面.(1)求证:;(2)若,,求平面ABC与平面DEF所成的较小的二面角的余弦值.【答案解析】(1)证明见解析;(2).【分析】(1)利用线面平行的性质定理,分别证得和,即可证;(2)分别证得两两垂直,建立空间直角坐标系即可求解.【详解】解:(1)证明:因为平面,平面,平面平面,所以,同理可证,,所以.(2)因为△为等腰直角三角形,,所以,,又,,所以四边形为平行四边形,所以,因为△为等边三角形,所以,取的中点,连结、,因为,则,又,且,所以四边形为平行四边形,所以,在中,,所以,即,进而,同理可证,进而,以点为原点,分别以,,所在直线为,,轴,建立空间直角坐标系,则,,,,,设平面的一个法向量为,则,令,则,,所以,易知平面的一个法向量为,,所以平面与平面所成的较小的二面角的余弦值为.【点睛】本题主要考查了线线、线面平行的判定与证明,以及计算二面角大小.计算二面角大小的常用方法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小.19 已知圆锥曲线过点,且过抛物线的焦点B.(1)求该圆锥曲线的标准方程;(2)设点P在该圆锥曲线上,点D的坐标为,点E的坐标为,直线PD 与y轴交于点M,直线PE与x轴交于点N,求证:为定值.【答案解析】(1);(2)证明见解析.【分析】(1)首先求出抛物线的焦点坐标,再代入解析式中求出方程即可得解;(2)由(1)问可知该圆锥曲线为椭圆,且,,设椭圆上一点,表示出直线,直线,得到,;所以计算可得;【详解】解:(1)抛物线的焦点,将点,代入方程得,解得,所以圆锥曲线的标准方程为.(2)由(1)问可知该圆锥曲线为椭圆,且,,设椭圆上一点,则直线:,令,得.∴,直线:,令,得.∴.所以因为点在椭圆上,所以,即,代入上式得.故为定值.【点睛】本题考查待定系数法求曲线方程,直线与圆锥曲线中的定值问题,属于中档题.20 盲盒里面通常装的是动漫、影视作品的周边,或者设计师单独设计出来的玩偶.由于盒子上没有标注,购买者只有打开才会知道自己买到了什么,因此这种惊喜吸引了众多年轻人,形成了“盲盒经济”.某款盲盒内可能装有某一套玩偶的A、B、C三种样式,且每个盲盒只装一个.(1)若每个盲盒装有A、B、C三种样式玩偶的概率相同.某同学已经有了A样式的玩偶,若他再购买两个这款盲盒,恰好能收集齐这三种样式的概率是多少?(2)某销售网点为调查该款盲盒的受欢迎程度,随机发放了200份问卷,并全部收回.经统计,有30%的人购买了该款盲盒,在这些购买者当中,女生占;而在未购买者当中,男生女生各占50%.请根据以上信息填写下表,并分析是否有95%的把握认为购买该款盲盒与性别有关?女生男生总计购买未购买总计参考公式:,其中.参考数据:0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828(3)该销售网点已经售卖该款盲盒6周,并记录了销售情况,如下表:周数123456盒数16______23252630由于电脑故障,第二周数据现已丢失,该销售网点负责人决定用第4、5、6周的数据求线性回归方程,再用第1、3周数据进行检验.①请用4、5、6周的数据求出关于的线性回归方程;(注:,)②若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2盒,则认为得到的线性回归方程是可靠的,试问①中所得的线性回归方程是否可靠?【答案解析】(1);(2)填表见解析,有把握认为“购买该款盲盒与性别有关”;(3)①;②可靠.【分析】(1)列举出基本事件的总数和事件“他恰好能收集齐这三种样式”所包含的基本事件的个数,利用古典概型的概率计算公式,即可求解.(2)根据题意,得出的列联表,利用公式求得的值,结合附表,即可得到结论;(3)①求得的值,根据公式求得的值,求得回归直线方程;②当和时,比较即可得到结论.【详解】(1)由题意,基本事件空间为,其中基本事件的个数为9个,设事件为:“他恰好能收集齐这三种样式”,则,其中基本事件的个数为2,所以他恰好能收集齐这三种样式的概率.(2)女生男生总计购买402060未购买7070140总计11090200则.又因为,故有把握认为“购买该款盲盒与性别有关”.(3)①由数据,求得,.由公式求得,.所以关于的线性回归方程为.②当时,,;同样,当时,,.所以,所得到的线性回归方程是可靠的.【点睛】本题主要考查了古典概型及其概率的计算,独立性检验的应用,以及回归直线方程的求解及应用,着重考查分析问题和解答问题的能力,属于中档试题.21 已知函数.(1)若使成立,求a的取值范围;(2)若,证明不等式.【答案解析】(1);(2)证明见解析.【分析】(1)当时,可由知命题成立,当时,利用导数可求,由可得,故可求实数的取值范围.(2)成立等价于成立,令,,利用导数可证,,从而可知原不等式成立.【详解】解:定义域,(1)①时,,∴使成立.②时,,由得,由得,∴函数在区间单调递增,函数在区间单调递减,故,得,∴,∴由①②得.(2)时,由得需证,令,,,令得,令得∴函数在区间单调递增,在区间单调递减,,,,令得,令得.函数在区间单调递减,在区间单调递增,,∴时,成立,∴成立.【点睛】本题考查含参数的函数的单调性以及函数不等式的恒成立,前者依据导数的符号,注意合理的分类讨论,后者需变形后构建新函数,通过导数求出新函数的最值,通过最值的关系来证明不等式.22 在直角坐标系xOy中,曲线C的参数方程为(为参数),以原点O 为极点,以x轴正半轴为极轴建极坐标系.(1)求C的极坐标方程;(2)直线,的极坐标方程分别为,,直线与曲线C的交点为O、M,直线与曲线C的交点为O、N,求线段MN的长度.【答案解析】(1);(2)1.【分析】(1)先根据三角函数平方关系消元得普通方程,再根据化为极坐标方程;(2)根据直线与曲线极坐标方程可得极坐标,再根据余弦定理求的长度.【详解】解:(1)由曲线的参数方程为得曲线的直角坐标方程为:,所以极坐标方程为即.(2)将代入中有,即,将代入中有,即,,余弦定理得,.【点睛】本题考查参数方程化普通方程、普通方程化极坐标方程、余弦定理,考查综合分析求解能力,属基础题.23 设函数.(1)解不等式;(2)若f(x)最小值为m,实数a、b满足,求的最小值.【答案解析】(1)或;(2).【分析】(1)分类讨论,,三种情况,解不等式得到答案.(2)计算,所求可看作点到直线的距离的平方,计算得到答案.【详解】(1),由得或或,得或或,∴不等式解集或.(2)根据图象知:,∴,所求可看做点到直线的距离的平方,.∴的最小值为.【点睛】本题考查了解绝对值不等式,求函数最值,意在考查学生的计算能力和综合应用能力,转化为点到直线的距离是解题的关键.。

2020 年大连市高三第二次模拟考试数学(理)(含答案)

2020 年大连市高三第二次模拟考试数学(理)(含答案)

距离为 ,若对 x ( , ) ,不等式 f (x) 1 恒成立,则 的取值范围是(
)
24 3
2
(A)[ , ] (B)( , )
12 6
12 3
(C)[ , ] 63
(D)( , ) 62
(12)已知三棱锥 P − ABC ,面 PAB ⊥ 面 ABC , PA = PB = 4 , AB = 4 3 ,
本试卷分第 I 卷(选择题)和第 II 卷(非选择题)两部分,其中第 II 卷第 22 题~ 第 23 题为选考题,其它题为必考题.考生作答时,将答案答在答题卡上,在本试卷上答 题无效.考试结束后,将本试卷和答题卡一并交回.
第I卷
一.选择题:(本大题共 12 小题,每小题 5 分,共 60 分.每小题给出的四个 选项中,只有一项是符合题目要求的)
( ) (A) y = sin ex + e−x
( ) (B) y = sin ex − e−x
( ) (C) y = cos ex − e−x
( ) (D) y = cos ex + e−x
(8)已知关于某设备的使用年限 x (单位:年)和所支出的维修费用 y (单位:万元)
有如下的统计资料:
由上表可得线性回归方程 y = bx + 0.08 ,若规定当维修费用 y 12 时该设备必须报
废,据此模型预报该设备使用的年限不超过为( )
(A)7
(B)8
(C)9
(D)10
(9)已知点 P 在抛物线 C : y2 = 4x 上,过点 P 作两条斜率互为相反数的直线交抛物线 C
于 A 、 B 两点,若直线 AB 的斜率为 −1,则点 P 坐标为(

(A)(1,2)

2020届辽宁省大连市高三第二次模拟考试数学理科试题附答案

2020届辽宁省大连市高三第二次模拟考试数学理科试题附答案

2020年大连市高三第二次模拟考试数 学(理科)本试卷满分150分,共6页,答卷时间120分钟.考试结束后,将答题卡交回. 注意事项:1. 答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在考生信息条形码粘贴区.2. 选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.3. 请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效.4. 作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.5. 保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22题~第23题为选考题,其它题为必考题.考生作答时,将答案答在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知集合{}2|430A x x x =-+<,{}|24B x x =<<,则A B =U ( ) A. ()1,3B. ()1,4C. ()2,3D. ()2,42. 已知,a b R ∈,i 为虚数单位,若a i -与2bi +互为共轭复数,则()2a bi +为( ) A. 54i -B. 54i +C. 34i -D. 34i +3. 双曲线2214x y -=的渐近线方程是( ) A. 14y x =±B. 12y x =±C. 2y x =±D. 4y x =±4. 瑞士数学家欧拉发明了著名的“欧拉公式cos sin ixe x i x =+(i 为虚数单位)”,欧拉公式将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”,根据欧拉公式可知,3i e 表示的复数在复平面中位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限5. 设函数21log (2),1(),1xx x f x e x +-<⎧=⎨≥⎩,则(2)(ln 6)f f -+=( ) A. 3B. 6C. 9D. 126. 已知各项均为正数的数列{}n a 为等比数列,1516a a ⋅=,3412a a +=,则7a =( ) A. 16B. 32C. 64D. 2567. 已知某函数的图象如图所示,则下列函数中,与图象最契合的函数是( )A. ()sin x x y e e -=+ B. ()sin x x y e e --= C. ()cos x x y e e --=D. ()cos x x y e e -+=8. 已知关于某设备的使用年限x (单位:年)和所支出的维修费用y (单位:万元)有如下的统计资料:由上表可得线性回归方程$0.08y bx=+$,若规定当维修费用12y >时该设备必须报废,据此模型预报该设备使用的年限不超过为( ) A. 7B. 8C. 9D. 109. 已知点P 在抛物线C :24y x =上,过点P 作两条斜率互为相反数的直线交抛物线C 于A 、B 两点,若直线AB 的斜率为-1,则点P 坐标为( )A. ()1,2B. ()1,2-C. (2,D. (2,-10. 下列四个正方体图形中,A 、B 为正方体的两个顶点,M 、N 、P 分别为其所在棱的中点,能得出//AB 平面MNP 的图形的序号是( )A. ①③B. ②③C. ①④D. ②④11. 已知函数()sin()0,2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭,其图象与直线1y =相邻两个交点的距离为π,若对,243x ππ⎛⎫∀∈ ⎪⎝⎭,不等式1()2f x >恒成立,则ϕ的取值范围是( )A. ,126ππ⎡⎤⎢⎥⎣⎦B. ,123ππ⎛⎫⎪⎝⎭C. ,63ππ⎡⎤⎢⎥⎣⎦D. ,62ππ⎛⎫⎪⎝⎭12. 已知三棱锥P ABC -,面PAB ⊥面ABC ,4PA PB ==,AB =120ACB ∠=︒,则三棱锥P ABC -外接球的表面积( )A. 20πB. 32πC. 64πD. 80π本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答.第22题~第23题为选考题,考生根据要求做答.二、填空题:(本大题共4小题,每小题5分,共20分,把答案填在答卷纸的相应位置上)13. 设向量()2,4a =r 与向量(),6b x =r共线,则实数x =______.14. 已知5a x x ⎛⎫- ⎪⎝⎭的展开式中含3x 的项的系数为30,则a 的值为______.15. 数列{}n a 满足1(1)nn n a a n ++-=,则{}n a 的前8项和为______.16. 已知函数()ln 2exf x x =-,则()(2)f x f x +-值为______;若19119()10k k f a b =⎛⎫=+ ⎪⎝⎭∑,则22a b +的最小值为______.三、解答题:(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17. 在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c ,且()222(2)2cos a c a b c abc C --+=. (Ⅰ)求角B 的大小; (Ⅱ)若1a =,b =ABC △的面积.18. 如图,已知平面四边形ABCP 中,D 为PA 的中点,PA AB ⊥,//CD AB ,且24PA CD AB ===.将此平面四边形ABCP 沿CD 折成直二面角P DC B --,连接PA 、PB 、BD .。

2020年辽宁大连高三二模理科数学试卷-学生用卷

2020年辽宁大连高三二模理科数学试卷-学生用卷

2020年辽宁大连高三二模理科数学试卷-学生用卷一、选择题(本大题共12小题,每小题5分,共60分)1、【来源】 2020年辽宁大连高三二模理科第1题5分2007年高考真题全国卷I理科第2题5分设a是实数,且a1+i +1+i2是实数,则a=().A. 12B. 1 C. 32D. 22、【来源】 2020年辽宁大连高三二模理科第2题5分设集合M={x||x|⩾3,x∈R},N={y|y=x2,x∈M},则M∩N=().A. MB. NC. 空集D. R3、【来源】 2020年辽宁大连高三二模理科第3题5分2017~2018学年6月广东深圳盐田区盐田高级中学高一下学期月考理科第9题5分已知函数y=sin⁡(ωx+φ)(ω>0,0<φ⩽π2),且此函数的图象如图所示,则点P(ω,φ)的坐标是().A. (2,π2)B. (2,π4)C. (4,π2)D. (4,π4)4、【来源】 2020年辽宁大连高三二模理科第4题5分设函数f(x)是定义在R上的奇函数,若f(x)的最小正周期为3,且f(1)>1,f(2)=2m−3m+1,则m的取值范围是().A. m<23且m≠−1B. m<23C. −1<m<23D. m<−1或m>235、【来源】 2020年辽宁大连高三二模理科第5题5分2007年高考真题全国卷I理科第10题5分(x2−1x )n的展开式中,常数项为15,则n=().A. 3B. 4C. 5D. 66、【来源】 2020年辽宁大连高三二模理科第6题5分2017年江西新余高三二模理科第7题5分在数列{a n}中,a1=1,a2=2,且a n+2−a n=1+(−1)n(n∈N+),则S100=().A. 0B. 1300C. 2600D. 26027、【来源】 2020年辽宁大连高三二模理科第7题5分2017~2018学年陕西西安未央区西安中学高二下学期期末理科平行班第10题5分2017年四川成都双流区双流中学高三一模理科第8题5分如图所示,在一个边长为1的正方形AOBC内,曲线y=x2和曲线y=√x围成一个叶形图(阴影部分),向正方形AOBC内随机投一点(该点落在正方形AOBC内任何一点是等可能的),则所投的点落在叶形图内部的概率是().A. 12B. 14C. 13D. 168、【来源】 2020年辽宁大连高三二模理科第8题5分已知点A(3,√3),O是坐标原点,点P(x,y)的坐标满足{√3x−y⩽0x−√3y+2⩾0y⩾0,设z为OA→在OP→上的投影,则z的取值范围是().A. [−√3,√3]B. [−3,3]C. [−√3,3]D. [−3,√3]9、【来源】 2020年辽宁大连高三二模理科第9题5分如图a是某市参加2012年高考的学生身高条形统计图,从左到右的各条形表示的学生人数依次记为A1、A2、⋯、A m[如A2表示身高(单位:cm)在[150,155]内的学生人数].图b是统计图a中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160∼180cm(含160cm,不含180cm)的学生人数,那么在流程图中的判断框内应填写的条件是().A. i <9B. i <8C. i <7D. i <610、【来源】 2020年辽宁大连高三二模理科第10题5分直线√2ax +by =1与圆x 2+y 2=1相交于A 、B 两点(其中a ,b 是实数),且△AOB 是直角三角形(O 是坐标原点),则点P(a,b)与点(0,1)之间距离的最小值为( ).A. 0B. √2C. √2−1D. √2+111、【来源】 2020年辽宁大连高三二模理科第11题5分|OA →|=1,|OB →|=√3,OA →⋅OB →=0 ,点C 在∠AOB 内,且∠AOC =30°,设OC →=mOA →+nOB →(m,n ∈R),则m n 等于( ).A. 13B. 3C. √33D. √312、【来源】 2020年辽宁大连高三二模理科第12题5分2019~2020学年安徽合肥蜀山区合肥一六八中学高二上学期期末理科第10题5分抛物线y 2=2px (p >0)的焦点为F ,点A 、B 在抛物线上,且∠AFB =120°,弦AB 中点M 在准线l 上的射影为M 1,则|MM 1||AB|的最大值为( ).A. 4√33B. √3C. 2√33D. √33二、填空题(本大题共4小题,每小题5分,共20分)13、【来源】 2020年辽宁大连高三二模理科第13题5分甲、乙等五名志愿者被分配到上海世博会中国馆、英国馆、澳大利亚馆、俄罗斯馆四个不同的岗位服务,每个岗位至少一名志愿者,则甲、乙两人各自独立承担一个岗位工作的分法共有 种.(用数字作答)14、【来源】 2020年辽宁大连高三二模理科第14题5分2012年北京房山区高三期末已知某个几何体的三视图如图所示,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是 cm 3.15、【来源】 2020年辽宁大连高三二模理科第15题5分已知a n=log n+1(n+2)(n∈N+),我们把使乘积a1⋅a2⋅a3⋅⋯⋅a n为整数的数n叫做“劣数”,则在区间(1,2004)内的所有劣数的和为.16、【来源】 2020年辽宁大连高三二模理科第16题5分某学生对函数f(x)=xsin⁡x进行研究后,得出如下四个结论:①函数f(x)在[−π2,π2]上单调递增;②存在常数M>0,使|f(x)|⩽M|x|对一切实数x都成立;③函数f(x)在(0,π)上无最小值,但一定有最大值;④点(π,0)是函数y=f(x)图象的一个对称中心,其中正确的是.(填序号)三、解答题(本大题共5小题,每小题12分,共60分)17、【来源】 2020年辽宁大连高三二模理科第17题12分如图,在△ABC中,B=π4,AC=2√5,cos⁡C=2√55.(1) 求sin⁡A.(2) 记BC的中点为D,求中线AD的长.18、【来源】 2020年辽宁大连高三二模理科第18题12分某人居住在城镇的A处,准备开车到单位B处上班,若该地各路段发生堵车事件都是相互独立的,且在同一路段发生堵车事件最多只有一次,发生堵车事件的概率如图.(例如:A→C→D算作两个路段:路段AC发生堵车事件的概率为15,路段CD发生堵车事件的概率为18).(1) 请你为其选择一条由A到B的最短路线(即此人只选择从西向东和从南向北的路线),使得途中发生堵车事件的概率最小.(2) 若记路线A→C→F→B中遇到堵车次数为随机变量ξ,求ξ的数学期望E(ξ).19、【来源】 2020年辽宁大连高三二模理科第19题12分在△ABC中,∠ACB=90°,∠BAC=30°,AB的垂直平分线分别交AB,AC于点D,E(图1),沿DE将△ADE折起,使得平面ADE⊥平面BDEC(图2).(1) 若F是AB的中点,求证:CF//平面ADE.(2) P是AC上任意一点,求证:平面ACD⊥平面PBE.(3) P是AC上一点,且AC⊥平面PBE,求二面角P−BE−C的大小.20、【来源】 2020年辽宁大连高三二模理科第20题12分已知椭圆C:x 2a2+y2b2=1(a>b>0)的离心率为√63,过右焦点F且斜率为1的直线交椭圆C于A,B两点,N为弦AB的中点.(1) 求直线ON(O为坐标原点)的斜率K ON.(2) 对于椭圆C上任意一点M,试证:总存在角θ(θ∈R)使等式:OM→=cos⁡θOA→+sin⁡θOB→成立.21、【来源】 2020年辽宁大连高三二模理科第21题12分已知函数f(x)=ax+ln⁡x,a∈R.(1) 求函数f(x)的极值.(2) 对于曲线上的不同两点P1(x1,y1),P2(x2,y2),如果存在曲线上的点Q(x0,y0),且x1<x0<x2使得曲线在点Q处的切线l//P1P2,则称l为弦P1P2的伴随直线,特别地,当x0=λx1+(1−λ)x2(0<λ<1)时,又称l为P1P2的λ−伴随直线.① 求证:曲线y =f (x )的任意一条弦均有伴随直线,并且伴随直线是唯一的.② 是否存在曲线C ,使得曲线C 的任意一条弦均有12−伴随直线?若存在,给出一条这样的曲线,并证明你的结论;若不存在,说明理由.四、选做题(本大题共2小题,选做1题,共10分)选修4-4:坐标系与参数方程22、【来源】 2020年辽宁大连高三二模理科第22题10分已知曲线C 的极坐标方程是ρ=4cos⁡θ.以极点为平面直角坐标系的原点,极轴为x 轴的非负半轴,建立平面直角坐标系,直线l 的参数方程是{x =√22t +m y =√22t(t 是参数). (1) 将曲线C 的极坐标方程和直线l 的参数方程转化为普通方程.(2) 若直线l 与曲线C 相交于A 、B 两点,且|AB|=√14,试求实数m 的值.选修4-5:不等式选讲23、【来源】 2020年辽宁大连高三二模理科第23题10分已知不等式|x −a |<b 的解集是{x |−1<x <5}.(1) 求实数a ,b 的值.(2) 解不等式|a +b |+|a −b |⩾|a |(|x −1|+|x −2|).1 、【答案】 B;2 、【答案】 B;3 、【答案】 B;4 、【答案】 C;5 、【答案】 D;6 、【答案】 C;7 、【答案】 C;8 、【答案】 B;9 、【答案】 B;10 、【答案】 C;11 、【答案】 B;12 、【答案】 D;13 、【答案】72;;14 、【答案】4315 、【答案】2026;16 、【答案】②③;17 、【答案】 (1) 3√10.10;(2) √5.;18 、【答案】 (1) 路线A→C→F→B,可使得途中发生堵车事件的概率最小.;(2) 37.60;19 、【答案】 (1) 证明见解析.;(2) 证明见解析.;(3) 45°.;20 、【答案】 (1) −1.3;(2) 证明见解析.;21 、【答案】 (1) 当a⩾0时,f(x)没有极值;),没有极小值.当a<0时,f(x)的极大值为−1+ln⁡(−1a;(2)①证明见解析.②存在,证明见解析.;22 、【答案】 (1) (x−2)2+y2=4,y=x−m.;(2) m=1或m=3.;23 、【答案】 (1) a=2,b=3.;(2) {x|0⩽x⩽3}.;。

2020年普通高等学校招生全国统一考试数学理(辽宁卷,解析版)

2020年普通高等学校招生全国统一考试数学理(辽宁卷,解析版)

2020年普通高等学校招生全国统一考试数学理(辽宁卷,解析版)一- 选择题(每小题5分,共60分)(1)已知集合M={x|-3<x ≤5},N={x|-5<x<5},则M ∩N=(A) {x|-5<x <5} (B) {x|-3<x <5} (C) {x|-5<x ≤5} (D) {x|-3<x ≤5}【解析】直接利用交集性质求解,或者画出数轴求解. 【答案】B(2)已知复数12z i =-,那么1z= (A )52555i + (B )52555i - (C )1255i + (D )1255i - 【解析】211121212(12)(12)12i i i i i z --===++-+=1255i - 【答案】D(3)平面向量a 与b 的夹角为060,(2,0)a =,1b = 则2a b += (A )3 (B) 23 (C) 4 (D)12 【解析】由已知|a|=2,|a +2b|2=a 2+4a ·b +4b 2=4+4×2×1×cos60°+4=12 ∴2a b +=23【答案】B(4) 已知圆C 与直线x -y=0 及x -y -4=0都相切,圆心在直线x+y=0上,则圆C 的方程为(A )22(1)(1)2x y ++-= (B) 22(1)(1)2x y -++= (C) 22(1)(1)2x y -+-= (D) 22(1)(1)2x y +++=【解析】圆心在x +y =0上,排除C 、D,再结合图象,或者验证A 、B 中圆心到两直线的距离等于半径2即可. 【答案】B(5)从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有(A )70种 (B ) 80种 (C ) 100种 (D )140种【解析】直接法:一男两女,有C 51C 42=5×6=30种,两男一女,有C 52C 41=10×4=40种,共计70种间接法:任意选取C 93=84种,其中都是男医生有C 53=10种,都是女医生有C 41=4种,于是符合条件的有84-10-4=70种. 【答案】A(6)设等比数列{ n a }的前n 项和为n S ,若63S S =3 ,则 69SS =(A ) 2 (B )73 (C ) 83(D )3 【解析】设公比为q ,则36333(1)S q S S S +==1+q 3=3 ⇒ q 3=2 于是63693112471123S q q S q ++++===++ 【答案】B (7)曲线y=2xx -在点(1,-1)处的切线方程为 (A )y=x -2 (B) y=-3x+2 (C)y=2x -3 (D)y=-2x+1 【解析】y ’=2222(2)(2)x x x x ---=--,当x =1时切线斜率为k =-2 【答案】D(8)已知函数()f x =Acos(x ωϕ+)的图象如图所示,2()23f π=-,则(0)f = (A )23-(B) 23 (C)- 12 (D) 12【解析】由图象可得最小正周期为2π3于是f(0)=f(2π3),注意到2π3与π2关于7π12对称所以f(2π3)=-f(π2)=23【答案】B(9)已知偶函数()f x 在区间[0,)+∞单调增加,则满足(21)f x -<1()3f 的x 取值范围是 (A )(13,23) (B) [13,23) (C)(12,23) (D) [12,23) 【解析】由于f(x)是偶函数,故f(x)=f(|x|)∴得f(|2x -1|)<f(13),再根据f(x)的单调性 得|2x -1|<13 解得13<x <23【答案】A10)某店一个月的收入和支出总共记录了 N 个数据1a ,2a ,。

2020年普通高等学校招生全国统一考试数学理(辽宁卷,含答案)

2020年普通高等学校招生全国统一考试数学理(辽宁卷,含答案)

2020年普通高等学校招生全国统一考试数学理(辽宁卷,含答案)一- 选择题(每小题5分,共60分)(1)已知集合M={x|-3<x ≤5},N={x|-5<x<5},则M ∩N=(A) {x|-5<x<5} (B) {x|-3<x<5}(C) {x|-5<x ≤5} (D) {x|-3<x ≤5}(2)已知复数12z i =-,那么1z= (A )52555i + (B )52555i - (C )1255i + (D )1255i - (3)平面向量a 与b 的夹角为060,(2,0)a =,1b = 则2a b += (A )3 (B) 23 (C) 4 (D)12 (4) 已知圆C 与直线x-y=0 及x-y-4=0都相切,圆心在直线x+y=0上,则圆C的方程为(A )22(1)(1)2x y ++-= (B) 22(1)(1)2x y -++= (C) 22(1)(1)2x y -+-= (D) 22(1)(1)2x y +++=(5)从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有(A )70种 (B ) 80种 (C ) 100种 (D )140种 (6)设等比数列{ n a }的前n 项和为n S ,若63S S =3 ,则 69S S = (A ) 2 (B ) 73 (C ) 83(D )3 (7)曲线y=2xx -在点(1,-1)处的切线方程为 (A )y=x-2 (B) y=-3x+2 (C)y=2x-3 (D)y=-2x+1 (8)已知函数()f x =Acos(x ωϕ+)的图象如图所示,2()23f π=-,则(0)f = (A )23- (B) - 12 (C) 23 (D) 12(9)已知偶函数()f x 在区间[0,)+∞单调增加,则满足(21)f x -<1()3f 的x 取值范围是(A )(13,23) (B) [13,23) (C)(12,23) (D) [12,23) 10)某店一个月的收入和支出总共记录了 N 个数据1a ,2a ,。

2020 年辽宁省高三教学质量监测考试理科数学试卷-含答案

2020 年辽宁省高三教学质量监测考试理科数学试卷-含答案

作圆 C 的一条切线,切点为 B,则|AB|=
A.4
B.4 2
C.6
D.6 2
12.定义在 R 上的奇函数 f (x)又是周期为 4 的周期函数,已知在区间[-2,0)∪(0,2]上,
f (x)=aaxx-+1b,,-0<2≤x≤x<2.0 ,则 f (2019)+f (2020)=
A.12
B.-12
A.若 m∥α,n∥α,则 m∥n
B.若 m∥α,m⊥n,则 n⊥α
C.若 m⊥α,n⊂α,则 m⊥n
D.若 m⊥α,m⊥n,则 n∥α
9.已知 tan(α-π4)=17,则 cos2α=
A.-275
B.275
C.-2254
D.2245
10.将函数 y=cos(2x+φ)(-π2<φ<2π)的图象向右平移38π个单位长度单位后得函数 f (x)图
D.c<b<a
5.如图所示,是一个空间几何体的三视图,且这个空间几何 体的所有顶点都在同一个球面上,则这个球的表面积是 A.4π B.7π C.16π D.28π学试题 第 1 页(共 4 页)
6.中国古代《易经》一书中记载,远古时期,人们通过在绳子上打 结来记录数量,即“结绳计数”.如图,一位古人在从右到左依次
排列的绳子上打结,满五进一,用来记录捕鱼条数,由图可知,
这位古人共捕鱼
A.89 条
B.113 条
C.324 条
D.445 条
7.同时抛掷 2 枚质地均匀的硬币 4 次,设 2 枚硬币均正面向上的次数为 X,则 X 的数学
方差是
A.12
B.34
C.1
D.32
8.已知 m,n 表示两条不同直线,α 表示平面,下列说法正确的是
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档