高中数学《函数的概念》教学设计
高中数学教学课例《函数的概念》课程思政核心素养教学设计及总结反思

问题 1:函数的概念是什么初中与高中对函数概念 的定义的异同点是什么符号“”的含义是什么
问题 2:构成函数的三要素是什么 问题 3:区间的概念是什么区间与集合的关系是什 么在数轴上如何表示区间给学生十分钟的时间,组织学 生进行全班交流。 设计意图:以问题串的形式来探索新知,引起学生 的认知冲突,使学生对旧知识产生质疑,从而激发学生 的学习动机和求知欲。 根据学生的回答,可能得到以下的预设:①函数的 概念:给定两个非空数集 A 和 B,如果按照某个对应关 系 f,对于集合 A 中任何一个数 x,在集合 B 中都存在
(三)情感态度价值观 在自主探究,合作交流中,感受到探索的乐趣和成 功的体验,体会到数学的逻辑性和严谨性,逐步养成良 好的学习习惯,增强合作意识。 新课标指出学生是教学的主体,所以要成为符合新 课标要求的教师,首先就要深入了解所面对的学生。本 阶段的学生已经具备了一定的分析能力,以及逻辑推理 学生学习能 能力,在此之前,他们已经学会了函数的概念,函数的 力分析 图像和表示方法,对函数性质有了初步的认识,这就为 本节课内容的学习奠定了基础,但是对于用数学的语言 来描述函数的图像性质关系的理解,学生可能会产生一 定的困难。 新课标理念认为,在教学过程中,学生是学习的主 体,教师是学习的组织者、引导者,教学的一切活动都 教学策略选 必须以强调学生的主动性、积极性为出发点。根据这一 择与设计 教学理念,结合本节课的内容特点和学生的心理特征与 认知规律,我采用启发法、讲授法、小组合作、自主探 究等教学方法。
引导学生分析归纳以上三个实例,他们之间有什么 共同点,并根据初中所学函数的概念,判断各个实例中 的两个变量之间的关系是否为函数关系。
高中数学《函数的概念》公开课优秀教学设计三

⾼中数学《函数的概念》公开课优秀教学设计三1.2.1函数的概念教学设计⼀、教材分析:本节内容为《1.2.1函数的概念》,是⼈教A版⾼中《数学》必修⼀《1.2函数及其表⽰》的第⼀课.函数是中学数学最重要的基本概念之⼀,在初中,学⽣已经学习过函数的概念,它是从运动变化的观点出发,把函数看成是变量之间的依赖关系.从历史上看,初中给出的定义来源于物理公式,最初的函数概念⼏乎等同于解析式.后来,⼈们逐渐意识到定义域与值域的重要性,⽽要说清楚变量以及两个变量间变化的依赖关系,往往先要弄清各个变量的物理意义,这就使研究受到了⼀定的限制.如果只根据变量观点,那么有些函数就很难进⾏深⼊研究.例如:1,当X是有理数时,f(X)=」P,当X是⽆理数时.对这个函数,如果⽤变量观点来解释,会显得⼗分勉强,也说不出X的物理意义是什么?但⽤集合、对应的观点来解释,就⼗分⾃然?函数思想也是整个⾼中数学最重要的数学思想之⼀,⽽函数概念是函数思想的基础,它不仅对前⾯学习的集合作了巩固和发展,⽽且它是学好后继知识的基础和⼯具.函数与代数式、⽅程、不等式、数列、三⾓函数、解析⼏何、导数等内容的联系也⾮常密切,函数的基础知识在现实⽣活、社会、经济及其他学科中有着⼴泛的应⽤.本节课⽤集合与对应的语⾔进⼀步描述函数的概念,让学⽣感受建⽴函数模型的过程和⽅法.⼆、学情分析:在学习⽤集合与对应的语⾔刻画函数之前,学⽣已经会把函数看成变量之间的依赖关系,同时,虽然函数⽐较抽象,但是函数现象⼤量存在于学⽣的周围,教科书选⽤了运动、⾃然界、经济⽣活中的实际例⼦进⾏分析,从实例中抽象概括出⽤集合与对应的语⾔来定义函数概念,对学⽣的抽象、归纳能⼒要求⽐较⾼,能很好的锻炼学⽣的抽象思维能⼒以及加深对函数概念的理解三、教学⽬标:(⼀)知识与技能理解函数的定义,能⽤集合与对应的语⾔来刻画函数,体会对应关系在刻画函数概念中的作⽤;了解构成函数的三要素.(⼆)过程与⽅法通过三个实例共性的分析到函数概念的形成,再对三个实例进⾏拓展,让学⽣对函数概念进⾏辨析,体现从特殊到⼀般,再从⼀般到特殊的思想⽅法,渗透了归纳推理,实现了感性认识到理性认识的升华.(三)情感、态度与价值观通过从实际问题中抽象概括函数的概念,培养学⽣的抽象概括能⼒,体会函数是描述变量之间依赖关系的重要数学模型,在此基础上学会⽤集合与对应的语⾔来刻画函数,感受数学的抽象性和简洁美.四、教学重点与难点:(⼀)教学重点体会函数是描述变量之间的依赖关系的重要数学模型,并能⽤集合与对应的语⾔来刻画函数(⼆)教学难点函数概念的理解及符号“ y⼆f (X)”的含义.五、教学策略:⾸先,通过魔术表演,体现函数在实际⽣活中的运⽤,激发学⽣进⼀步学习函数的积极性;其次,在学⽣习惯⽤解析式表⽰函数的基础上借助教科书实例,从解析法、图象法、列表法等不同的⽅式,结合函数的数与形两个⽅⾯给学⽣充分的认识,为学⽣⽤集合与对应的语⾔刻画函数打下感性基础;再次,分析讲解函数概念中的关键点时,对于对应关系f、函数关系中多对⼀的情况、值域是集合B的⼦集等较为抽象问题的理解采取放乒乓球的实验,让抽象问题具体化;最后,通过对三个实例进⾏拓展让学⽣抛开物理运动背景,⽤集合与对应的语⾔来分析函数并强调函数关系中对应关系的⽅向.六、教学基本流程:七、教学情景设计:教学流程教学内容设计意图探索新知研讨探究:分析、归纳三个实例中,变量之间关系的共同点概括出函数的定义师⽣活动师:让学⽣分组讨论三个实例中,变量之间关系的共同点? ⽣:概括出三个实例中,变量之间关系的共同点四、新课讲解⼀般地,设A, B是⾮空的数集,如果按照某种确定的对应关系f,使对于集合A中任意⼀个数X,在集合B中都有唯⼀确定的数f(x)和它对应,那么就称f : A》B为从集合A到集合B的⼀个函数,记作y = f (x), x A.其中,x叫做⾃变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)x?A}通过集合与对应的语⾔来刻画初中已学函数,使学⽣加深理解函数的本质及构成函数的基本要素.师:强调、分析概念中的关键点.①A,B是⾮空的数集;②对应关系f可以通过解析式、图象、列表来表⽰;③任意、存在、唯⼀;④符号“ y = f(x)”的含义;⑤函数三要素:定义域A、值域、对应关系.五、实验操作叫做函数的值域.动⼀动:请将A盒⼦中的所有乒乓球放⼊B盒⼦中.思考:A中的乒乓球和 B 中的格⼦都标有数字,可以把A,B看成两个⾮空数集,那么每⼀种放法是从A到B的⼀个函数吗?若是,它的值域是什么?通过放乒乓球的实验,将函数概念中:①对应关系f ;②函数关系中多对⼀的情况;③值域是集合B的⼦集.等较为抽象的问题题具体化,⽣活化.师:启发学⽣思考每⼀种⽅法实质就是⼀个对应关系,通过对应关系,可以出现多对⼀,但不可⼀对多,同时,通过实验结果理解值域是集合B的⼀个⼦集.⽣:⼩组合作讨论每⼀种放法是否为从集合A到集合B的⼀个函数.若是,则求它的值域.师:强调初、⾼中对函数定义本质是⼀样的,只是出发点不同,⽤集合与对应的语⾔来描述函数可以摆脱物理运动的束缚.1.2.1本节课教学⽬标是:正确理解函数的概念,能⽤集合与对应的语⾔刻画函数。
高中数学《函数的概念》教学设计

目录
• 课程背景与目标 • 函数概念引入 • 函数图像与性质 • 函数运算与变换 • 函数应用举例 • 课程总结与拓展
01
课程背景与目标
课程背景
01
函数是数学中的重要概念,贯穿整个数学体系,是连接 初、高中数学的桥梁。
02
在现代社会中,函数的应用广泛,涉及到经济、科技、 工程等多个领域。
y = a^x (a > 0, a ≠ 1) ,其图像是一条指数曲 线,具有单调性、无界 性等性质。
y = log_a(x) (a > 0, a ≠ 1),其图像是一条对 数曲线,具有单调性、 无界性等性质。
如y = sin(x)、y = cos(x)等,其图像是周 期性的波形曲线,具有 周期性、有界性等性质 。
函数的表示方法
解析法、列表法和图象法。其中解析法是用数学表达式表示 两个变量之间的对应关系;列表法是通过列出表格来表示两 个变量之间的对应关系;图象法是用图象来表示两个变量之 间的对应关系。
函数性质探讨
函数的单调性
当自变量x增大时,函数值f(x)随 着增大(或减小),则称该函数 在此区间内为增函数(或减函数
伸缩变换
对称变换
了解函数图像的对称性质,掌握关于坐标轴 对称和关于原点对称的变换规律。
掌握函数图像沿坐标轴伸缩的变换规律,理 解伸缩变换对函数解析式的影响。
02
01
翻折变换
了解函数图像的翻折性质,掌握关于坐标轴 翻折的变换规律。
04
03
05
函数应用举例
实际问题中的函数模型建立
经济学中的函数模型
01
学生自我评价报告
知识掌握情况
通过自我检测,评估自己对函数概念及相关知识点的掌握情况,找 出薄弱环节,以便后续针对性复习。
3.1 函数的概念(单元教学设计)(蒙丽)-高中数学新教材必修第一册小单元教学+专家指导(视频+教案

3.1 函数的概念(单元教学设计)(蒙丽)-高中数学新教材必修第一册小单元教学+专家指导(视频+教案)教学目标:1. 了解函数的基本概念及其表示方法;2. 掌握函数的性质,包括函数的定义域、值域、单调性和奇偶性等;3. 能通过例题和练习题深入理解函数的应用。
教学重点:1. 函数的基本概念;2. 函数的性质,包括定义域、值域、单调性和奇偶性等。
教学难点:1. 函数的基本概念的理解;2. 函数的性质的应用。
教学方法:讲授法、研讨法、练习法。
教学步骤:第一步:引入教师通过引入一道题目让学生探讨函数的概念。
有两个盒子,一个里面装黄球,一个里面装红球,它们的球数目相同。
任意从两个盒子中分别取出一颗球,把它们的颜色分别用x表示为黄色,y表示为红色。
这两个字母x和y就构成了一个函数,称为双变量实函数。
通过这道题目的引入,让学生认识到函数在我们生活中的广泛应用。
第二步:定义函数教师通过板书的形式讲解函数的定义及其成分。
让学生通过隐藏的第六个成分体会到函数能解决问题的实际价值。
第三步:函数的性质1. 定义域和值域让学生研读手册中有关函数的定义域和值域的知识点,并以典型例题为例,让学生深入理解函数的定义域、值域以及求法。
2. 单调性通过举例说明函数的单调性在解题中的应用,让学生理解函数单调性的概念和性质,以便在解题中进行分析。
3. 奇偶性通过举例说明函数的奇偶性在解题中的应用,让学生理解函数奇偶性的概念和性质,以便在解题中进行分析。
第四步:练习让学生通过练习题巩固所学的知识点,精细化分析题目中的信息,分析出合适的解决方案。
第五步:总结让学生通过总结课程内容加深对函数的认识,培养良好的数学思维习惯。
同时,教师通过梳理所学知识点,强化函数的基础概念,从而为后续学习打下更加坚实的基础。
教学评价:教师可以通过观察学生的课堂参与情况和课后练习完成情况,评价学生对函数的概念和性质的掌握情况。
同时,可以针对学生的表现进行调整和帮助,提高教学效果。
高中数学_函数的概念教学设计学情分析教材分析课后反思

函数的概念(第二课时)——抽象函数定义域教学目标:1、进一步加深对函数概念的理解;2、能准确判断两个函数是否相等;3、进一步掌握简单函数定义域的求法;4、掌握抽象函数的定义域求法教学重点:对函数概念的理解,以及求简单函数的定义域。
教学难点:抽象函数定义域的求法。
教学过程:(一)复习旧知:1、函数的概念:①A、B为非空数集②A中元素的任意性③B中元素的唯一确定性2、函数的三要素:①定义域②对应关系③值域3、两个函数相等的条件:①定义域②对应关系4、简单函数定义域的求法:①若f(x)为整式,则定义域为全体实数②若f(x)为分式,则分母不等于零③若f(x)是偶次根式,则被开方式大于等于零④若f(x)=x0,则x≠0(二)巩固练习:多媒体出示练习题,学生利用刚复习过的知识思考问题并做解答,进一步巩固第一课时所学知识,老师纠正学生回答,并联系所学知识,进行点评。
||:},0|{,1,1x y x f x x B R A B A =→>==)(并说明理由。
的函数到集合集合、判断下列对应是否为x y y x f R B x x A =→=≥=2,:,},0|{2)( xy x f Z B Z A =→==:,,3)(0:},0{},11|{4=→=≤≤-=y x f B x x A )(函数图象的是、判断下列图象能表示2并说明理由。
是否表示同一函数,与、判断下列函数)()(3x g x f 1)(,)1()()1(0=-=x g x x f2)(,)()2(x x g x x f ==4-x ,22)3(2=+⋅-=y x x y362)(,)()4(x x g x x f ==(三)巩固练习并导入新课4、求下列函数的定义域95)2(14)1(203--=-+-=x x y x x x y5、已知f (x )的定义域是[2,+∞)(1) 求函数f (x+1)的定义域(2) 求函数f (2x -3)的定义域出示第5的习题后,领导学生分析与第4题的不同点,并给出抽象函数的概念,引出本节研究的新课题——抽象函数的定义域,即复合函数的定义域,板书课题。
高中数学优质课《函数的概念》教学设计共4套

分析函数关系
学生分析实际问题中的函数关系, 如速度与时间的关系、成本与产量 的关系等,提高运用函数知识解决 实际问题的能力。
函数运算实践
学生进行函数运算实践,如函数的 四则运算、复合运算等,通过具体 操作加深对函数运算规则的理解。
展示评价:展示成果,互相学习
学生成果展示
学生展示自己的学习成果,如绘 制的函数图像、分析的实际问题 等,通过互相观摩和学习,拓宽
高中数学优质课《函数的概 念》教学设计共4套
目录
• 课程背景与目标 • 教学内容与方法 • 教学过程设计 • 学生活动设计 • 教学评价与反馈 • 教学资源与开发
01
课程背景与目标
高中数学课程标准要求
了解函数的有界性、单调性、周期 性和奇偶性等性质,理解复合函数 及分段函数的概念,了解反函数及 隐函数的概念。
分享生活中的函数实例
02
学生分享生活中与函数相关的实例,将抽象的数学概念与实际
生活相联系,提高学习兴趣。
探讨函数性质
03
学生探讨函数的性质,如单调性、奇偶性等,通过对比分析不
同函数的性质,加深对函数性质的理解。
动手实践:操作练习,巩固知识
绘制函数图像
学生动手绘制不同函数的图像, 通过观察图像的变化趋势和特征,
提问与回答 鼓励学生提出问题,并对学生的问题进行及时回 应和解答,通过学生的提问和回答情况来评价学 生的理解程度。
随堂测试 通过简短的随堂测试,了解学生对本节课内容的 掌握情况,及时发现学生的学习困难。
及时收集反馈信息,调整教学策略
01
02
03
学生反馈
在课后向学生收集对本节 课的反馈意见,包括教学 内容、教学方法、教学进 度等方面的意见和建议。
人教版高中数学必修一《函数概念》教学设计

《1.2.1函数的概念》
教学设计
《函数的概念》的教学设计
一、教学目标
知识与技能——通过函数概念这节课的学习,了解函数的定义及其三要素,掌握区间的符号表
示,会求简单函数的定义域和值域。
培养学生分析、判断、抽象、归纳概括的逻辑思维能力
过程与方法——通过函数定义获得的学习过程,体会由具体逐步过渡到符号化、代数化,特殊到
一般的数学思想。
情感态度与价值观—— 通过本节的学习,培养学生的抽象思维能力、渗透静与动的辩证唯物主
义观点;树立“数学源于实践,又服务于实践”的数学应用意识。
二、教学重点与难点
重点:了解函数定义及其三要素,掌握区间的符号表示方法,会求简单函数的定义域和值域。
难点:理解函数符号)(x f y 的含义,掌握区间的符号表示方法及无穷大的概念。
高中数学《函数的概念》公开课优秀教学设计

函数的概念教学设计教学内容分析函数的概念是数学中最重要的概念之一,其本质是从一个非空数集到另一个非空数集的特殊对应,它揭示了现实世界中数量关系之间相互依存和变化的实质,是描述客观世界中变量间依赖关系的数学模型。
本节课在高中数学中有着承上启下的作用,从初中运动观下的函数定义出发,过渡到使用集合语言描述了更为确切的函数定义,本节课渗透的函数思想将被应用到数学的各个分支领域。
本课的教学重点是:理解函数的概念,教学难点是:函数概念及对符号的理解。
教学目标设置知识与能力:理解函数的集合观定义,并会使用符号表示;理解函数符号;会求一些简单函数的定义域,理解对应法则;使学生提高抽象概括、分析总结、数学表达等基本数学能力。
过程与方法:创设情境,使学生经历从具体函数实例和运动观定义去解析函数的基础上,理解函数的集合观定义,进而理解法则,培养学生类比与联想的学习能力。
情感、态度和价值观:学生亲身经历了由特殊到一般的研究过程,培养了学生质疑、探究的科学精神,也培养学生唯物主义观点。
学生学情分析教学对象:市重点高中学生。
学生对函数概念并不陌生,初中的函数概念教会学生认识变量间的依存关系,并且掌握了一次函数、二次函数和反比例函数的基本性质,已经基本具备建模的能力。
学生思维普遍活跃,善于表达,善于发现问题,乐于和教师交流分享他们的解题心得。
但高一学生的抽象概括能力较弱,由实例到抽象的数学语言,需要教师的引领。
教学策略分析在短短的45分钟要让学生经历函数定义发展史上100年的探究历程,学生不可能独立完成,这需要教师用材料铺好一条路,要了解学情并对学生的疑问做好预设,难度大的地方搭好梯子,本节课以“学生为主体,教师引导”教学原则来设计,着重解决了学生的几个疑问。
1、怎么从初中概念出发得到高中函数概念?学生的抽象概括能力还很薄弱,这使得用集合语言刻画函数概念很有难度,如果直接归纳定义学生会失去刚刚燃起的探究欲望,所以我选择从生活中的三个实例入手,用问题串引领学生完成实例的分析,在分析过程中,重点让学生体会每个例子的“变化过程”就是对应法则,初中定义的”某一区间”用集合语言描述就是定义域A,自然过渡到集合语言描述函数概念。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《函数的概念》教学设计一、教材内容分析“函数”是中学数学的核心概念。
函数贯穿于整个高中数学的教学中,是整个高中数学的主题内容。
学生在初中已经学习过函数的概念。
初中函数的概念是: 一般地,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说x 是自变量,y 是x 的函数。
如果当a x =时b y =,那么b 叫做当自变量的值为a 时的函数值。
这个定义把函数看成是两个变量之间的依赖关系。
根据这个观点,有些函数很难进行深入研究。
例如1=y ,对于这个函数,如果用变量观点来解释,会显得特别勉强。
但用高中集合、对应的观点来解释就十分自然。
在高一,学生需要建立的函数概念是:设B A ,是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称B A f →:为从集合A 到集合B 的一个函数,记作.),(A x x f y ∈= 其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{}A x x f ∈|)(叫做函数的值域。
实际上,初中的函数概念和高中的函数概念本质上是一样的。
只是高中的函数概念更具有一般性,高中用集合、对应的语言描述函数概念,在初中虽然没有提及,但事实上是客观存在的,学生在解决具体问题的过程中也渗透了集合与对应的观点。
不同之处在于初中没有明确强调“确定的对应关系”,或者所接触的函数多数是有解析式的,而高中引入了用“f ”表示对应关系,用)(x f 表示集合B 中与x 对应的那个数。
在函数的概念教学中,我认为需要注意以下几点:1、集合A 和集合B 都必须是非空的数集,这与映射是不同的。
2、两个数集之间有确定的对应关系f,即对于数集A中的每一个数x,在集合B中都有唯一确定的y和它相对应。
对于集合A中的数,不能有些在B中有元素跟它对应,而有些没有;而且,在集合B中只能有一个数跟它对应,不能是两个或两个以上。
3、函数概念中集合A和集合B以及对应法则f是一个整体。
基于以上认识我认为本节课教学重点是:通过概括具体实例的共同属性得出用集合与对应的语言刻画的函数概念。
二、教学目标分析1、学生能通过观察、辨析具体实例的共同属性,逐步抽象出用集合的语言刻画的函数的概念;2、函数的概念及函数的三要素;3、学生能求出一些简单函数的定义域及具体的函数值;4、通过从实例中抽象概括函数概念的过程,提高抽象概括能力。
三、学生学情分析学生在初中已经学习了用变量观点描述的函数的概念,并具体研究了几类简单初等函数,对函数有了一定的感性认识。
另一方面在第一章已经学习了集合,为学习用集合和对应的语言描述的函数的概念打下基础。
初中函数的概念比较直观。
本节课函数的概念较为抽象,高一学生的思维水平还不善于把抽象概念和具体实例联系起来,因此在教学中需要在学生头脑中建构情景帮助学生理解函数是从集合A到集合B的对应关系,它是一个整体。
四、教学策略分析问题式教学法(问题情境、启发引导、合作交流、归纳抽象)本节课从集合与对应的角度揭示函数的本质。
根据学生的心理特征和认知规律,我结合以问题为主线,以学生为主体,以教师为主导的教学理念,采用一系列的设问、引导、启发、发现,让学生归纳概括出函数概念的本质,并灵活应用多媒体和黑板来呈现、展示、交流,并以此来突破本节课的难点:符号y 的意义以及值域与集合B的关系。
f)(x五、教学过程分析(1)引入问题我们在初中已经学习了函数,就函数这个内容,你还有哪些印象呢? 问题1:根据初中学习的函数的概念,你能举出几个函数的具体例子吗?(请2名同学说出他们举的例子)在学生回答基础上追问:你凭什么认为你举的是一个函数的例子?设计意图:通过具体实例,激活学生的原有知识,形成学生的“再创造”欲望。
了解学生在初中对函数概念的认知程度,让学生感受函数概念的本质,即对于x 的每一个确定的值,y 都有唯一确定的值与其对应。
以此问题来刺激学生大脑,活跃课堂,并培养学生的逻辑思维能力。
教师举例(课本15页)(2)创设情境,形成概念实例分析1、一枚炮弹发射后,经过s 26落到地面击中目标,炮弹的射高为m 845,且炮弹距地面的高度)(m h 单位:随时间)(s t 单位:变化的规律是25-130=t t h ,那么炮弹距离地面的高度h 是时间t 的函数吗?为什么?学生:对于任一个给定的时间t ,都有唯一确定的高度h 跟它相对应,因此h 是t 的函数。
教师:好,那我给你一个具体的时间,你怎么得到与之相对应的高度? 学生:通过25-130=t t h 。
教师:那你能说出s s s t 100101=,,时对应的高度h 吗?学生:m h s t m h s t 800=10=125=1=时时,,由于炮弹在s 26时已经落到地面爆炸了,因此在s t 100=时没有高度跟它对应了。
教师:那你还能说任给一个时间t ,都有唯一确定的高度h 与之对应吗? 学生:对于s s 260~之间的每一个时间t ,通过25-130=t t h ,都有唯一确定的高度h 跟它相对应。
教师:s s 260~是我们生活中的语言,其实我们可以用集合表示这个范围,你能说出这个集合吗?学生:{}26≤≤0=t t A |教师:那么高度h 也应该有一个范围,你能用集合表示吗?学生:{}845≤≤0=h h B |教师:那我们可以用集合的语言重新表述这个实例中的对应关系,谁来说一说。
在学生描述的基础上教师规范解答:对于集合A 中的每一个时间,集合B 中都有它的130倍减去它平方的5倍与它对应。
教师:那么用集合的语言表述的这个实例中对应关系和你刚才判断炮弹距离地面的高度h 是时间t 的函数所用的表述方式有什么不同吗?那么它们的对应关系变了吗?设计意图:本例题具有承上启下的作用:既是对初中已学的函数概念的进一步深入,又是为下一步用集合的语言刻画函数概念的本质做好伏笔。
此外,本例题符合学生的认知规律,化抽象为直观,学生容易理解。
实例分析2、近几十年来,大气层中的臭氧迅速减少,因而出现了臭氧层空洞问题。
下图显示了南极上空臭氧层空洞面积从1979~2001年的变化情况。
那么臭氧层空洞面积s 是时间t 的函数吗?为什么?学生:面积s 是时间t 的函数,因为对于每一个确定的t 值,都有唯一确定的一个面积s 跟它对应。
教师:好,那我给你一个具体的时间t ,你怎么得到与之相对应的面积? 学生:根据图像。
教师:那你能说出1991对应的面积吗?学生:20。
教师:前面实例中的对应关系是用解析式表示的,那这个实例中的对应关系也得用一个解析式表示吗?学生:不用。
教师:那我们如何记录这个对应关系呢?由学生思考,教师启发得出用图像记录这个对应关系。
教师:好,那是不是对任何一个时间,通过图像,都有面积跟它对应呢? 学生:不是,对于20011979~之间的每一个时间,都有唯一的面积跟它相对应。
教师:那好,咱们用集合来表示这个范围。
学生:{}2001≤≤1979=t t A |。
教师:同样的,那面积s 也有一个范围,怎么用集合表示?学生:{}26≤≤0=s s B |教师:你能用集合的语言重新表述一下这个对应关系吗?学生讨论、交流。
教师:那用集合的语言表述的这个实例的对应关系和你刚才判断臭氧层空洞面积s 是时间t 的函数所用的表述方式有何不同呢?那么时间t 到面积s 的对应关系变化了吗?学生思考,交流意见。
教师:那么集合B 可以是{}30≤≤0=s s B |吗?学生:可以。
教师:那集合B 可以是{}24≤≤0s s |吗?为什么?设计意图:让学生参与课堂,体验图像是一种记录两个变量之间的对应关系的语言,进一步提高学生用数学语言表达问题的能力。
实例分析3、国际上常用恩格尔系数(总支出金额食物支出金额恩格尔系数=)反映一个国家人民生活质量的高低,恩格尔系数越低,生活质量越高。
下表给出“八五”计划以来我国城镇居民恩格尔系数变化情况。
那么恩格尔系数是时间的函数吗?你能仿照前面的两个实例来描述恩格尔系数和时间(年)的关系吗? 活动:同桌两人为一组,交流讨论(用时大约2分钟),从中选一名代表来描述恩格尔系数和时间(年)的关系。
教师:那你能说出1999对应的恩格尔系数吗?学生:941.。
教师:那么这个对应关系得用一个解析式来表示吗?学生:不用。
教师:那我们该如何记录这个对应关系呢?经过学生思考、提出意见后统一认识:用表格记录这个对应关系。
设计意图:本例题从生活中的经济问题出发,通过学生思考、探索,进一步认识到对应关系也可以用表格来记录。
问题3:分析这三个实例,它们有哪些共同属性呢?谁来说说。
设计意图:从特殊到一般,归纳得出三个案例的共同属性:对集合A 的每一个数x ,在集合B 中都有唯一确定的一个数y 与它对应,即集合A 到集合B 有一种对应。
比较三个案例,体会用解析式、图像、表格刻画变量之间的对应关系,让学生感受从本质上本节课学习的函数概念和初中函数的概念是一致的,但初中是用两个变量间的依赖关系描述函数,而高中是用两个集合元素之间的对应关系来描述函数概念,让学生体验数学发现和创造的历程。
这样做,不仅符合学生的认知规律,而且符合“先过程后对象”的认知顺序。
教师:我们学习过很多的数学概念,当我们认识到概念的本质属性以后,我们并没有停止,这些数学概念往往都沉淀成一个数学符号。
就如某个锐角的正弦,我们发现不管在那个直角三角形中,只要这个角的大小一定,那么这个角的对边比斜边都不变,我们把这个定值称为这个锐角的正弦,但是我们并没有因此停下来,我们用A sin 来表示这个角的正弦。
那我们只要看到A sin ,就知道它表示直角三角形中这个锐角的对边比斜边。
那么这三个实例的共同属性是不是也可以用一个符号来表示?老师总结板书:)(:x f y x B A f =→→ 设计意图:数学中的概念通常是用符号来表示的。
学生总结三个实例的共同属性,能够认识到函数的本质,这时及时地引进数学符号,不仅可以引导学生把符号和它所代表的实质内容联系起来,使学生在看到符号时就能够联想起符号所代表的本质特征,从而可以提高学生的抽象能力、概括能力。
建立函数概念:设B A ,是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称B A f →:为从集合A 到集合B 的一个函数,记作.),(A x x f y ∈=其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{}A x x f ∈|)(叫做函数的值域。