五年级奥数小学数学培优第10讲巧解定义新运算(最新整理)
奥数 新定义运算

奥数定义新运算我们已经学习过加、减、乘、除运算,这些运算,即四则运算是数学中最基本的运算,它们的意义、符号及运算律已被同学们熟知。
除此之外,还会有什么别的运算吗?现在我们就来研究这个问题。
这些新的运算及其符号,在中、小学课本中没有统一的定义及运算符号,但学习讨论这些新运算,对于开拓思路及今后的学习都大有益处。
一、定义1、定义新运算是指运用某种特殊的符号表示的一种特定运算形式。
注意:(1)解决此类问题,关键是要正确理解新定义的算式含义,严格按照新定义的计算顺序,将数值代入算式中,再把它转化为一般的四则运算,然后进行计算。
(2)我们还要知道,这是一种人为的运算形式。
它是使用特殊的运算符号,如:*、▲、★、◎、 、Δ、◆、■等来表示的一种运算。
(3)新定义的算式中,有括号的,要先算括号里面的。
2、一般的解题步骤是:一是认真审题,深刻理解新定义的内容;二是排除干扰,按新定义关系去掉新运算符号;三是化新为旧,转化成已有知识做旧运算。
二、初步例题诠释例1、对于任意数a,b,定义运算“*”:a*b=a×b-a-b。
求12*4的值。
分析与解:根据题目定义的运算要求,直接代入后用四则运算即可。
12*4=12×4-12-4=48-12-4=32例2、假设a ★b = ( a + b )÷b 。
求8 ★5 。
分析与解:该题的新运算被定义为: a ★b等于两数之和除以后一个数的商。
这里要先算括号里面的和,再算后面的商。
这里a代表数字8,b代表数字5。
8 ★5 = (8 + 5)÷5 = 2.6例3、如果a◎b=a×b-(a+b)。
求6◎(9◎2)。
分析与解:根据定义,要先算括号里面的。
这里的符号“◎”就是一种新的运算符号。
6◎(9◎2)=6◎[9×2-(9+2)]=6◎7=6×7-(6+7)=42-13=29例4、如果1Δ3=1+11+111;2Δ5=2+22+222+2222+22222;8Δ2=8+88。
(完整版)定义新运算(小学数学五年级奥数)

定义新运算知识与方法:对于常用的加、减、乘、除等运算,我们已经熟知它们的运算法则和计算方法,如6+ 2=8, 6X2=12等。
都是2和6,为什么运算结果不同呢?主要是运算方式不同,实质上是对应法则不同。
由此可见,一种运算实际就是两个数与一个数的一种对应方法。
对应法则不同就是不同的运算。
当然,这个对应法则应该是对应任意两个数。
通过这个法则都有一个唯一确定的数与它们对应。
这节课,我们将定义一些新的运算形式,它们与我们常用的加、减、乘、除运算是不相同的。
解决定义新运算这类题的关键:是抓住定义的本质借用“ +、一、X、十”四则运算进行的,解答时要弄活新运算与四则运算的关系。
特别注意运算顺序,每个新定义的运算符号只能在本题中使用,新运算不一定符合运算定律。
例1:设a、b都表示数,规定:aAb =3X a— 2X b。
试计算:(1) 3A2; (2) 2A3。
练习1:1. 设a b都表示数,规定:a。
b=5X a— 2X b。
试计算3042. 设a b都表示数,规定:a*b=3x a+ 2X b。
试计算:5*6例2:对于两个数a与b,规定b=3a+ 2a,试计算( 3^5)练习2:1.对于两个数a与b,规定:aOb=a+3b,试计算405062.对于两个数A与B,规定:A△ B=2X A — B,试计算5A6A7例3:对于两个数a, b,规定:a金b=ax b+ a+ b,试计算:9 ®练习3:1.对于两个数a, b,规定:a$b=ax b— ( a+ b),试计算:6 ® 7.2..对于两个数A与B,规定:A GB=A X B-2,试计算:8 99例4:如果2、3=2 + 3 + 4, 5A4=5+ 6+ 7+ 8,那么按此规律计算:(1) 3A5;(2) 8A3。
练习4:1.如果4A2=4X 5, 2A3=2X 3X 4,那么按此规律计算:5A4。
2.如果24=24- (2+ 4), 3V6=36- (3 + 6), 6V3=63- (6+ 3),那么按此规律计算:7V2.例5:对于两个数a与b,规定aDb=a(a+1)+(a+2)+・・・(a+b— 1)。
五年级奥数培优之定义新运算

定义新运算是指用一个符号和已知运算表达式表示一种新的运算。
解答定义新运算关键是要正确理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
例1 设b a,表示两个不同的数,规定b a b a 43.求6)78(.例2 规定:6* 2=6+66=72,2*3=2+22+222=246,1*4=1+11+111+1111=1234。
求7*5例3 设ab b a b a 5.024,求34)14(x 中的未知数x 。
专题:定义新运算1、定义运算?为a ?b =5×)(b a b a .则11?12=2、b a,表示两个数,记为:a ※b =2×b b a 41.则8※(4※16)= .3、设y x,为两个不同的数,规定x □y 4)(y x.求a □16=10中a = 4、有一个符号“?”,使下列算式成立:4?8=16,10?6=26,6?10=22,18?14=50.求7?3=5、如果a △b 表示(a-2)×b ,例如:3△4=(3-2)×4=4,那么当( a △2)△3=12时,a=6、对于数b a,规定运算“▽”为)5()3(b a ba .求)76(57、Q P,表示两个数,P ※Q =2Q P ,如3※4=243=3.5.求4※(6※8);如果x※(6※8)=6,那么x ?. 8、对任意的数a ,b ,定义:f (a )=a2+1, k (b )=2b(1)已知f (m )=26,求m 的值;(2)求f (k (3))+k (f (3))的值9、规定a ⊕)1()2()1(b a a a a b ,(b a,均为自然数,a b ).如果x ⊕10=65,那么x ?10、有A ,B ,C ,D 四种装置,将一个数输入一种装置后会输出另一个数。
装置A ∶将输入的数加上5;装置B ∶将输入的数除以2;装置C ∶将输入的数减去4;装置D ∶将输入的数乘以3。
第10讲 巧解定义新运算

第10讲巧解定义新运算巧点晴——方法和技巧(1)定义析运算是指用新的符号所定义的运算。
解题时需要按它所规定的“运算”进行运算,直到得出最后结果。
(2)运算符号所表示的运算并不是一种固定的算法,而是因题而异,不同的题目有不同的规定,我们应当严格按照题中规定进行运算。
巧指导——例题精讲A级冲刺名校·基础点晴【例1】a,b表示整数(不包括0),规定(*)的运算如下,并请求出169*13。
a*b=a÷b×2+3×a-b做一做1 对开正整数a,b规定(*)的运算如下:a*b=3×a+2×b-2求:(1)10*20 (2)20*10a b c d 32 760.7 154 【例2】 用{a }表示a 的小数部分,[a]表示不超过a 的最大数,例如{0.3}=0.3,[0.3]=0,[4.5]=4。
记f (χ)=12x 2x ++请计算 f(31) ,[f (31)];{f(1)},[f(1)的值]。
做一做2 如果规定 =a ×d -b ×c ,那么 = 。
【例3】对于整数a ,b 规定(*)的运算如下:a*b=a ×b -a -b +1已知(2*a )=0,求a 。
做一做3 a*b 表示a 的3倍减去b 的2倍,即a*b=3a -3b 。
(1)计算(5*4)*3 (2)χ*(4*χ)=11,求χB级培优竞赛·更上层楼【例4】“◎”表示一种新的运算符号,已知:2◎3=2+3+4;7◎2=7+8;3◎5=3+4+5+6+7;…做一做4 规定:6*2=6+66=722*3=2+22+222=2461*4=1+11+111+1111=1234按此规则,如果χ*5=86=86415,那么,χ是多少?按此原则,如果χ*5=86415,那么,χ是多少?【例5】设“*‘的运算规则如下:对任意整数a,b,若a+b≥10,则a*b=2a+b-1;若a+b<10,则a*b=2ab。
小学奥数定义新运算

小学奥数——定义新运算1、设a,b都表示数,规定a△b=3×a-2×b。
①求4△3,3△4。
②求(17△6)△2, 17△(6△2)。
③如果已知5△b=5,求b。
2、定义运算※为a※b=a×b-(a+b),①求5※7,7※5;②求12※(3※4),(12※3)※4;③如果3※(5※x)=3,求x.3、4、如果4※2=14,5※3=22,3※5=4,7※18=31,求6※9的值。
5、设a▽b=a×b+a-b,求5▽8。
6、规定:a△b=a+(a+1)+(a+2)+……(a+b-1),其中a,b表示自然数。
(1)求1△100的值;(2)已知x△10=75,求x。
7. 设ba,表示两个不同的数,规定baba43+=∆.求6)78(∆∆.8. 定义运算⊖为a⊖b=5×)(baba+-⨯. 求11⊖12.9. ba,表示两个数,记为:a※b=2×bba41-⨯.求8※(4※16).10. 设yx,为两个不同的数,规定x□y4)(÷+=yx.求a□16=10中a的值.11. 规定a ba ba b +⨯=.求2 10 10的值.12. Q P ,表示两个数,P ※Q =2QP +,如3※4=243+=3.5.求4※(6※8);如果x ※(6※8)=6,那么=x ?13. 定义新运算x ⊕yx y 1+=.求3⊕(2⊕4)的值.14. 有一个数学运算符号“⊗”,使下列算式成立:4⊗8=16,10⊗6=26,6⊗10=22,18⊗14=50.求7⊗3=?15. 对于数b a ,规定运算“▽”为)5()3(-⨯+=∇b a b a .求)76(5∇∇的值.16. y x ,表示两个数,规定新运算“ ”及“△”如下:x y x y 56+=,x △xy y 3=.求(2 3)△4的值..【读一读】 狼&羊羊和狼在一起时,狼要吃掉羊,所以关于羊及狼,我们规定一种运算,用符号△表示羊△羊=羊;羊△狼=狼;狼△羊=狼;狼△狼=狼。
奥数新定义运算

奥数定义新运算我们已经学习过加、减、乘、除运算,这些运算,即四那么运算是数学中最根本的运算,它们的意义、符号及运算律已被同学们熟知。
除此之外,还会有什么别的运算吗?现在我们就来研究这个问题。
这些新的运算及其符号,在中、小学课本中没有统一的定义及运算符号,但学习讨论这些新运算,对于开拓思路及今后的学习都大有益处。
一、定义1、定义新运算是指运用某种特殊的符号表示的一种特定运算形式。
注意:〔1〕解决此类问题,关键是要正确理解新定义的算式含义,严格按照新定义的计算顺序,将数值代入算式中,再把它转化为一般的四那么运算,然后进展计算。
〔2〕我们还要知道,这是一种人为的运算形式。
它是使用特殊的运算符号,如:*、▲、★、◎、 、Δ、◆、■等来表示的一种运算。
〔3〕新定义的算式中,有括号的,要先算括号里面的。
2、一般的解题步骤是:一是认真审题,深刻理解新定义的容;二是排除干扰,按新定义关系去掉新运算符号;三是化新为旧,转化成已有知识做旧运算。
二、初步例题诠释例1、对于任意数a,b,定义运算“*〞:a*b=a×b-a-b。
求12*4的值。
分析与解:根据题目定义的运算要求,直接代入后用四那么运算即可。
12*4=12×4-12-4=48-12-4=32例2、假设a ★b = ( a + b )÷b 。
求8 ★5 。
分析与解:该题的新运算被定义为: a ★b等于两数之和除以后一个数的商。
这里要先算括号里面的和,再算后面的商。
这里a代表数字8,b代表数字5。
8 ★5 = 〔8 + 5〕÷5 = 2.6例3、如果a◎b=a×b-(a+b)。
求6◎〔9◎2〕。
分析与解:根据定义,要先算括号里面的。
这里的符号“◎〞就是一种新的运算符号。
6◎〔9◎2〕=6◎[9×2-〔9+2〕]=6◎7=6×7-〔6+7〕=42-13=29例4、如果1Δ3=1+11+111;2Δ5=2+22+222+2222+22222;8Δ2=8+88。
五年级数学培优:定义新运算

五年级数学培优:定义新运算
1、t 是自然数,规定t ◇=3t ,试求9◇的值.
2、h 是一个自然数,如果规定⊙h =100-2h ,那么,⊙21的值是多少?
3、对于自然数x ,规定x △=2x -3,试求3△、7△的值.
4、对于自然数b ,规定○b =5+3b ,试求○3、○7的值.
5、d 是一个自然数,规定d ★=12+3d ,求9★的值.
6、b 和c 都是自然数,规定b →c =2b÷c ,试求11→8的值.
7、设A △B=
A B B A ,求(5△3)+15
11.
8、对于自然数m、n,规定m*n=4(m+n)(m-n),试求8*6的值.
9、A、B是任意两个整数,规定A◇B=A2+B2,请求出7◇6的值.
10、如果a#b=4a-5b,求5#4.
11、如果A*B表示(A+B)÷2,那么(3*5)*8是多少?
12、规定E⊙F表示从E开始的F个连续自然数的和,那么14⊙5的值是多少?
13、如果定义a*b=(a+b)×2.已知x*24=320,求x.
14、如果规定m□n表示从m开始的n个连续自然数的乘积,例如7□5=7×8×9×10×11,
求6□4,5□3的值.
15、规定“☆”表示运算m☆n=3m-2n,解方程:
x☆(12☆x)=5
16、如果a◎b表示ab+a,那么当x◎5比5◎x大100时,x是多少?。
五年级奥数:定义新运算

五年级奥数:定义新运算五年级奥数重难点:定义新运算定义新运算是指使用新的符号来进行运算。
在解题时需要按照所规定的“运算程序”进行运算,以得出最终结果。
不同的题目有不同的规定,我们应该严格按照题目中的规定进行运算。
类型一:直接运算型在这种类型的问题中,我们需要直接根据运算公式进行计算。
例如,对于题目“★”表示一种新运算,规定A★B=5A+7B,求4★5,我们可以直接代入A=4,B=5,然后按照规定进行计算。
练题:1.设a、b都表示数,规定:a○b=6×a-2×b。
试计算3○4.2.“♀”表示一种新的运算,规定A♀B=2A+3B,求0.3♀1.4.3.设a、b都表示数,规定:a*b=3×a+2×b。
试计算:(1)(5*6)*7(2)5*(6*7)4.a、b是自然数,规定a※b=(a+b)÷2,求3※(4※6)5.令A®B=3×A+4×B,试计算:(1)(4®5)®6(2)(1®5)+(2®4)类型二:反解未知数型在这种类型的问题中,我们需要建立方程来求解未知数。
例如,对于题目规定a&b=3a-2b,如果x&4=7,求x的值,我们可以建立方程3x-8=7,然后解方程得到x=5.练题:1.如果规定 ab cd =a×d-b×c,已知126 x2.4=7.2,求x的值。
2.对于任意正整数a,b,规定a※b=a÷b×2+3.若256※a=19,求a的值。
3.对于两个数a与b,规定a□b=a+(a+1)+(a+2)+…(a+b-1)。
已知x□6=27,求x。
类型三:观察规律型在这种类型的问题中,我们需要观察规律来进行计算。
例如,对于题目如果1※3=1+2+3=6,5※4=5+6+7+8=26,那么9※5=?我们可以发现,每个数的结果都是从第一个数开始加上后面的连续的几个数,因此9※5=9+10+11+12+13=55.练题:1.已知1∆3=1×2×3,6∆5=6×7×8×9×10,求2∆5.2.如果2※3=2+3+4=9,5※4=5+6+7+8=26,按此规则计算:(1)1※x=15(2)x※3=12类型四:综合类型在这种类型的问题中,我们需要综合运用不同的方法来进行计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第___讲巧解定义新运算
方法与技巧:
(1)定义新运算是指用新的符号所定义的运算。
解题时需要按它所规定的“运算程序”进行运算,直到得出最后结果。
(2)运算符号所表示的运算并不一是一种固定的算法,而是因题而异,不同的题目有不同的规定,我们应当严格按照题中规定进行运算。
例1:设a,b表示整数(不包括0),规定“*”的运算如下,并请求出169 * 13.
a *
b = a ÷ b × 2 + 3 × a - b
做一做1: 对于正整数a,b,规定“*”的运算如下:a * b = 3 × a + 2 × b – 2求:(1)10 * 20 (2)20 * 10
例2:用{a}表示a的小数部分,[a]表示不超过a的最大整数,例如{0.3}=0.3, [0.3]=0,
[4.5]=4。
记
做一做 2: 如果规定 =a × d – b × c,那么
例3:对于整数a,b,规定“*”的运算如下:a * b= a × b – a – b + 1,已知(2 * a)* 2=0,求a.
做一做 3: a * b表示a的3倍减去b的2倍,即a * b= 3 a - 2 b
(1)计算(5 * 4)* 3;(2)已知x *(4 * x)=11,求x
例4:“◎”表示一种新的运算符号,已知:2◎3=2+3+4,7◎2=7+8;3◎5=3+4+5+6+7;…
按此规则,如果n◎8=68,那么,n是多少?
做一做 4:规定:6 * 2 = 6 + 66 = 72 2 * 3 = 2 + 22 + 222 = 246
1 * 4 = 1 + 11 + 111 +1111 = 1234
按此规则,如果x * 5 = 86415,那么x是多少?
例5:设“*”的运算规则如下:对任意整数a,b,若a + b≥10,则a * b = 2a + b – 1;
若a + b〈10,则a * b = 2ab。
求(1*2)+(2*3)+(3*4)+(4*5)+(5*6)+(6*7)+(7*8)+(8*9)+(9*10)
做一做5:对于任意正整数a,b,定义运算#如下:如果a,b同为奇数或同为偶数,
则a # b=(a + b)÷2;如果a,b的奇偶性不同,则a # b=(a + b + 1)÷2
求(1993 # 1994)#(1994 # 1995)#…#(1999 # 2000)
例6:任给一个数a,我们用[a]表示不超过a的最大整数,如果[4]=4,[7.9]=7等,则
做一做6:用整数4代替3.56,4与3.56的差0.44称为“误差”;用整数3代替3.56,误差是
3.56—3=0.56。
下面五个数:2.48,2.53,2.61,2.67,2.71,它们的和为13。
现在用五个整
数分别代替这五个数。
要使五个整数之和仍为13,并且使“误差”尽可能小,问:这五个“误
差”之和是多少?
巩固练习:
1、如果2△3=2+3+4=9,5△4=5+6+7+8=26,按此规则计算:(1)7△4;(2)1△x=15;(3)
x△3=12
2、令A * B=3 × A + 4 × B,试计算:(1)(4 * 5)* 6;(2)(1 * 5)+(2 * 4)
3、规定*为一种运算,它满足a * b=ab ÷( a + b),那么,1992 *(1992 *1992)的值是多少?
4、已知1△3=1×2×3,6△5=6×7×8×9×10,求2△5
5、规定3□4=3+4+5+6,6□5=6+7+8+9+10.若95□x=585,求x。
6、观察5*2=5+55=60,7*4=7+77+777+7777=8638,推知9*5的值是多少?
7、对任意正整数a,b,规定a * b=a÷b×2 + 3。
若256 * a = 19,求a.
“”
“”
At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。