四年级下册数学扩展专题练习-游戏策略(ABC级).)

合集下载

小学奥数题目-四年级-简单逻辑推理类-游戏策略

小学奥数题目-四年级-简单逻辑推理类-游戏策略

游戏策略本视频学习起来比较轻松,主要通过玩几个游戏,1、农夫、狼、羊、菜过河,2、牧羊人过河,3、倒水游戏,让我们知道这几个如何操作才能够取胜。

当然这些游戏都是可以在网上找到的,我们也可以自己试着玩一下,看你是不是会玩。

后边的几个例题也会教我们如何玩这些游戏,当然也还有其他操作类型的问题,包括称金币辨真假问题、遗产分牛问题和烧绳计时问题等,通过学习这些问题的解决办法,锻炼我们的思维,让我们思维更加的开阔。

农夫、狼、羊、菜过河游戏假设有一个池塘,里面有无穷多的水。

现有2个空水壶,容积分别为A升和B升(A < B)。

问题是如何只用这2个水壶从池塘里取得 X 升的水?1.1.据说有人给酒肆的老板娘出了一个难题:此人明明知道店里只有两个舀酒的勺子,分别能舀7两和11两酒,却硬要老板娘卖给他2两酒。

聪明的老板娘毫不含糊,用这两个勺子在酒缸里舀酒,并倒来倒去,居然量出了2两酒,聪明的你能做到吗?(回答能或者不能)2.2.如果你有无穷多的水,一个3公升的提捅,一个5公升的提捅,两只提捅形状上下都不均匀,问你如何才能准确称出4公升的水?(回答能或者不能)3.3.假设有一个池塘,里面有无穷多的水。

现有2个空水壶,容积分别为5升和6升。

问题是如何只用这2个水壶从池塘里取得3升的水。

(回答能或者不能)有一个装满葡萄酒的8升罐子,另有一个3升,一个5升的空罐子,问怎么倒可以把葡萄酒分成两个4升的?1.1.两位妇人分别拿着4斤的奶瓶和5斤的奶瓶去奶店各买2斤奶,适逢店的称坏了,这时店里只有两大满奶桶和一些不均匀的空桶(空桶能装奶的重量大于5斤,但是不知道具体能装多少),但聪明的店老板却成功地凭借现有的条件满足了两位妇人的要求。

她是如何做的?(回答能或者不能)2.2.现在有两个空壶,容积分别为65升和78升,能够用这两个空壶到池塘取得38升水吗?能够取得39升水吗?(回答“38”、“39”、“38和39”或者不能)3.3.现在有三个壶,容积分别为6升,10升和45升,能够用这三个空壶到池塘取得31升水吗?(回答能或者不能)对于任意一个自然数 n,当 n为奇数时,加上121;当n为偶数时,除以2;这算一次操作。

四年级下册数学扩展专题练习:数论.进位制(ABC级)全国通用

四年级下册数学扩展专题练习:数论.进位制(ABC级)全国通用

一、数的进制1.十进制:我们常用的进制为十进制,特点是“逢十进一”。

在实际生活中,除了十进制计数法外,还有其他的大于1的自然数进位制。

比如二进制,八进制,十六进制等。

2.二进制:在计算机中,所采用的计数法是二进制,即“逢二进一”。

因此,二进制中只用两个数字0和1。

二进制的计数单位分别是1、21、22、23、……,二进制数也可以写做展开式的形式,例如100110在二进制中表示为:(100110)2=1×25+0×24+0×23+1×22+1×21+0×20。

二进制的运算法则:“满二进一”、“借一当二”,乘法口诀是:零零得零,一零得零,零一得零,一一得一。

注意:对于任意自然数n ,我们有n 0=1。

3.k 进制:一般地,对于k 进位制,每个数是由0,1,2,,1k -()共k 个数码组成,且“逢k 进一”.1k k >()进位制计数单位是0k ,1k ,2k ,.如二进位制的计数单位是02,12,22,,八进位制的计数单位是08,18,28,.4.k 进位制数可以写成不同计数单位的数之和的形式1110110n n n n k n n a a a a a k a k a k a ---=⨯+⨯++⨯+()十进制表示形式:1010101010n n n n N a a a --=+++; 二进制表示形式:1010222n n n n N a a a --=+++;为了区别各进位制中的数,在给出数的右下方写上k ,表示是k 进位制的数如:8352(),21010(),123145(),分别表示八进位制,二进位制,十二进位制中的数.5.k 进制的四则混合运算和十进制一样先乘除,后加减;同级运算,先左后右;有括号时先计算括号内的。

二、进制间的转换:一般地,十进制整数化为k 进制数的方法是:除以k 取余数,一直除到被除数小于k 为止,余数由下到上按从左到右顺序排列即为k 进制数.反过来,k 进制数化为十进制数的一般方法是:首先将k 进制数按k 的次幂形式展开,然后按十进制数相加即可得结果.如右图所示:知识框架进位制【例 1】把9865转化成二进制、五进制、八进制,看看谁是最细心的。

四年级下册数学试题-奥数—— 第九讲游戏策略(全国通用)(图片版)

四年级下册数学试题-奥数—— 第九讲游戏策略(全国通用)(图片版)

第09讲游戏策略知识点、重点、难点对策论又称博弈论,我们学习的对策问题,主要是研究在两人的游戏过程中如何使自己取胜的策略问题.如果说“统筹规划”所研究的是“静的”对象的话,那么“对策问题”所研究的就是一个“动的”对手,因而在考虑问题时需要设想对手可能采取的各种方案,并使己方的策略能在对手所有可能采取的方案中都处于有利位置,我们将这种状态称为“必胜状态”.那么在给定的游戏规则下,是否存在必胜状态,以及为了达到必胜状态所采取的策略就成了问题的关键.需要强调的是,我们的目标不是“可能胜”,而是“必胜”!我们不能存在侥幸心里,不能寄希望于对方的失误,而是要在假定双方都足够聪明的前提下寻找必胜策略.例题精讲例1有12枚棋子,甲、乙两人轮流取,规定甲先取,每人每次至少取1枚,最多取3枚.如果谁取走最后一枚棋子谁赢,那么谁有必胜策略?如果谁取走最后一枚棋子谁输,那么谁有必胜策略?必胜策略是什么?练习1有15枚棋子,甲、乙两人轮流取,规定甲先取,每人每次至少取1枚,最多取2枚.如果谁取走最后一枚棋子谁赢,那么谁有必胜策略?如果谁取走最后一枚棋子谁输,那么谁有必胜策略?必胜策略是什么?例2现有2014根火柴,甲、乙两人轮流从中取出火柴,规定甲先取,每人每次至少从中取2根,最多取出4根,谁无法取出火柴谁就赢.请问:谁一定赢?策略是什么?练习2现有2009颗糖,甲、乙两人轮流从中取出糖,规定甲先取,每人每次至少从中取2颗,最多取出5颗,谁无法取出糖谁就赢.请问:谁一定赢?策略是什么?例3甲、乙两人玩一个游戏:有两堆小球,甲、乙两人轮流从中取球,每次只能从同一堆中取,个数不为零即可,规定取到最后一个球的人赢,甲先取球.如果开始时两堆分别有5个球和8个球,那么谁有必胜策略?请说明理由.练习3有两堆金币,一堆有2009枚,另一堆有2014枚.甲、乙两人轮流从中拿金币,每次只能从同一堆中拿,个数不为零即可.规定拿到最后一枚金币的人获胜,胜者可以获得所有金币.如果甲先拿,那么谁有必胜策略?请说明理由.例4如图,方格A中放有一枚棋子,甲先乙后轮流移动这枚棋子,只能向上、向右或向右上方走一步,最终将棋子走到方格B的人获胜.请问:谁一定能获胜?必胜策略是什么?BA例5有一块巧克力,它被直线划分成3行7列的21个小方块,如图所示.现在让你和对手进行一种两人轮流切巧克力的游戏,规则如下:(1)每人每次只许沿一条直线把巧克力切成两块;(2)拿走其中一块,把另一块留给对手再切;(3)不断重复前两步,最后谁能恰好留给对手一个小方块,谁获胜.如果你首先切巧克力,那么你第一次应该切走多少个小方块,才能保证自己最后获胜?精选习题1.10枚正面朝下的硬币排成一排放在桌子上,两个小朋友玩翻硬币游戏,规定:每人每次只能翻动1枚或2枚硬币使之正面朝上,翻过的硬币不能再翻.两人轮流翻硬币,翻动最后一枚硬币的人获胜.请问:谁有必胜策略?必胜策略是什么?2.现有200个石子,甲、乙两人轮流从中取出石子,每次最少取2个,最多取4个,谁无法取出石子谁就赢.如果甲先取,那么谁有必胜策略?必胜策略是什么?。

【思维拓展】数学四年级思维拓展之数字游戏(附答案)

【思维拓展】数学四年级思维拓展之数字游戏(附答案)

四年级奥数题-数学游戏1.甲、乙两人轮流报数,必须报1~4的自然数,把两人报出的数依次加起来,谁报数后加起来的和是1000,谁就取胜.如果甲要取胜,是先报还是后报?报几?以后怎样报?2.有1994个格子排成一行,左起第一个格子内有一枚棋子,甲、乙两人轮流向右移动棋子,每人每次只能向右移动1格、2格、3格或4格,谁将棋子走到最后一格谁败.那么甲为了取胜,第一步走几格?以后又怎样走?3.54张扑克牌,两人轮流拿牌,每人每次只能拿1张到4张,谁拿到最后一张谁输,问先拿牌的人怎样确保获胜?4.n个1×1的正方形排成一行,左起第一个正方形中放一枚棋子,甲、乙两人交替走这枚棋子,每步可向右移动1格、2格或3格,谁先走到最后一格谁为胜利者.问先走者还是后走者有必胜的策略?5.如果将例4中的条件改为“得数为奇数者为胜”,那么怎样才能确保取胜?6.有1994个球,甲乙两人用这些球进行取球比赛.比赛的规则是:甲乙轮流取球,每人每次取1个,2个或3个,取最后一个球的人为失败者.①甲先取,甲为了取胜,他应采取怎样的策略?②乙先拿了3个球,甲为了必胜,应当采取怎样的策略?7.甲、乙二人轮流报数,必须报不大于6的自然数,把两人报出的数依次加起来,谁报数后加起来的数是2000,谁就获胜.如果甲要取胜,是先报还是后报?报几?以后怎样报?8.把一棋子放在如右图左下角格内,双方轮流移动棋子(只能向右、向上或向右上移),一次可向一个方向移动任意多格.谁把棋子走进顶格,夺取红旗,谁就获胜.问应如何取胜?参考答案1.解:把胜利者报完数后累加起来的和倒着进行排列:1000、995、990、985、…、10、5,这是一等差数列,公差d=5.且每个数都能被5整除.因此,胜利者第一次报完数后应为5,而进行的是1~4报数,所以甲要取胜,应让乙先报.然后根据乙报几,甲就报5减几,这样就能确保甲取胜.2.解:把这1994个格子从左至右编上号码为1,2,…,1994.把胜利者每走一步棋子所落入的号数倒着进行排列:1993、1988、1983、1978、…,这是一等差数列,公差d=5,且每个数被5除都余3.因而胜利者走第一步棋子所落入的号数是3号.所以,甲为了取胜,第一步向右移动2格.然后乙向右移动几个格,甲就向右移动5减几个格,这样就能确保获胜.3.解:把这54张扑克牌进行编号1~54,不妨设甲要取胜.把甲每次所拿牌中的最大序号倒着进行排列:53、48、43、38、…,这个等差数列的公差为5,且每个数被5除均余3,因此甲第一次应拿3张牌,以后乙拿几张,甲就拿5减几张,这样就能确保甲胜.4.解:把这n个1×1的小正方形进行编号1~n,不妨设为甲要取胜.把甲走完后所落入的正方形的号数倒着进行排列:n、n-4、n-8、…,这也是一等差数列.每个数被4除的余数都与n除以4的余数相同,所以甲的策略要根据n被4除的余数来定,下面分四种情况进行讨论:①如果n被4除余0:那么甲第一次走完后应落入4号格,因此甲先走,甲向右移动3格.②如果n被4除余1:那么甲第一次走完后应落入5号格,因而是由乙先走,乙走几格,甲就向右移动4减几格.③如果n被4除余2:那么甲第一次走完后应落入2号格,因此甲先走,向右移1格.④如果n被4除余3:那么甲第一次走完后应落入3号格,因此甲先走,向右移2格.5.解:分析过程与例4类似.甲的详细策略如下:6.解:①甲为了获胜,甲应先取1个球,以后乙取a个球,甲就取4-a个球.②乙先拿了3个球,甲为了必胜,甲应拿2个球,以后乙取a个球,甲就取4-a 个球.7.解:①甲要获胜必须先报,甲先报5;②以后,乙报几甲就接着报7减几.这样甲就能一定获胜.8.解:为保证取胜,应先走.首先把棋子走进E格,然后,不管对方走至哪一格,(肯定不会走进A~D格),先走者可以选择适当的方法一步走进A~D格中的某一格.如此继续,直至对方把棋子走进最后一列的某个格中,此时先走者一步即可走进顶格,夺取红旗,从而获胜.。

四年级下册数学竞赛试题:行程.扶梯问题(ABC级)全国通用

四年级下册数学竞赛试题:行程.扶梯问题(ABC级)全国通用

1. 对扶梯问题中顺(逆)扶梯速度、扶梯速度、人的速度的理解。

2. 在扶梯的相遇与追及问题中引入消元思想。

3. 解决行程问题时画线段图可以帮助解题。

一、扶梯问题说明扶梯问题与流水行船问题十分相像,区别只在与这里的速度并不是我们常见的“千米每小时”,或者“米每秒”,而是“每分钟走多少个台阶”,或是“每秒钟走多少个台阶”。

从而在扶梯问题中“总路程”并不是求扶梯有多少“千米”或者多少“米”,而是求扶梯的“静止时可见台阶总数”。

二、扶梯问题解题关键① 当人顺着扶梯的运动方向走台阶时,相当与流水行船中的“顺水行驶”,这里的水速就是扶梯自身的台阶运行速度。

有:人的速度+扶梯速度=人在扶梯上的实际速度扶梯静止可见台阶总数=时间×人速+时间×扶梯速=人走的台阶数+扶梯自动运行的台阶数 ② 当人沿着扶梯逆行时,有:人的速度-扶梯速度=人在扶梯上的实际速度扶梯静止可见台阶总数=时间×人速-时间×扶梯速=人走的台阶数-扶梯自动运行的台阶数。

【例 1】 小明站着不动乘电动扶梯上楼需30秒,如果在乘电动扶梯的同时小明继续向上走需12秒,那么电动扶梯不动时,小明徒步沿扶梯上楼需多少秒?【巩固】 如果在乘电动扶梯的同时小明继续向上走需12秒到达楼上,如果在乘电动扶梯的同时小明逆着例题精讲知识结构考试要求扶梯问题向下走需24秒到达楼下(千万别模仿!),那么电动扶梯不动时,小明徒步沿扶梯上楼需多少秒?【例 2】在地铁车站中,从站台到地面有一架向上的自动扶梯.小强乘坐扶梯时,如果每秒向上迈一级台阶,那么他走过20级台阶后到达地面;如果每秒向上迈两级台阶,那么走过30级台阶到达地面.从站台到地面有级台阶.【巩固】在地铁车站中,从站台到地面架设有向上的自动扶梯.小强想逆行从上到下,如果每秒向下迈两级台阶,那么他走过100级台阶后到达站台;如果每秒向下迈三级台阶,那么走过75级台阶到达站台.自动扶梯有多少级台阶?【例 3】小丁在捷运站搭一座电扶梯下楼.如果他向下走14阶,则需时30秒即可由电扶梯顶到达底部;如果他向下走28阶,则需时18秒即可由电扶梯顶到达底部.请问这座电扶梯有几阶?【例 4】自动扶梯以均匀的速度由下往上行驶着,两位性急的孩子要从扶梯上楼,已知男孩每分走20级,女孩每分走15级,结果男孩用了5分到达楼上,女孩用了6分到达楼上.问该扶梯露在外面的部分共有多少级?【巩固】小志与小刚在电梯上的行走速度分别为每秒2个台阶和每秒3个台阶,电梯运行后,他俩沿电梯运行方向的相同方向从一楼走上二楼,分别用时28秒和20秒,那么小志攀登静止的电梯需要用【例 5】商场的自动扶梯以匀速由下往上行驶,两个孩子在行驶的扶梯上上下走动,女孩由下往上走,男孩由上往下走,结果女孩走了40级到达楼上,男孩走了80级到达楼下.如果男孩单位时间内走的扶梯级数是女孩的2倍,则当该扶梯静止时,可看到的扶梯梯级有多少级?【巩固】商场的自动扶梯以匀速由下往上行驶,两个孩子在行驶的扶梯上上下走动,女孩由下往上走,男孩由上往下走,结果女孩走了40级到达楼上,男孩走了80级到达楼下.如果男孩单位时间内走的扶梯级数是女孩的3倍,则当该扶梯静止时,可看到的扶梯梯级有多少级?【例6】在商场里,小明从正在向上移动的自动楼梯顶部下120级台阶到达底部,然后从底部上90级台阶回到顶部.自动楼梯从底部到顶部的台阶数是不变的,假设小明单位时间内下的台阶数是他上的台阶数的2倍.则该自动楼梯从底到顶的台阶数为.【例7】小淘气乘正在下降的自动扶梯下楼,如果他一级一级的走下去,从扶梯的上端走到下端需要走36级.如果小淘气沿原自动扶梯从下端走到上端(很危险哦,不要效仿!),需要用下楼时5倍的速度走60级才能走到上端.请问这个自动扶梯在静止不动时有多少级?【例8】甲在商场中乘自动扶梯从一层到二层,并在顺扶梯运行方向向上走,同时乙站在速度相等的并排扶梯从二层到一层.当甲乙处于同一高度时,甲反身向下走,结果他走了60级到达一层.如果他到了顶端再从“上行扶梯”返回,则要往下走80级.那么,自动扶梯不动时甲从下到上要走【随练1】 自动扶梯由下向上匀速运动,每两秒想上移动1级台阶。

学而思网校 游戏与策略例一

学而思网校 游戏与策略例一

学而思网校游戏与策略例一
学而思讲义四年级第三讲(游戏与对策)
1、基本前提
游戏双方足够聪明,目的都是获胜。

方法:倒推三、
2、游戏类型
拿火柴棍/抢数如:桌子上放着10根火柴,二人轮流每次取走1—2根,规定谁取走最后一根火柴谁获胜。

你知道必胜的方法吗?
分析:如果从开始分析,“局面”太大,有太多种取法要讨论。

所以我们尝试从结果倒推。

如上图,要必胜,也就是要让自己拿到10号火柴,那就应给对方留下8,9,10三根火柴供他取,这样对方不管取一根还是两根,自己都能拿到最后的10号火柴。

照这样分析,自己应该拿到7号火柴(这样就是给对方留下了8,9,10号三根)就必胜。

同理分析,要想取7号,就应该取4号,要想取4号,就应该取1号。

那么,本题的制胜点就是1,4,7,10号火柴,对于足够聪明的人来说,拿到第一个制胜点1号火柴,一定能拿到其余的制胜点。

所以本题要必胜,就要抢先取1根,然后对方取a根,自己就取3-a根,这样保证自己能取到每一个制胜点,最终取到10号火柴。

总结一下,同学们应该能看出,这里面有周期现象(只是周期是从后往前排布的),周期是几呢?是可取的最大限度2再加1等于3,制胜点是哪些呢?是每个周期的最后一根。

掌握此规律,就不难总结出这类题的解题方法了。

四年级下册数学竞赛试题-统筹规划(ABC级).学生版-全国通用(无答案)

四年级下册数学竞赛试题-统筹规划(ABC级).学生版-全国通用(无答案)

统筹学是一门数学学科,但它在许多的领域都在使用,在生活中有很多事情要去做时,科学的安排好先后顺序,能够提高我们的工作效率.我国著名数学家华罗庚教授生前十分重视数学的应用,并亲自带领小分队推广优选法、统筹法,使数学直接为国民经济发展服务,他在中学语文课本中,曾有一篇名为《统筹原理》的文章详,细介绍了统筹方法和指导意义.运筹学是利用数学来研究人力、物力的运用和筹划,使它们能发挥最大效率的科学。

它包含的内容非常广泛,例如物资调运、场地设置、工作分配、排队、对策、实验最优等等,每类问题都有特定的解法。

运筹学作为一门科学,要运用各种初等的和高等的数学知识及方法,但是其中分析问题的某些朴素的思想方法,如高效率优先的原则、调整比较的思想、尝试探索的方法等,都是我们小学生能够掌握的。

这些来源于生活实际的问题,正是启发同学们学数学、用数学最好的思维锻炼题目。

本讲主要讲统筹安排问题、排队问题、最短路线问题、场地设置问题等。

这些都是人们日常生活、工作中经常碰到的问题,怎样才能把它们安排得更合理,多快好省地办事,就是这讲涉及的问题。

“节省跑空车的距离”是物资调运问题的一个原则。

“发生对流的调运方案”不可能是最优方案。

“小往大靠,支往干靠”。

一、合理安排时间【例 1】 星期天妈妈要做好多事情。

擦玻璃要20分钟,收拾厨房要15分钟,洗脏衣服的领子、袖口要10分钟,打开全自动洗衣机洗衣服要40分钟,晾衣服要10分钟。

妈妈干完所有这些事情最少用多长时间?【巩固】 妈妈让小明给客人烧水沏茶。

洗开水壶要用1分钟,烧开水要用15分钟,洗茶壶要用1分钟,例题精讲知识框架统筹规划洗茶杯要用1分钟,拿茶叶要用2分钟。

小明估算了一下,完成这些工作要花20分钟。

为了使客人早点喝上茶,按你认为最合理的安排,多少分钟就能沏茶了?【例2】6个人各拿一只水桶到水龙头接水,水龙头注满6个人的水桶所需时间分别是5分钟、4分钟、3分钟、10分钟、7分钟、6分钟.现在只有这一个水龙头可用,问怎样安排这6人的打水次序,可使他们总的等候时间最短?这个最短时间是多少?【巩固】有甲、乙两个水龙头,6个人各拿一只水桶到水龙头接水,水龙头注满6个人的水桶所需时间分别是5分钟、4分钟、3分钟、10分钟、7分钟、6分钟.怎么安排这6个人打水,才能使他们等候的总时间最短,最短的时间是多少?【例3】小明骑在牛背上赶牛过河.共有甲、乙、丙、丁4头牛.甲牛过河需要1分钟,乙牛过河需要2分钟,丙牛过河需要5分钟,丁牛过河需要6分钟.每次只能赶两头牛过河,那么小明要把这4头牛都赶到对岸,最小要用多少分钟?【巩固】有四个人在晚上准备通过一座摇摇欲坠的小桥.此桥每次只能让2个人同时通过,否则桥会倒塌.过桥的人必须要用到手电筒,不然会一脚踏空.只有一个手电筒.4个人的行走速度不同:小强用1分种就可以过桥,中强要2分中,大强要5分中,最慢的太强需要10分中.17分钟后桥就要倒塌了.请问:4个人要用什么方法才能全部安全过桥?二、合理安排地点【例 4】 如图,在街道上有A 、B 、C 、D 、E 、F 六栋居民楼,现在设立一个公交站,要想使居民到达车站的距离之和最短,车站应该设在何处?【巩固】 如图,在街道上有A 、B 、C 、D 、E 五栋居民楼,每栋楼里每天都有20个人要坐车,现在设立一个公交站,要想使居民到达车站的距离之和最短,应该设在何处?【例 5】 在一条公路上每隔100千米,有一个仓库(如图)共有5个仓库,一号仓库存有10吨货物,二号仓库有20吨货物,五号仓库存有40吨货物,其余两个仓库是空的.现在想把所以的货物集中存放在一个仓库里,如果每吨货物运输1公里需要0.5元运输费,那么最少要多少运费才行?40吨20吨10吨五四三二一【巩固】 在一条公路上,每隔10千米有一座仓库(如图),共有五座,图中数字表示各仓库库存货物的重量.现在要把所有的货物集中存放在一个仓库里,如果每吨货物运输1千米需要运费0.9元,那么集中到哪个仓库运费最少?6010吨20吨30吨10吨【例 6】 某个班的20个学生的家庭住址在城市中的分布如图(圆点是各个学生的家庭住址,线段是街道),如果这个班的学生举行一个聚会,为了尽量减少每个学生行走路程总和,那么他们应该选择 十字路口附近的地点。

学而思讲义四年级第三讲(游戏与对策)(2024版)

学而思讲义四年级第三讲(游戏与对策)(2024版)

第三讲 游戏与对策一、基本前提游戏双方足够聪明,目的都是获胜。

二、方法:倒推三、游戏类型(一)拿火柴棍/抢数如:桌子上放着10根火柴,二人轮流每次取走1—2根,规定谁取走最后一根火柴谁获胜。

你知道必胜的方法吗?分析:如果从开始分析,“局面”太大,有太多种取法要讨论。

所以我们尝试从结果倒推。

如上图,要必胜,也就是要让自己拿到10号火柴,那就应给对方留下8,9,10三根火柴供他取,这样对方不管取一根还是两根,自己都能拿到最后的10号火柴。

照这样分析,自己应该拿到7号火柴(这样就是给对方留下了8,9,10号三根)就必胜。

同理分析,要想取7号,就应该取4号,要想取4号,就应该取1号。

那么,本题的制胜点就是1,4,7,10号火柴,对于足够聪明的人来说,拿到第一个制胜点1号火柴,一定能拿到其余的制胜点。

所以本题要必胜,就要抢先取1根,然后对方取a 根,自己就取3-a 根,这样保证自己能取到每一个制胜点,最终取到10号火柴。

总结一下,同学们应该能看出,这里面有周期现象(只是周期是从后往前排布的),周期是几呢?是可取的最大限度2再加1等于3,制胜点是哪些呢?是每个周期的最后一根。

掌握此规律,就不难总结出这类题的解题方法了:解题方法:(1)找周期:周期等于可拿最大限度+1(2)总数÷周期1 桌子上放着60根火柴,聪明昊、神奇涛二人轮流每次取走1—3根,规定谁取走最后一根火柴谁获胜。

你知道必胜的方法吗?解析: 周期为 3+1=4(根)60÷4=15(组) (整除,应该抢后)制胜点:4,8,12 (60)做法:1、让对方先取2、对方取a 根,自己就取4-a 根2 有一种抢数游戏,是两个人从自然数1开始轮流报数,规定每次至少报几个数与至多报几个数(都是自然数),最后谁报到规定的“某个数字”为胜。

如“抢50”,规定每次必须报1或2个1 2 3 4 5 6 7 8 9 10有余数:抢先拿余数整除(余数为0):抢后自然数,从1开始,谁抢报到50为胜。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实际操作与策略问题这类题目能够很好的提高学生思考问题的能力,激发学生探索数学规律的兴趣,并通过寻找最佳策略过程,培养学生的创造性思维能力,这也是各类考试命题者青睐的这类题目的原因。

一、游戏与策略
【例 1】 A 、B 、C 、D 、E 五个小朋友做游戏,每轮游戏都按照下面的箭头方向把原来手里的玩具传给另
外一个小朋友:A ->C ,B ->E ,C ->A ,D ->B ,E ->D .开始A 、B 拿着福娃,C 、D 、E 拿着福牛,传递完5轮时,拿着福娃的小朋友是( ).
(A )C 与D (B ) A 与D (C ) C 与E (D ) A 与B
【巩固】 下图是一座迷宫,请画出任意一条从A 到B 的通道。

【例 2】
请在5×5的棋盘中放入10个国际象棋中的皇后,使得标有数N 的格子恰好受到N 枚皇后的攻
击.每个格最多一枚棋子,标有数的格子不能放棋子.如果有超过一枚皇后从同一方向攻击到某个格子,只计算最前方的那枚皇后(注:每只皇后可攻击同一行、同一列或同一斜线上的格子).
例题精讲
知识框架
游戏策略
1
7
4
5
【巩固】下图是常见的正方体,我们可以看到三面共有3 9=27个变成为1的正方体,在这三面上有三条蛇。

每条有5个连续的正方形(每两个连续正方形有一条公共边)组成,不全在一个面上,每两条蛇互不接触(两条蛇的方格不能有公共点),请将这三条蛇画出来。

(用阴影将蛇所在的正方形画出来)
【例3】将1—13这13个自然数分别写在13张卡片上,再将这13张卡片按一定的顺序从左至右排好.然后进行如下操作:将从左数第一张和第二张依次放到最后,将第三张取出而这张卡片上的数是1;
再将下面的两张依次放到最后并取出下一张,取出的卡片上面的数是2;继续将下面的两张依次
放到最后并取出下一张,取出的卡片上面的数是3……如此进行下去,直到取出最后一张是13为
止.则13张卡片最初从左到右的顺序为.
【巩固】在纸上写着一列自然数1,2,…,98,99.一次操作是指将这列数中最前面的三个数划去,然后把这三个数的和写在数列的最后面.例如第一次操作后得到4,5,…,98,99,6;而第二次操作后得到7,8,…,98,99,6,15.这样不断进行下去,最后将只剩下一个数,则最后剩下的数是.
【例4】有足够多的盒子依次编号0,1,2,…,只有0号是黑盒,其余的都是白盒.开始时把10个球放入白盒中,允许进行这样的操作:如果k号白盒中恰有k个球,可将这k个球取出,并给0号、
1号、…,(1)
k-号盒中各放1个.如果经过有限次这样的操作后,最终把10个球全放入黑盒中,那么4号盒中原有个球.
【巩固】设有25个标号筹码,其中每个筹码都标有从1到49中的一个不同的奇数,两个人轮流选取筹码.当一个人选取了标号为x的筹码时,另一个人必须选取标号为99x
-的最大奇因数的筹码.如果第一个被选取的筹码的编号为5,那么当游戏结束时还剩个筹码.
【例5】今有101枚硬币,其中有100枚同样的真币和1枚伪币,伪币和真币的重量不同.现需弄清楚伪币究竟比真币轻还是重、但只有一架没有砝码的天平,那么怎样利用这架天平称两次,来达
到目的?
【巩固】9个金币中,有一个比真金币轻的假金币,你能用天平称两次就找出来吗(天平无砝码)?
二、染色与操作
【例6】六年级一班全班有35名同学,共分成5排,每排7人,坐在教室里,每个座位的前后左右四个位置都叫作它的邻座.如果要让这35名同学各人都恰好坐到他的邻座上去,能办到吗?为什
么?
【巩固】图是学校素质教育成果展览会的展室,每两个相邻的展室之间都有门相通.有一个人打算从A室开始依次而入,不重复地看过各室展览之后,仍回到A室,问他的目的能否达到,为什么?
A
【例7】右图是某套房子的平面图,共12个房间,每相邻两房间都有门相通.请问:你能从某个房间出发,不重复地走完每个房间吗?
【巩固】有一次车展共6636
⨯=个展室,如右图,每个展室与相邻的展室都有门相通,入口和出口如图
所示.参观者能否从入口进去,不重复地参观完每个展室再从出口出来?
【例8】右图是半张中国象棋盘,棋盘上放有一只马.众所周知,马是走“日”字的.请问:这只马能否不重复地走遍这半张棋盘上的每一个点,然后回到出发点?

【巩固】一只电动老鼠从右图的A点出发,沿格线奔跑,并且每到一个格点不是向左转就是向右转.当这只电动老鼠又回到A点时,甲说它共转了81次弯,乙说它共转了82次弯.如果甲、乙二人有一人说对了,那么谁正确?
【例9】能否用9个所示的卡片拼成一个66
⨯的棋盘?
【巩固】如右图,缺两格的88
⨯方格有62个格,能否用31个图不重复地盖住它且不留空隙?
【例 10】 在88⨯的网格正方形(如图1)中用图2形状的图形来覆盖,要求图2的分割线落在正方形的网格
线上.为使所余部分不能再放下图2形状的图形,最少需用图2形状的图形 个.
图1 图2
【巩固】 用若干个22⨯和33⨯的小正方形能不能拼成一个1111⨯的大正方形?请说明理由.
【例 11】 对于任意一个自然数n ,当n 为奇数时,加上121;当n 为偶数时,除以2,这算一次操作.现
在对231连续进行这种操作,在操作过程中是否可能出现100?为什么?
【巩固】 小牛对小猴说:“对一个自然数n 进行系列变换:当n 是奇数时,则加上2007;当n 是偶数时,
则除以2.现在对2004连续做这种变换,变换中终于出现了数2008.”小猴说:“你骗人!不可
8
8
2
2
1
1
能出现2008.”请问:小牛和小猴谁说得对呢?为什么?
【随练1】 你有四个装药丸的罐子,每个药丸都有一定的重量,被污染的药丸是没被污染的重量+1.只称量
一次,如何判断哪个罐子的药被污染了?
【随练2】 右图是由14个大小相同的方格组成的图形.试问能不能剪裁成7个由相邻两方格组成的长方
形?
【随练3】 用9个14⨯的长方形能不能拼成一个66⨯的正方形?请说明理由.
【随练4】 在2009张卡片上分别写着数字1、2、3、4、……、2009,现在将卡片的顺序打乱,让空白面朝
上,并在空白面上又分别写上1、2、3、4、……、2009.然后将每一张卡片正反两个面上的数字相加,再将这2009个和相乘,所得的积能否确定是奇数还是偶数?
课堂检测
【作业1】 在信息时代信息安全十分重要,往往需要对信息进行加密,若按照“乘3加1取个位”的方式逐
位加密,明码“16”加密之后的密码为“49”,若某个四位明码按照上述加密方式,经过两次加密得到的密码是“2445”,则明码是 .
【作业2】 有大,中,小3个瓶子,最多分别可以装入水1000克,700克和300克.现在大瓶中装满水,希
望通过水在3个瓶子间的流动使得中瓶和小瓶上标出100克水的刻度线,问最少要倒几次水?
【作业3】 如右图,在55 方格的A 格中有一只爬虫,它每次总是只朝上下左右四个方向爬到相邻方格
中.那么它能否不重复地爬遍每个方格再回到A 格中?
【作业4】 你能把下面的图形分成7个大小相同的长方形吗?动手画一画.
A
家庭作业
【作业5】 用若干个22⨯和33⨯的小正方形能不能拼成一个1111⨯的大正方形?请说明理由.
【作业6】 对于表⑴,每次使其中的任意两个数减去或加上同一个数,能否经过若干次后(各次减去或加
上的数可以不同),变为表⑵?为什么?
1010001
01
(2)
(1)
9
87
654321教学反馈。

相关文档
最新文档