4.5.3 相似三角形的性质及其应用 jin

合集下载

相似三角形的性质和实际应用

相似三角形的性质和实际应用

相似三角形的性质和实际应用相似三角形是初中数学中一个重要的概念,它有着广泛的实际应用。

本文将介绍相似三角形的性质以及在实际生活中的应用。

一、相似三角形的性质相似三角形是指具有相同的形状但大小不同的三角形。

相似三角形的性质有以下几点:1.对应角相等:如果两个三角形的三个内角分别对应相等,则它们是相似三角形。

例如,如果∠A=∠D,∠B=∠E,∠C=∠F,则△ABC∽△DEF。

2.对应边成比例:相似三角形中,对应边的长度成比例。

即如果两个三角形的两个对应边的比值相等,则它们是相似三角形。

例如,如果AB/DE=BC/EF=AC/DF,则△ABC∽△DEF。

3.周长比例:相似三角形的周长之比等于对应边长度之比。

设两个相似三角形的周长分别为L1和L2,对应边长度之比为k,则有L1/L2=k。

4.面积比例:相似三角形的面积之比等于对应边长度平方的比值。

设两个相似三角形的面积分别为S1和S2,对应边长度之比为k,则有S1/S2=k²。

二、相似三角形的实际应用1.测量高度:相似三角形的性质可以在测量高度时应用。

例如,在测量一座高楼的高度时,可以利用相似三角形的原理,通过测量自己的身高及影子的长度,然后利用身高与影子的长度之比,以及高楼与其影子的长度之比,计算出高楼的高度。

2.影视特技:在电影、电视剧等影视制作中,有时需要通过特技手法来表现出高楼倒塌等场景。

这时,可以利用相似三角形的性质,制作比例缩小的模型,然后通过摄影机的角度选择和镜头拉远,使得模型在电影中看起来像真实的大楼倒塌一样。

3.地图测量:在地图制作和测量工作中,也经常使用相似三角形的原理。

通过测量地面上的一段距离和其在地图上的投影长度,可以得到地面与地图的比例,从而便于进行地图上其他地点的距离估算。

4.影像重建:在计算机视觉和计算机图形学领域,相似三角形的概念也被广泛应用。

通过计算图像中物体的相似三角形关系,可以进行三维模型的重建,实现计算机生成的虚拟现实场景。

4.5《相似三角形的性质及其应用(2)》参考教案

4.5《相似三角形的性质及其应用(2)》参考教案

4.5 相似三角形的性质及其应用(2)
1、经历相似三角形性质“相似三角形对应高线、对应中线、对应角平分线之比等于相似比”“相似三角形的周长之比等于相似比”和“相似三角形的面积之比等于相似比的平方”的探究过程。

2、掌握“相似三角形对应高线、对应中线、对应角平分线之比等于相似比”“相似三角形的周长之比等于相似比”和“相似三角形的面积之比等于相似比的平方”的两个性质。

3、会运用上述两个性质解决简单的几何问题。

1、教学的重点是关于相似三角形的周长和面积的两个性质及对应线段的性质。

2、“相似三角形的面积之比等于相似比的平方”这一性质的证明,涉及到相似三角形的判定及性质,过程比较复杂,证明思想的建构是本节教学的难点。

相似三角形的性质
1、相似三角形的对应角相等,对应边成比例。

2、相似三角形对应高线、对应中线、对应角平分线之比等于相似比。

3、相似三角形的周长比等于相似比;相似三角形的面积比等于相似比的平方。

根据本节课的教学内容和目标主要采用讲授法、讨论法、发现法。

相似三角形的性质与应用

相似三角形的性质与应用

相似三角形的性质与应用相似三角形是初中数学中一个重要的概念,它在解决各个数学问题中起到了关键的作用。

本文将介绍相似三角形的性质以及在实际应用中的运用。

一、相似三角形的定义和性质相似三角形是指两个或多个三角形的对应角相等,并且对应边成比例。

根据这个定义,我们可以得到相似三角形的一些重要性质。

1. AA相似定理:若两个三角形的对应角相等,那么这两个三角形相似。

这个定理可以用来判断两个三角形是否相似,从而简化了计算。

2. AAA相似定理:如果两个三角形的对应角相等,那么这两个三角形相似。

这个定理说明了对应角相等是相似三角形的充分条件。

3. 相似三角形的对应边成比例:相似三角形的对应边成比例,即对应边的比值相等。

这个性质可以用来求解相似三角形的边长。

二、相似三角形的应用相似三角形的应用非常广泛,涉及到几何、数学和物理等多个领域。

下面列举了一些常见的应用场景。

1. 测量高度:当我们无法直接测量一个高大物体(如树或大楼)的高度时,可以利用相似三角形的性质来计算。

具体的步骤包括:在地面上选取一个适当的距离和角度,测量该距离所对应的高度与距离的比值;然后测量眼睛与地面的高度与测量距离的比值;最后利用相似三角形的对应边成比例的性质,可以计算出物体的实际高度。

2. 相似图形的绘制:在绘制图形时,我们可以利用相似三角形的性质进行比例放大或缩小。

例如,当要将一个城市的地图缩小到一张纸上时,可以通过选取一些关键点的坐标,然后利用相似三角形的对应边成比例的性质,将实际尺寸转换为纸上的尺寸,从而绘制出相似的地图。

3. 解决几何问题:相似三角形的性质在解决几何问题中起到了重要的作用。

例如,当我们需要计算一个不规则图形的面积时,可以利用相似三角形的面积比来简化计算。

此外,在解决直角三角形的问题时,相似三角形的性质也常常被使用。

4. 推导物体的相似性:在物理学中,我们经常需要推导物体的相似性。

比如,在计算机图形学中,我们可以通过计算两个物体的相似三角形,从而得出它们的相似性,并进行进一步的分析和计算。

初中数学教案:相似三角形的性质与应用

初中数学教案:相似三角形的性质与应用

初中数学教案:相似三角形的性质与应用相似三角形的性质与应用一、引言数学是一门基础学科,而其中的几何部分更是对我们生活中的实际问题有着广泛的应用。

在初中阶段,相似三角形作为几何学中重要的内容之一,具有深远的意义和广泛的应用范围。

本文将从相似三角形的性质入手,探讨其在数学教育中的实际应用。

二、相似三角形的定义和基本性质1. 相似三角形定义相似三角形指两个或多个三角形,在每一个对应边成比例,对应角相等或成比例。

2. 相似三角形性质- 对应角相等: 如果两个三角形的对应顶点间的夹角分别相等,则这两个三角形是相似的。

- 对应边成比例: 如果两个三角形各边之比都相等,则这两个三角形是相似的。

- 任意两个锐角分别相等: 如果两个锐角、一个锐角一个钝/直/补直/平邻分相关即它们之和为180°,则这两个锐塾彩-。

- 被过付线从不同顶点所切三角形的对应部分分别成比例: 如果两个三角形有一个公共顶点,且该顶点的两条直线交叉切割另外两个顶点所在边,则与该交叉线相交的两条边上截获部分之比相等。

3. 相似三角形的判定- SSS判定法: 依据两个三角形各边之比都相等。

- SAS判定法: 依据对应锐角相等和一条对应边成比例。

- AA判定法: 依据对应锐角(或全等两边)相等。

三、相似三角形的应用场景1. 海上测距问题在实际生活中,海上航行时需要测算舰船之间的距离。

设立一个观察塔,并恰好在一个平面内与地平线垂直,可利用观察塔上的仪器,在指定时刻测得几何高及其基座的宽度。

通过利用观察塔到目标物体上沿地面高度和倾斜仪读数来计算目标物体至观察塔之间的水平距离,并借助相似三角形原理得出结果。

2. 塔楼高度问题在测算一个塔或建筑物的高度时,可以利用相似三角形的原理。

观察者站在已知距离塔底点A处,并且与水平线保持平行,通过仰望顶部点B所成的角度,以及观察者自身与地面上某个标记点C间保持竖直状态时视线和水平线之间的夹角,再测量AB的长度(为已知值),从而利用相似三角形得出塔楼的高度。

相似三角形的性质与应用讲义(比较完整)

相似三角形的性质与应用讲义(比较完整)

相似三角形的性质和应用教学目标1、经历相似三角形性质“相似三角形对应高线、对应中线、对应角平分线之比等于相似比”“相 似三角形的周长之比等于相似比”和“相似三角形的面积之比等于相似比的平方”的探究过程.2、掌握“相似三角形对应高线、对应中线、对应角平分线之比等于相似比”“相似三角形的周长之比等于相似比”和“相似三角形的面积之比等于相似比的平方”的两个性质.3、会运用上述两个性质解决简单的几何问题.重点、难点1、本节教学的重点是关于相似三角形的周长和面积的两个性质及对应线段的性质.2、相似三角形的性质的证明,要用到相似三角形的判定及性质,过程比较复杂,是本节教学的难点.考点及考试要求1、相似三角形的对应角相等,对应边成比例.2、相似三角形的周长比等于相似比,面积比等于相似比的平方教学内容:知识框架1、相似三角形的对应角相等,对应边成比例.2、2、相似三角形对应高线、对应中线、对应角平分线之比等于相似比.3、3、相似三角形的周长比等于相似比;相似三角形的面积比等于相似比的平方.题型分类考点一:计算线段的长或线段之间的比例1:已知:如图,在△ABC 中,∠ACB =90°,CD ⊥AB 于D ,AC =6,DB =5,求AD 的长.A BC DABDE针对练习: 如图,在等腰三角形ABC 中,AB=AC ,底边上的高AD=10cm ,腰AC 上的高BE=12cm .求证:35=BD AB ;例2:已知:如图,△ABC 中,AB =AC ,BD ⊥AC 于D .求证: BC 2=2CD ·AC . 思考:欲证 BC 2=2CD ·AC ,只需证BCACCD BC =2.但因为结论中有“2”,无法直接找到它们所在的相似三角形,该怎么办?BC知识概括、方法总结与易错点分析 1、 相似三角形对应边成比例;2、从结论出发找到边所在的三角形,再利用已知条件证明三角形相似。

考点二:证明线段平行典型例题.如图,AD 为ABC ∆的角平分线,BE 垂直于AD 的延长线于E ,AD CF ⊥于F ,BF ,EC 的延长线交于点P ,求证:AP CF //针对练习:如图,梯形ABCD 中,CD AB //,M 为AB 的中点,分别连结AC ,BD ,MD ,MC ,且AC 与MD 交于E ,DB 与MC 交于F ,求证:CD EF //知识概括、方法总结与易错点分析相似三角形的判断、性质和平行线的判定考点三:求相似三角形的周长典型例题例:两相似三角形的对应边的比为4:5,周长和为360cm ,这两个三角形的周长分别是多少?针对练习:如图,D 、E 分别是AC ,AB 上的点,∠ADE =∠B ,AG ⊥BC 于点G ,AF ⊥DE 于点F.若AD =3,AB =5,求:(1)AGAF;(2)△ADE 与△ABC 的周长之比;知识概括、方法总结与易错点分析 相似三角形的周长比等于相似比ABCDE F考点四:计算多边形的面积典型例题1.如图,已知:在ABC ∆与CAD ∆中,BC DA //,CD 交AB 于E ,且2:1:=EB AE ,BC EF //交AC 于F ,1=∆ADE S 。

2024年浙教版数学九年级上册4.5《相似三角形的性质及应用》教学设计

2024年浙教版数学九年级上册4.5《相似三角形的性质及应用》教学设计

2024年浙教版数学九年级上册4.5《相似三角形的性质及应用》教学设计一. 教材分析《相似三角形的性质及应用》是浙教版数学九年级上册第4.5节的内容。

本节主要介绍相似三角形的性质,包括相似三角形的对应边成比例、对应角相等以及相似比的概念。

同时,通过实际例题让学生了解相似三角形在实际问题中的应用。

本节内容是学生学习几何知识的重要环节,为后续学习相似多边形、三角函数等知识打下基础。

二. 学情分析九年级的学生已经掌握了三角形的基本知识,具备一定的逻辑思维能力。

但是,对于相似三角形的性质及应用,部分学生可能还存在一定的困难。

因此,在教学过程中,要关注学生的认知水平,注重引导,激发学生的学习兴趣,提高学生的动手操作能力和解决问题的能力。

三. 教学目标1.理解相似三角形的性质,掌握相似三角形的对应边成比例、对应角相等。

2.学会运用相似三角形的性质解决实际问题,提高学生的应用能力。

3.培养学生的观察能力、动手操作能力和团队协作能力。

四. 教学重难点1.相似三角形的性质及其证明。

2.相似三角形在实际问题中的应用。

五. 教学方法1.采用问题驱动法,引导学生主动探究相似三角形的性质。

2.利用多媒体辅助教学,展示相似三角形的动态变化,增强学生的直观感受。

3.运用实例分析法,让学生了解相似三角形在实际问题中的应用。

4.小组讨论,培养学生的团队协作能力。

六. 教学准备1.多媒体教学设备。

2.教学课件。

3.练习题及答案。

4.三角板、直尺等绘图工具。

七. 教学过程1.导入(5分钟)利用多媒体展示两组三角形,让学生观察并判断它们是否相似。

通过直观的展示,引发学生的思考,激发学生的学习兴趣。

2.呈现(10分钟)介绍相似三角形的定义及其性质,包括对应边成比例、对应角相等。

通过示例和证明,让学生理解和掌握相似三角形的性质。

3.操练(10分钟)让学生分组进行动手操作,利用三角板、直尺等工具,绘制一组相似三角形,并验证它们的性质。

教师巡回指导,解答学生的疑问。

初中数学知识归纳相似三角形的性质

初中数学知识归纳相似三角形的性质

初中数学知识归纳相似三角形的性质相似三角形是初中数学中重要的概念之一,它在几何学和应用数学中都具有广泛的应用。

相似三角形是指具有相同形状但大小不同的两个三角形。

在本文中,我们将归纳相似三角形的性质,全面了解相似三角形的特点和应用。

一、相似三角形的定义相似三角形的定义是指两个三角形的对应角相等,对应边成比例。

具体表达为:若ΔABC∽ΔA'B'C',则有∠A=∠A',∠B=∠B',∠C=∠C',且AB/A'B' = BC/B'C' = AC/A'C'。

二、相似三角形的性质1. 对应角相等性质:相似三角形的对应角相等,即∠A=∠A',∠B=∠B',∠C=∠C'。

2. 对应边成比例性质:相似三角形的对应边成比例,即AB/A'B' = BC/B'C' = AC/A'C'。

3. 相似三角形的边比例性质:在相似三角形中,各边之间的比值相等。

例如,若ΔABC∽ΔA'B'C',则有AB/BC = A'B'/B'C' = AC/BC =A'C'/B'C'。

三、相似三角形的判定1. AA判定法:若两个三角形的两个角分别相等,则这两个三角形相似。

即若∠A=∠A',∠B=∠B',则ΔABC∽ΔA'B'C'。

2. SAS判定法:若两个三角形的一个角相等,且两个角的对边成比例,则这两个三角形相似。

即若∠A=∠A',AB/A'B' = AC/A'C',则ΔABC∽ΔA'B'C'。

3. SSS判定法:若两个三角形的三边成比例,则这两个三角形相似。

即若AB/A'B' = BC/B'C' = AC/A'C',则ΔABC∽ΔA'B'C'。

相似三角形的性质与应用

相似三角形的性质与应用

相似三角形的性质与应用相似三角形是初中数学中的重要概念,它们具有一些特定的性质和各种应用。

本文将介绍相似三角形的性质,以及在实际问题中如何应用相似三角形来解决一些实际问题。

一、相似三角形的性质相似三角形是指具有相同形状但大小不一的两个三角形。

相似三角形具有以下几个基本性质:1. 对应角相等性质:相似三角形中的对应角相等,即相等角所对的边成比例。

例如,若∠A≌∠D,则边AB与边DE的比等于边AC与边DF的比,即AB/DE = AC/DF。

2.对应边成比例性质:相似三角形中的对应边成比例,即边的比和角的比之间成立。

例如,若AB/DE = AC/DF,则∠A≌∠D。

3.三角形的扩大缩小性质:相似三角形中,如果一个三角形的边与另一个三角形的边成比例,那么这两个三角形是相似的。

例如,如果AB/DE = AC/DF且BC/EF = AC/DF,则三角形ABC与三角形DEF相似。

二、相似三角形的应用相似三角形在实际问题中具有广泛的应用。

下面介绍几个常见的应用:1.测量高度:相似三角形可用于测量无法直接测量的高度。

例如,当直接无法测量一座建筑物的高度时,可以利用相似三角形原理,在地面上测量一个已知距离的长度,然后观察建筑物的倾斜角度,从而利用相似三角形的比例关系计算出建筑物的高度。

2.计算距离:相似三角形还可用于计算距离。

例如,当无法直接测量两个不相邻点之间的距离时,可以利用相似三角形与已知距离的比例关系计算出所需距离。

3.设计工程:在设计工程中,相似三角形可用于模拟大规模结构的小规模模型。

通过将真实结构缩小成模型,可以通过相似三角形的比例关系获得有关真实结构的信息,从而进行有效的设计和分析。

4.地图测绘:在制作地图时,为了将真实距离转换为地图上的距离,可利用相似三角形的比例关系来缩放。

这样可以保持地图的比例并准确表示真实距离。

总结:相似三角形的性质和应用是初中数学中的重要内容。

准确理解相似三角形性质,并能灵活运用到实际问题中,能够帮助我们解决许多几何和测量方面的困难。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分别根据上述两种不同方
请你自己写出求解过程,
法求并与出同树伴高探讨(,精还确有其到0.1M)
他测量树高的方法吗?
4.小聪和他的同学利用影长测量旗杆 高度(如图),当1m长的直立竹竿 的影长为1.5m时,测量旗杆落在地 上的影长为21m,落在墙上的影长为 2m.求旗杆的高度.
1、如图,△ABC
B
C
P
O
例3 数学兴趣小组测校内一棵树高,有 以下两种方法:
方法一:如图,把镜子放在离树(AB)8M 点E处,然后沿着直线BE后退到D,这时恰好 在镜子里看到树梢顶点A,再用皮尺量得 DE=2.8M,观察者目高CD=1.6M;
A C
DE
B
3.数学兴趣小组测校内一棵树高,有 以下两种方法:
方法二:如图,把长为2.40M的标杆CD 直立在地面上,量出树的影长为2.80M ,标杆影长为1.47M。
③利用相似解决问题
BC=120毫米,高AD=80毫米,要把它加工成正
方形零件,使正方形的一边在BC上,其余两个顶
点分别在AB、AC上,这个正方形零件的边长是多
少解?:设正方形PQMN是符合要求的△ABC的高
A
AD与PN相交于点E。设正方形PQMN的边长为
x毫米。
PE N
因为PN∥ABCE ,所以△PANPN∽ △ABC
所以 因此
AD 80–x
=
=,得xxB=C48(毫米)。答:边B长为48Q毫米D。
M
C
80
120
3.如图,正方形城邑DEFG的四面正中各有城 门,出北门20步的A处(HA=20步)有一 树木,出南门14步到C处(KG=14步),再 向西行1 775步到B处(CB=1 775步),正 好看到A处的树木(点D在直线AB上).求城
浙教版九(上)
§4.5 相似三角形的性质及其应用(3)
如图. 有一路灯杆AB,小明在灯光下看
到自己的影子DF,那么
(1)在图中有相似三角形吗?如有,请写出.
(2)如果已知BD=3m,DF=1m,小明身高为
1.6m,你能求得路灯杆的高吗?
A
C
F D
B
例2 如图,屋架跨度的一半OP=5m,高 度OQ=2.25m,现要在屋顶上开一个天 窗,天窗高度AC=1.20m,AB在水平位 置。求AB的长度(精确到0.01m)。
邑的边长.
一 、相似三角形的应用主要有如下两个方面
1 测高(不能直接使用皮尺或刻度尺量的)
2 测距(不能直接测量的两点间的距离)
二、测高的方法
测量不能到达顶部的物体的高度,通常用“在同一时刻物 高与影长的比例”的原理解决
三、测距的方法
测量不能到达两点间的距离,常构造相似三角形求解 解决实际问题时(如测高、测距), 一般有以下步骤:①审题 ②构建图形
相关文档
最新文档