2001年考研数学一试题答案与解析

合集下载

2001考研数学一试题及答案解析.doc

2001考研数学一试题及答案解析.doc

2001考研数学一试题及答案解析2001 年全国硕士研究生入学统一考试数学一试题一、填空题(本题共 5 小题,每小题 3 分,满分 15 分.把答案填在题中横线上.)(1)设 y= e x (C1 sin x + C2 cos x) ( C1 , C2 为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为_____________. (2)设 r= x 2 + y 2 + z 2 ,则 div(gradr)(1, ?2 , 2 )=_____________.(3)交换二次积分的积分次序: (4)设矩阵 A 满足 A (5) 设随机变量2∫0 ?1dy ∫1? y 2f ( x, y )dx =_____________.+ A ? 4 E = 0 ,其中 E 为单位矩阵,则 ( A ? E ) ?1 =_____________.X 的方差是 2 ,则根据切比雪夫不等式有估计yP{ X ? E ( X ) ≥ 2} ≤_____________. 二、选择题(本题共 5 小题每小题 3 分,满分 15 分.) 本题共小题,每小题满分 (1)设函数则yf ( x) 在定义域内可导, y = f ( x) 的图形如右图所示,Ox= f ′( x) 的图形为(2)设 (A)f ( x, y ) 在点 (0, 0) 附近有定义,且 f x′ (0,0) = 3, f y′ (0,0) = 1 ,则d z |(0,0) = 3dx + dy .(B) 曲面 z= f ( x, y ) 在 (0, 0, f (0, 0)) 处的法向量为{3,1,1}.(C) 曲线 ?? z = f ( x, y ) 在 (0, 0, f (0, 0)) 处的切向量为{1,0,3}. ? y=0 ? z = f ( x, y ) 在 (0, 0, f (0, 0)) 处的切向量为{3,0,1}. ? y=0(D) 曲线 ?(3)设 (A)f (0) = 0 ,则 f (x) 在 x =0 处可导的充要条件为1 f (1 ? cosh) 存在. h →0 h2 1 (C) lim 2 f ( h ? sinh) 存在. h →0 h lim1 f (1 ? eh ) 存在. h →0 h 1 (D) lim [ f (2h) ? f (h)] 存在. h →0 h(B)lim?1 ?1 (4)设 A = ? ?1 ? ?11 1 1? ?4 ? ?0 1 1 1? ,B = ? ?0 1 1 1? ? ? 1 1 1? ?00 0 0? 0 0 0? ?,则 A与 B 0 0 0? ? 0 0 0?(B) 合同但不相似. (D) 不合同且不相似.(A) 合同且相似. (C) 不合同但相似.(5)将一枚硬币重复掷 n 次,以 X 和 Y 分别表示正面向上和反面向上的次数, 则 X 和 Y 的相关系数等于 (A)-1. (B) 0. (C)1 . 2(D) 1.三、(本题满分 6 分) 求arctan e x ∫ e 2 x dx .四、(本题满分 6 分) 设函数 z= f ( x, y ) 在点 (1,1) 处可微,且 f (1,1) = 1 ,.?f ?f |(1,1) = 2 , |(1,1) = 3 , ? ( x) = f ( x, ?x ?y f ( x, x)) .求d 3 ? ( x) dxx =1五、(本题满分 8 分)∞ ? 1+ x arctan x, x ≠ 0, (?1) n 设 f (x ) = ? x 将 f (x ) 展开成 x 的幂级数,并求级数∑的和. 2 x = 0, 1, n =1 1 ? 4 n ?2六、(本题满分 7 分) 计算 I 面= ∫ ( y 2 ? z 2 )dx + (2 z 2 ? x 2 )dy + (3x 2 ? y 2 )dz ,其中 L 是平面 x + y + z = 2 与柱Lx + y = 1 的交线,从 Z 轴正向看去, L 为逆时针方向.七、(本题满分 7 分) 设f ( x) 在 (?1,1) 内具有二阶连续导数且 f ′′( x) ≠ 0 ,试证:(1)对于 (?1,1) 内的任一 x ≠ 0 ,存在惟一的θ ( x ) ∈ (0,1) ,使 f (x ) = f (0) + xf ′(θ ( x ) x ) 成立; (2) lim θ ( x ) =x →01 . 2八、(本题满分 8 分) 设有一高度为 h(t ) ( t 为时间)的雪堆在融化过程,其侧面满足方程 z= h(t ) ?2( x 2 + y 2 ) (设 h(t )长度单位为厘米,时间单位为小时),已知体积减少的速率与侧面积成正比(比例系数为 0.9),问高度为 130(厘米)的雪堆全部融化需多少小时? 九、(本题满分6 分) 设α 1 , α 2 , ? , α s 为线性方程组 Ax = 0 的一个基础解系, β1= t1α1 + t2α 2 , β 2 = t1α 2 + t2α 3 ,? ,β s = t1α s + t2α1 ,其中 t1 ,t 2 为实常数.试问 t1 ,t 2 满足什么条件时, β 1 , β 2 ,?, β s 也为 Ax = 0 的一个基础解系. 十、(本题满分 8 分) 已知 3 阶矩阵 A 与三维向量 x ,使得向量组x, Ax, A (1)记 P =( x, Ax, A (2)计算行列式22x 线性无关,且满足 A3 x = 3 Ax ? 2 A 2 x .x ),求 3 阶矩阵 B ,使 A = PBP ?1 ; A+ E .十一、(本题满分 7 分)设某班车起点站上客人数X 服从参数为λ ( λ > 0 )的泊松分布,每位乘客在中途下车的概率为p ( 0 < p < 1 ),且中途下车与否相互独立.以 Y 表示在中途下车的人数,求:(1)在发车时有 n 个乘客的条件下,中途有 m 人下车的概率; (2)二维随机变量( X , Y ) 的概率分布.十二、(本题满分 7 分) 设总体X 服从正态分布 N ( ? , σ 2 ) ( σ > 0 ), 从该总体中抽取简单随机样本n 1 2n ∑ X i ,求统计量 Y = ∑ ( X i + X n+i ? 2 X ) 2 的 2n i =1 i =1X 1 , X 2 , ? , X 2n ( n ≥ 2 ),其样本均值为 X =数学期望 E (Y ) .2001 年考研数学一试题答案与解析一、填空题 (1)【分析】由通解的形式可知特征方程的两个根是 r1 , r2= 1 ± i ,从而得知特征方程为(r ? r1 )(r ? r2 ) = r 2 ? (r1 + r2 )r + r1r2 = r 2 ? 2r + 2 = 0 .由此,所求微分方程为y '' ? 2 y ' + 2 y = 0 .(2)【分析】先求 grad gradr. gradr= grad ?? ?r ?r ?r ? ? x y z ? , , ? = ? , , ?. ? ?x ?y ?z ? ? r r r ?? x ? y ? z ( )+ ( )+ ( ) ?x r ?y r ?z r 1 x2 1 y2 1 z2 3 x2 + y 2 + z 2 2 ? 3 )+( ? 3 )+( ? 3) = ? = . r r r r r r r r3 r再求divgrad gradr= grad=(于是divgrad (1, ?2,2) = gradr| grad2 2 |(1,?2,2) = . r 3y ≤0时(3)【分析】这个二次积分不是二重积分的累次积分,因为 ?1 ≤1 ? y ≤2 .由此看出二次积分∫ dy ∫?121? yf ( x, y )dx 是二重积分的一个累次积分,它与原式只差一个符号.先把此累次积分表为∫0 ?1dy ∫21? yf ( x, y )dx = ∫∫ f ( x, y )dxdy .D由累次积分的内外层积分限可确定积分区域 D :?1 ≤ y ≤ 0,1 ? y ≤ x ≤ 2 .见图.现可交换积分次序原式= ?0 ?1 2 2 0 2 1? x∫dy ∫1? yf ( x, y )dx = ? ∫ dx ∫11? xf ( x, y )dy = ∫ dx ∫1f ( x, y )dy .(4)【分析】矩阵 A 的元素没有给出,因此用伴随矩阵、用初等行变换求逆的路均堵塞.应当考虑用定义法. 因为故按定义知( A ? E )( A + 2 E ) ? 2 E = A2 + A ? 4 E = 0 , ( A ? E )( A + 2 E ) = 2 E ,即 ( A ? E ) ?1 = 1 ( A + 2E) . 2 ( A ? E) ? A + 2E = E. 2(5)【分析】根据切比雪夫不等式P{ X ? E ( X ) ≥ε } ≤于是D( x)ε 2,P{ X ? E ( X ) ≥ 2} ≤D( x) 1 = . 22 2二、选择题 (1)【分析】当 x < 0 时, f ( x ) 单调增 ? f ( x) ≥ 0 ,(A),(C)不对;'当 x > 0 时, f ( x ) :增——减——增 ? f ( x ) :正——负——正,(B)不对,(D)对.'应选(D). (2)【分析】我们逐一分析.关于(A),涉及可微与可偏导的关系.由微.因此(A)不一定成立. 关于(B)只能假设 Bf ( x, y ) 在(0,0)存在两个偏导数 ? f ( x, y ) 在(0,0)处可f ( x, y ) 在(0,0)存在偏导数?f (0, 0) ?f (0, 0) , ,不保证曲面 z = f ( x, y ) 在 ?x ?y? ? ?f (0, 0) ?f (0, 0) (0, 0, f (0, 0)) 存在切平面.若存在时,法向量 n= ± ? ,, 1? = ± {3,1,-1}与{3,1,1}不 ? 与 ?y ? ?x ?共线,因而(B)不成立.? x = t, ? 关于(C),该曲线的参数方程为 ? y = 0, ? z = f (t , 0), ?{t ', 0,因此,(C)成立.它在点 (0, 0, f (0, 0)) 处的切向量为d f (t , 0)} |t = 0 = {1, 0, f x' (0, 0)} = {1, 0,3} . dt(3)【分析】当f ( x) f ( x) f ( x) ? ? lim = lim ?. x →0 x →0+ x →0 ? x x x 1 f (1 ? cos h) 1 ? cos h 1 f (t ) 关于(A): lim 2 f (1 ? cos h) = lim ? t = 1 ? cos h lim , 2 h →0 h h → 0 1 ? cos h h 2 t →0 + t 1 由此可知 lim 2 f (1 ? cos h) ? ? f +' (0) ? . h →0 h f (0) = 0 时, f ' (0) = lim 若f ( x) 在 x = 0 可导 ? (A)成立,反之若(A)成立 ? f +' (0)'? ? f ' (0)? .如 f ( x) =| x | 满足(A),但 f (0) 不 ? . 关于(D):若 f ( x ) 在 x = 0 可导, ?1 f (2h) f (h) lim [ f (2h) ? f (h)] = lim[2 ? ] = 2 f ' (0) ? f '(0) . h →0 h h →0 2h h? (D)成立.反之(D)成立 ? lim( f (2h) ? f (h)) = 0 ? f ( x) 在 x = 0 连续, ? f ( x) 在 x = 0 可h →0导.如 f ( x ) = ? 再看(C):? 2 x + 1, x ≠ 0 x=0 ? 0,满足(D),但 f ( x ) 在 x = 0 处不连续,因而 f (0) 也不 ? .'lim1 h ? sin h f (h ? sin h) h ? sin h f (t ) f (h ? sin h) = lim ? = lim ? (当它们都 ? 时).2 2 h →0 h h →0 h →0 h h ? sin h h2 t注意,易求得 limh ? sin h f (t ) = 0 .因而,若 f ' (0) ? ? (C)成立.反之若(C)成立 ? lim (即 2 h →0 t →0 h t f (t ) ' f ' (0) ? ).因为只要有界,任有(C)成立,如 f ( x ) =| x | 满足(C),但 f (0) 不 ? . t因此,只能选(B).(4)【分析】由| λ E ? A |= λ 4 ? 4λ 3 = 0 ,知矩阵 A 的特征值是 4,0,0,0.又因 A 是实对称矩阵, A必能相似对角化,所以 A 与对角矩阵 B 相似. 作为实对称矩阵,当 A ?B 时,知 A 与 B 有相同的特征值,从而二次型 xT Ax 与 xT Bx 有相同的正负惯性指数,因此 A 与 B 合同. 所以本题应当选(A). 注意,实对称矩阵合同时,它们不一定相似,但相似时一定合同.例如?1 0 ? ?1 0 ? A=? ? 与 B = ?0 3 ? , ?0 2? ? ?它们的特征值不同,故 A 与 B 不相似,但它们的正惯性指数均为 2,负惯性指数均为 0.所以 A 与 B 合同.(5)【分析】解本题的关键是明确 X 和 Y 的关系: X+ Y = n ,即 Y = n ? X ,在此基础上利用性质:相关系数ρ XY 的绝对值等于 1 的充要条件是随机变量 X 与 Y 之间存在线性关系,即 Y = aX + b (其中 a, b 是常数),且当 a > 0 时, ρ XY = 1 ;当 a < 0 时, ρ XY = ?1 ,由此便知ρ XY = ?1 ,应选(A). 事实上, Cov ( X , Y ) = Cov ( X , n ? X ) = ? DX , DY = D ( n ? X ) = DX ,由此由相关系数的定义式有ρ XY =Cov( X , Y ) = DX DY? DX = ?1 . DX DY三、【解】1 1 ?2 x de x x ?2 x x ] 原式= ? ∫ arctan e d (e ) = ? [e arctan e ? ∫2 x 2 2 e (1 + e 2 x )1 ?2 x de x de x x = ? (e arctan e ? ∫ 2 x + ∫ ) 2 e 1 + e2 x=?1 ?2 x (e arctan e x + e ? x + arctan e x ) + C . 2四、【解】求先求 ? (1) =f (1, f (1,1)) = f (1,1) = 1 .d 3 ? ( x) |x =1 = 3? 2 (1)? ' (1) = 3? ' (1) ,归结为求 ? '(1) .由复合函数求导法 dx d ? ' ( x) = f1' ( x, f ( x, x)) + f 2' ( x, f ( x, x)) f ( x, x) , dx? ' (1) = f1' (1,1) + f 2' (1,1)[ f1' (1,1) + f 2' (1,1)] .注意f1' (1,1) =?f (1,1) ?f (1,1) = 2 , f 2' (1,1) = =3. ?x ?y,因此? ' (1) = 2 + 3(2 + 3) = 17d 3 ? ( x) |x =1 = 3 ×17 = 51 . dx2五、【分析与求解】关键是将 arctan x 展成幂级数,然后约去因子 x ,再乘上 1 + x 并化简即可. '直接将 arctan x 展开办不到,但 (arctan x ) 易展开,即(arctan x)' =x∞ 1 = ∑ (?1) n x 2 n , | x |< 1 , 1 + x 2 n =0①积分得arctan x = ∫ (arctan t )' dt = ∑ (?1) n ∫ t 2 n dt = ∑x 0 n =0 0∞(?1) n 2 n +1 x , x ∈ [?1,1] . ② n = 0 2n + 1∞因为右端积分在 x = ±1 时均收敛,又 arctan x 在 x = ±1 连续,所以展开式在收敛区间端点x = ±1 成立. 1 + x2 现将②式两边同乘以得 x∞ 1 + x2 (?1) n 2 n ∞ (?1)n 2 n ∞ (?1) n x 2 n + 2 arctan x = (1 + x 2 )∑ x =∑ x +∑ x 2n + 1 n = 0 2n + 1 n = 0 2n + 1 n =0(?1) n 2 n ∞ (?1)n ?1 2 n x +∑ x =∑ n = 0 2n + 1 n = 0 2n ? 1∞=1 +∑ (?1) ( 2n + 1 ? 2n ? 1) xn n =1∞112n= 1+ ∑(?1) n 2 2 n x 2 n =1 1 ? 4n∞,x ∈ [?1,1] , x ≠ 0上式右端当 x = 0 时取值为 1,于是f ( x) = 1 + ∑∞(?1) n 2 2 n x , x ∈ [?1,1] . 2 n =1 1 ? 4n∞上式中令 x = 1 ?(?1) n 1 1 ππ 1 ∑ 1 ? 4n2 = 2 [ f (1) ? 1] = 2 (2 × 4 ? 1) = 4 ? 2 . n =1y+ z = 2上L所六、【解】用斯托克斯公式来计算.记 S 为平面 x +为围部分.由 L 的定向,按右手法则 S 取上侧, S 的单位法向量n = (cos α , cos β , cos γ ) =于是由斯托克斯公式得1 (1,1,1) . 3cos γ ? ?z 3x 2 ? y 2 dScos α I = ∫∫Scos β ? ?y 2 z 2 ? x2? ?x y2 ? z2=∫∫ [(?2 y ? 4 z )S1 1 1 + ( ?2 z ? 6 x ) + (?2 x ? 2 y ) ]dS3 3 3=?2 2 ∫∫ (4 x + 2 y + 3z )dS (利用x + y + z = 2) ?3 ∫∫ (6 + x ? y)dS .3 S S于是'2 '2 1+ Zx + Z y = 1+1+1 = 3 .按第一类曲面积分化为二重积分得I =?2 ∫∫ (6 + x ? y ) 3dxdy = ?2∫∫ (6 + x ? y)dxdy ,3 D D | x | + | y |≤ 1 (图).由 D 关于 x, y 轴的对称性及被积函数的奇其中 D 围 S 在 xy 平面上的投影区域偶性得∫∫ ( x ? y)dxdy = 0D?I = ?12∫∫ dxdy = ?12( 2) 2 = ?24 .D七、【证明】 (1)由拉格朗日中值定理, ? x ∈ (1, ?1) ,x ≠ 0 , ? θ∈ (0,1) ,使f ( x) = f (0) + xf ' (θ x)(θ与x 有关);又由 f '' ( x) 连续而 f '' ( x) ≠ 0 , f'' ( x) 在 (1, ?1) 不变号, f ' ( x) 在 (1, ?1) 严格单调, θ唯一. (2)对f ' (θ x) 使用 f '' (0) 的定义.由题(1)中的式子先解出 f ' (θ x) ,则有f ' (θ x) =再改写成f ( x) ? f (0) . x f ( x) ? f (0) ? xf ' (0) . xf ' (θ x)? f ' (0) =f ' (θ x) ? f ' (0) f ( x) ? f (0) ? xf ' (0) , ?θ = x2 θx解出θ ,令 x → 0 取极限得1 '' f (0) 1 f ( x) ? f (0) ? xf (0) f (θ x) ? f (0)2 lim θ= lim / lim = '' = . 2 x →0 x →0 x→0 2 x f (0) θx' ' '八、【解】先求(1)设 t 时刻雪堆的体积为 V (t ) ,侧面积为S (t ) . t 时刻雪堆形状如图所示S (t ) 与 V (t ) .侧面方程是z = h(t ) ?2( x 2 + y 2 ) h 2 (t ) (( x, y ) ∈ Dxy : x 2 + y 2 ≤ ). 2 h(t ) ??z 4 x ?z 4y =? , =? . ?x h(t ) ?y h(t )?S (t ) = ∫∫Dxy?z 2 ?z 2 h 2 (t ) + 16( x 2 + y 2 ) 1 + ( ) + ( ) dxdy = ∫∫ dxdy . ?x ?y h(t ) Dxy作极坐标变换: x = r cos θ , y = r sin θ ,则Dxy : 0 ≤θ≤ 2π , 0 ≤ r ≤1 h(t ) . 2S (t ) =?1 h (t ) 1 2π dθ∫2 h 2 (t ) + 16r 2 rdr ∫0 0 h(t )3 h (t ) 2π 12 13π 2 ? [h (t ) + 16r 2 ] 2 |0 2 = h (t ). h(t ) 48 12 1=用先二后一的积分顺序求三重积分V (t ) = ∫h(t )dz∫∫ dxdy ,D( x)其中 D ( z ):2( x 2 + y 2 ) 1 ≤ h(t ) ? z (t ) ,即 x 2 + y 2 ≤ [h 2 (t ) ? h(t ) z ] . h(t ) 2V (t ) = ∫h (t )?π2[h 2 (t ) ? h(t ) z ]dz =π1 π [h3 (t ) ? h(t )3 ] = h3 (t ) .2 2 4 dV = ?0.9 S dt(2)按题意列出微分方程与初始条件.dV ,它与侧面积成正比(比例系数 0.9),即 dt π 2 dh 13π 2 将 V (t ) 与 S(t ) 的表达式代入得 3h (t ) = ?0.9 h (t ) ,即 4 dt 12 dh 13 =? . dt 10 体积减少的速度是 ?①②h(0) = 130 .(3)解①得 h(t ) = ? 令 h(t ) = 0 ,得 t13 t +C . 10由②得C = 130 ,即 h(t ) = ?13 t + 130 . 10= 100 .因此,高度为 130 厘米的雪堆全部融化所需时间为 100 小时.九、【解】由于β i (i= 1, 2? s ) 是α1 , α 2 ,?α s 线性组合,又α1 , α 2 ,?α s 是 Ax = 0 的解,所以根据齐次线性方程组解的性质知β i (i = 1, 2? s ) 均为 Ax = 0 的解. 从α1 , α 2 ,?α s 是 Ax = 0 的基础解系,知 s = n ? r ( A) . 下面来分析β1 , β 2 ,? β s 线性无关的条件.设 k1β1 + k 2 β 2 + ?? k s β s = 0 ,即(t1k1 + t2 ks )α1 + (t2 k1 + t1k2 )α 2 + (t2 k2 + t1k3 )α 3 + ? + (t2 ks ?1 + t1k s )α s = 0 .由于α1 , α 2 ,?α s 线性无关,因此有?t1k1 + t2 k s = 0, ?t k + t k = 0, ?2 1 1 2 ? ?t2 k2 + t1k3 = 0, ? ? ? ?t2 ks ?1 + t1k s = 0. ?因为系数行列式(*)t1 0 0? 0 t2 t2 t1 0 ? 0 0s 0 t2 t1 ? 0 0 = t1s + (?1) s +1 t2 ,? ? ? ?? 0 0 0? t2 t1所以当 t1s s + (?1) s +1 t2 ≠ 0 时,方程组(*)只有零解 k1 = k2 = ? = ks = 0 . 从而β1 , β 2 ,? β s 线性无关.十、【解】(1)由于 AP= PB ,即A( x, Ax, A2 x) = ( Ax, A2 x, A3 x) = ( Ax, A2 x,3 Ax ? 2 A2 x)?0 0 0 ? = ( x, Ax, A x) ?1 0 3 ? , ? ? ?0 1 ? 2 ? ? ?2?0 0 0 ? ? ? . 所以 B = 1 0 3 ? ? ? ?0 1 ? 2 ? ?(2)由(1)知 A ?B ,那么 A + E ? B + E ,从而1 0 0 | A + E |=| B + E |= 1 1 3 = ?4 . 0 1 ?1m = m | X = n} = Cn p m (1 ? p )n ? m , 0 ≤ m ≤ n, n = 0,1, 2,? . 十一、【解】 (1) P{Y (2) P{ X= n, Y = m} = P{ X = n}P{Y = m | X = n}=λnn!m e ? λ ? Cn p m (1 ? p )n ? m , 0 ≤ m ≤ n, n = 0,1, 2,?.十二、【解】易见随机变量 ( X 1 +X n +1 ) , ( X 2 + X n + 2 ) , ? , ( X n + X 2 n ) 相互独立都服从正态分布N (2 ? , 2σ 2 ) .因此可以将它们看作是取自总体 N (2 ? , 2σ 2 ) 的一个容量为 n 的简单随机样本.其样本均值为1 n 1 2n ( X i + X n +i ) = ∑ X i =2 X , ∑ n i =1 n i =1 1 n 1 ∑ ( Xi + X n +i ? 2 X ) 2 = n ? 1 Y . n ? 1 i =11 Y ) = 2σ2 ,即 E (Y ) = 2(n ? 1)σ 2 . n ?1样本方差为因样本方差是总体方差的无偏估计,故 E (。

2001考研数学一试题及答案解析

2001考研数学一试题及答案解析

2001考研数学一试题及答案解析2001年考研数学一试题及答案解析一、选择题1.设A是n阶实对称矩阵,B是n阶对称矩阵,则下列结论正确的是()A. AB是对称矩阵B. AB是反对称矩阵C. AB是零矩阵D. AB不一定是对称矩阵答案:D解析:对称矩阵的乘积不一定是对称矩阵,故选D。

2.设A是n阶矩阵,|A|≠0,则下列结论正确的是()A. A是可逆矩阵B. A的行列式不等于0C. A的秩等于nD. A的特征值不等于0答案:A解析:根据矩阵可逆的定义,可知选项A正确。

3.设函数f(x)在区间[a,b]上连续,且在(a,b)内可导,则下列结论正确的是()A. 函数f(x)在[a,b]上一定有最大值和最小值B. 函数f(x)在(a,b)内一定有极值点C. 函数f(x)在[a,b]上一定有极值点D. 函数f(x)在(a,b)内一定有最大值和最小值答案:B解析:根据极值定理,可知选项B正确。

4.设函数f(x)在区间[a,b]上连续,且在(a,b)内可导,则函数f(x)在[a,b]上()A. 一定有最大值和最小值B. 一定有极值点C. 一定有极大值和极小值D. 不一定有极值点答案:D解析:函数在区间[a,b]上连续,且在(a,b)内可导并不意味着一定有极值点,故选D。

5.若f(x)在区间[a,b]上连续,且在(a,b)内可导,且f'(x)>0,则下列结论正确的是()A. 函数f(x)在[a,b]上单调递减B. 函数f(x)在[a,b]上单调递增C. 函数f(x)在(a,b)内存在极大值D. 函数f(x)在[a,b]上存在极小值答案:B解析:根据导数的定义,可知选项B正确。

二、填空题1.设A是n阶实对称矩阵,且A的主对角线元素都为1,则A的特征值之和为____。

答案:n+1解析:根据实对称矩阵的特征值之和等于主对角线元素之和,故特征值之和为n+1。

2.设z为复数,|z|=1,则z^3的实部为____。

2001-数一真题、标准答案及解析

2001-数一真题、标准答案及解析
图形为
【】 【答】应选(D)
【详解】 从题设图形可见,在 y 轴的左侧,曲线 y = f ( x) 是严格单调增加的,因此当 x < 0
时,一定有 f ' ( x) > 0 对应 y = f ' ( x) 图形必在 x 轴的上方,由此可排除(A),(C);
又 y = f ( x) 的图形在 y 轴右侧有三个零点,因此由罗尔中值定理知,其导函数 y = f ' ( x) 图
(A)合同且相似
(B)合同但不相似
(C)不合同但相似
(D)不合同且不相似
【答】 应选(A) 【详解】 因为
【】
A 是实对称矩阵,且其特征值为: λ1 = 4, λ2 = λ3 = λ4 = 0, 故存在正交矩阵 Q, 使得
⎡4 0 0 0⎤ Q−1AQ = QT AQ = ⎢⎢0 0 0 0⎥⎥
⎢0 0 0 0⎥ ⎢⎣0 0 0 0⎥⎦ 可见,则 A 与 B 既合同又相似.
∑ 五、设
f
(x)
=
⎧⎪1+ x2 ⎨x ⎪⎩
arctan x, x 1, x = 0

0 ,试将
f
( x) 展开成
x
的幂级数,并求级数
∞ (−1)n
n=1 1 − 4n2
的和.
∑ 【详解】
因1 1+ x2
=

( −1)n
n=1
x2n , x ∈ (−1,1)
-6-
∫ ∑ 故 ar(−1)n x2n+1, x ∈[−1,1]
0
n=1 2n +1
于是
∑ ∑ f ( x) = 1+ ∞ ( ) −1 n x2n+1 + ∞ ( ) −1 n x2n+2

2001-数一真题、标准答案及解析

2001-数一真题、标准答案及解析

形在 y 轴一定有两个零点,进一步可排除(B).
故正确答案为(D).
(2)设函数
f
( x,
y)
在点 (0, 0)
附近有定义,且
f
' x
( 0, 0)
=
3,
f
' y
( 0, 0 )
= 1,则
| (A) dz = 3dx + dy. (0,0)
(B)曲面 z = f ( x, y) 在点 (0, 0, f (0, 0)) 的法向量为{3,1,1}
(5)将一枚硬币重复掷 n 次,以 X 和 Y 分别表示正面向上和反面向上的次数,则 X 和 Y 的相
关系数等于
(A)-1
(B)0
(C) 1 2
(D)1 【】
-5-
【答】 应选(A)
【详解】 设 X 和Y 分别表示正面向上和反面向上的次数,则有Y = n − X ,因此 X 和Y 的 相关系数为 r = −1
∫ ∫ (3)交换二次积分的积分次序:
0
dy
1−y f ( x, y)dx =
−1 2
.
∫ ∫ 【答】
2
dx
1− x
f
( x, y)dy .
1
0
【详解】 因为
∫ ∫ ∫ ∫ 0 dy
1−y f ( x, y)dx = −
0
dy
2
f ( x, y)dx,
−1 2
−1 1− y
积分区域为
D = {( x, y) | −1 ≤ y ≤ 0,1− y ≤ x ≤ 2},
ex cos x 线性无关,故 b (c1 − c2 ) + cc1 = 2c2 , b (c1 + c2 ) + cc2 = −2c1 ,解得 b = −2, c = 2

2001年考研数学一试题及完全解析(Word版)

2001年考研数学一试题及完全解析(Word版)

yOx2001年全国硕士研究生入学统一考试数学一试题一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.)(1)设12(sin cos )xy e C x C x =+(12,C C 为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为_____________.(2)设222z y x r++=,则div (grad r ))2,2,1(-=_____________.(3)交换二次积分的积分次序:⎰⎰--0112),(y dx y x f dy =_____________.(4)设矩阵A 满足240A A E +-=,其中E 为单位矩阵,则1()A E --=_____________.(5)设随机变量X 的方差是2,则根据切比雪夫不等式有估计≤≥-}2)({X E X P_____________.二、选择题(本题共5小题,每小题3分,满分15分.) (1)设函数)(x f 在定义域内可导,)(x f y =的图形如右图所示,则)(x f y'=的图形为(2)设),(y x f 在点(0,0)附近有定义,且1)0,0(,3)0,0(='='y x f f ,则(A ) (0,0)|3z d dx dy =+. (B ) 曲面),(y x f z=在(0,0,(0,0))f 处的法向量为{3,1,1}.(C ) 曲线⎩⎨⎧==0),(y y x f z 在(0,0,(0,0))f 处的切向量为{1,0,3}.(D ) 曲线⎩⎨⎧==0),(y y x f z 在(0,0,(0,0))f 处的切向量为{3,0,1}.(3)设0)0(=f ,则)(x f 在x =0处可导的充要条件为(A ) 201lim (1cosh)h f h →-存在.(B )01lim(1)h h f e h →-存在. (C ) 201lim (sinh)h f h h→-存在.(D ) 01lim [(2)()]h f h f h h→-存在.(4)设1111400011110000,,1111000011110000A B ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦则A 与B (A ) 合同且相似. (B ) 合同但不相似. (C ) 不合同但相似.(D ) 不合同且不相似.(5)将一枚硬币重复掷n 次,以X 和Y 分别表示正面向上和反面向上的次数, 则X 和Y 的相关系数等于(A )-1.(B ) 0.(C )12. (D ) 1.三、(本题满分6分)求dx e e xx⎰2arctan .四、(本题满分6分) 设函数),(y x f z=在点(1,1)处可微,且(1,1)1f =,(1,1)|2fx∂=∂,(1,1)|3f y ∂=∂,()(,x f x ϕ=(,))f x x .求13)(=x x dxd ϕ.五、(本题满分8分)设)(x f =210,arctan ,0,1,x x x x x +⎧≠⎨=⎩将)(x f 展开成x 的幂级数,并求级数∑∞=--1241)1(n nn 的和.六、(本题满分7分) 计算dz y x dy x z dx z y I L)3()2()(222222-+-+-=⎰,其中L 是平面2=++z y x 与柱面1=+y x 的交线,从Z 轴正向看去,L 为逆时针方向.七、(本题满分7分) 设)(x f 在(1,1)-内具有二阶连续导数且0)(≠''x f ,试证:(1)对于(1,1)-内的任一0x ≠,存在惟一的)1,0()(∈x θ,使)(x f =)0(f +))((x x f x θ'成立;(2)01lim ()2x x θ→=.八、(本题满分8分)设有一高度为()h t (t 为时间)的雪堆在融化过程,其侧面满足方程)()(2)(22t h y x t h z +-=(设长度单位为厘米,时间单位为小时),已知体积减少的速率与侧面积成正比(比例系数为0.9),问高度为130(厘米)的雪堆全部融化需多少小时?九、(本题满分6分)设s ααα,,,21 为线性方程组0Ax =的一个基础解系,11122t t βαα=+,21223,t t βαα=+,121s s t t βαα=+,其中21,t t 为实常数.试问21,t t 满足什么条件时,s βββ,,,21 也为0Ax =的一个基础解系.十、(本题满分8分) 已知3阶矩阵A 与三维向量x ,使得向量组2,,x Ax A x 线性无关,且满足x A Ax x A 2323-=.(1)记P =(x A Ax x 2,,),求3阶矩阵B ,使1-=PBP A ;(2)计算行列式E A +.十一、(本题满分7分)设某班车起点站上客人数X 服从参数为λ(0λ>)的泊松分布,每位乘客在中途下车的概率为p (01p <<),且中途下车与否相互独立.以Y 表示在中途下车的人数,求:(1)在发车时有n 个乘客的条件下,中途有m 人下车的概率; (2)二维随机变量(,)X Y 的概率分布.十二、(本题满分7分) 设总体X 服从正态分布2(,)N μσ(0σ>),从该总体中抽取简单随机样本12,X X ,,2n X (2n ≥),其样本均值为∑==ni i X n X 2121,求统计量∑=+-+=ni i n i X X X Y 12)2(的数学期望()E Y .2001年考研数学一试题答案与解析一、填空题(1)【分析】 由通解的形式可知特征方程的两个根是12,1r r i =±,从而得知特征方程为22121212()()()220r r r r r r r r r r r r --=-++=-+=.由此,所求微分方程为'''220y y y -+=.(2)【分析】 先求grad r .grad r=,,,,r r r x y z x y z r r r ∂∂∂⎧⎫⎧⎫=⎨⎬⎨⎬∂∂∂⎩⎭⎩⎭. 再求 div grad r=()()()x y zx r y r z r∂∂∂++∂∂∂=222222333311132()()()x y z x y z r r r r r r r r r++-+-+-=-=.于是div grad r|(1,2,2)-=(1,2,2)22|3r -=.(3)【分析】 这个二次积分不是二重积分的累次积分,因为10y -≤≤时12y -≤.由此看出二次积分0211(,)ydy f x y dx --⎰⎰是二重积分的一个累次积分,它与原式只差一个符号.先把此累次积分表为0211(,)(,)yDdy f x y dx f x y dxdy --=⎰⎰⎰⎰.由累次积分的内外层积分限可确定积分区域D :10,12y y x -≤≤-≤≤.见图.现可交换积分次序原式=02202111111(,)(,)(,)xyxdy f x y dx dx f x y dy dx f x y dy -----=-=⎰⎰⎰⎰⎰⎰.(4)【分析】 矩阵A 的元素没有给出,因此用伴随矩阵、用初等行变换求逆的路均堵塞.应当考虑用定义法.因为2()(2)240A E A E E A A E -+-=+-=,故()(2)2A E A E E -+=,即 2()2A EA E E +-⋅=. 按定义知11()(2)2A E A E --=+.(5)【分析】 根据切比雪夫不等式2(){()}D x P X E X εε-≥≤,于是2()1{()2}22D x P XE X -≥≤=.二、选择题(1)【分析】 当0x <时,()f x 单调增'()0f x ⇒≥,(A ),(C )不对;当0x >时,()f x :增——减——增'()f x ⇒:正——负——正,(B )不对,(D )对.应选(D ).(2)【分析】 我们逐一分析.关于(A ),涉及可微与可偏导的关系.由(,)f x y 在(0,0)存在两个偏导数⇒(,)f x y 在(0,0)处可微.因此(A )不一定成立.关于(B )只能假设(,)f x y 在(0,0)存在偏导数(0,0)(0,0),f f x y∂∂∂∂,不保证曲面(,)z f x y =在 (0,0,(0,0))f 存在切平面.若存在时,法向量n=(0,0)(0,0)1f f x y ⎫∂∂⎧±-=±⎨⎬∂∂⎩⎭,,{3,1,-1}与{3,1,1}不共线,因而(B )不成立.关于(C ),该曲线的参数方程为,0,(,0),x t y z f t =⎧⎪=⎨⎪=⎩它在点(0,0,(0,0))f 处的切向量为'0{',0,(,0)}|{1,0,(0,0)}{1,0,3}t x dt f t f dt===. 因此,(C )成立.(3)【分析】 当(0)0f =时,'0()(0)limx f x f x →=∃00()()lim lim x x f x f x x x→+→-⇔=∃.关于(A ):220001(1cos )1cos 1()lim (1cos )lim 1cos lim1cos 2h h t f h h f t f h t h h h h t→→→+---=⋅=--, 由此可知 201lim (1cos )h f h h→-∃ ⇔ '(0)f + ∃.若()f x 在0x =可导⇒(A )成立,反之若(A )成立⇒'(0)f + ∃⇒'(0)f ∃.如()||f x x =满足(A ),但'(0)f 不∃. 关于(D ):若()f x 在0x =可导,⇒''001(2)()lim [(2)()]lim[2]2(0)(0)2h h f h f h f h f h f f h h h→→-=-=-. ⇒(D )成立.反之(D )成立0lim((2)())0h f h f h →⇒-=⇒()f x 在0x =连续,⇒()f x 在0x =可导.如21,0()0,0x x f x x +≠⎧=⎨=⎩ 满足(D ),但()f x 在0x =处不连续,因而'(0)f 也不∃.再看(C ):2220001sin (sin )sin ()lim(sin )lim lim sin h h h h h f h h h h f t f h h h h h h h t→→→----=⋅=⋅-(当它们都∃时).注意,易求得20sin lim0h h h h →-=.因而,若'(0)f ∃⇒(C )成立.反之若(C )成立⇒0()lim t f t t→(即 '(0)f ∃).因为只要()f t t有界,任有(C )成立,如()||f x x =满足(C ),但'(0)f 不∃.因此,只能选(B ).(4)【分析】 由 43||40E A λλλ-=-=,知矩阵A 的特征值是4,0,0,0.又因A 是实对称矩阵,A 必能相似对角化,所以A 与对角矩阵B 相似.作为实对称矩阵,当AB 时,知A 与B 有相同的特征值,从而二次型T x Ax 与T x Bx 有相同的正负惯性指数,因此A 与B 合同.所以本题应当选(A ).注意,实对称矩阵合同时,它们不一定相似,但相似时一定合同.例如1002A ⎡⎤=⎢⎥⎣⎦与1003B ⎡⎤=⎢⎥⎣⎦, 它们的特征值不同,故A 与B 不相似,但它们的正惯性指数均为2,负惯性指数均为0.所以A 与B 合同.(5)【分析】 解本题的关键是明确X 和Y 的关系:XY n +=,即Y n X =-,在此基础上利用性质:相关系数XY ρ的绝对值等于1的充要条件是随机变量X 与Y 之间存在线性关系,即YaX b =+(其中,a b 是常数),且当0a >时,1XY ρ=;当0a <时,1XY ρ=-,由此便知1XY ρ=-,应选(A ).事实上,(,)(,)Cov X Y Cov X n X DX =-=-,()DY D n X DX =-=,由此由相关系数的定义式有1XY ρ===-.三、【解】原式=222211arctan ()[arctan ]22(1)x x x x xxx de e d e e e e e ---=--+⎰⎰=2221(arctan )21x x x xx xde de e e e e ---++⎰⎰=21(arctan arctan )2xx x x e e e e C ---+++.四、【解】 先求(1)(1,(1,1))(1,1)1f f f ϕ===.求 32''1()|3(1)(1)3(1)x d x dxϕϕϕϕ===,归结为求'(1)ϕ.由复合函数求导法 '''12()(,(,))(,(,))(,)dx f x f x x f x f x x f x x dxϕ=+,'''''1212(1)(1,1)(1,1)[(1,1)(1,1)]f f f f ϕ=++.注意'1(1,1)(1,1)2f f x∂==∂,'2(1,1)(1,1)3f f y ∂==∂. 因此'(1)23(23)17ϕ=++=,31()|31751x d x dxϕ==⨯=.五、【分析与求解】 关键是将arctan x 展成幂级数,然后约去因子x ,再乘上21x +并化简即可.直接将arctan x 展开办不到,但'(arctan )x 易展开,即'221(arctan )(1),||11n n n x x x x ∞===-<+∑, ①积分得 '2210000(1)arctan (arctan )(1)21n xx nnn n n x t dt t dt x n ∞∞+==-==-=+∑∑⎰⎰,[1,1]x ∈-. ② 因为右端积分在1x =±时均收敛,又arctan x 在1x =±连续,所以展开式在收敛区间端点1x =±成立.现将②式两边同乘以21x x+得2222220001(1)(1)(1)arctan (1)212121n n n n n n n n n x x x x x x x n n n +∞∞∞===+---=+=++++∑∑∑=12200(1)(1)2121n n n nn n x x n n -∞∞==--++-∑∑=21111(1)()2121n n n x n n ∞=+--+-∑221(1)2114n nn x n ∞=-=+-∑ ,[1,1]x ∈-,0x ≠上式右端当0x =时取值为1,于是221(1)2()1,[1,1]14n nn f x x x n∞=-=+∈--∑. 上式中令1x =21(1)111[(1)1](21)1422442n n f n ππ∞=-⇒=-=⨯-=--∑.六、【解】用斯托克斯公式来计算.记S 为平面2x y z ++=上L 所为围部分.由L 的定向,按右手法则S 取上侧,S 的单位法向量(cos ,cos ,cos )3n αβγ==. 于是由斯托克斯公式得222222cos cos cos 23SI dS x y z y z z x x y αβγ∂∂∂=∂∂∂---⎰⎰=[(24(26(22]333Sy z z x x y dS --+--+--⎰⎰=(423)(2)(6)33S Sx y z dS x y z x y dS ++++=-+-利用. 于是'2'211113x y Z Z ++=++=按第一类曲面积分化为二重积分得(6)32(6)3D DI x y dxdy x y dxdy =+-=-+-⎰⎰, 其中D 围S 在xy 平面上的投影区域||||1x y +≤(图).由D 关于,x y 轴的对称性及被积函数的奇偶性得()0Dx y dxdy -=⎰⎰⇒21212(2)24DI dxdy =-=-=-⎰⎰.七、【证明】 (1)由拉格朗日中值定理,(1,1)x ∀∈-,0,(0,1)x θ≠∃∈,使'()(0)()f x f xf x θ=+(θ与x 有关);又由''()f x 连续而''()0f x ≠,''()f x 在(1,1)-不变号,'()f x 在(1,1)-严格单调,θ唯一. (2)对'()f x θ使用''(0)f 的定义.由题(1)中的式子先解出'()f x θ,则有'()(0)()f x f f x xθ-=.再改写成'''()(0)(0)()(0)f x f xf f x f x θ---=.'''2()(0)()(0)(0)f x f f x f xf x xθθθ---⋅=, 解出θ,令0x →取极限得'''''2''0001(0)()(0)(0)()(0)12lim lim /lim (0)2x x x f f x f xf f x f x x f θθθ→→→---===.八、【解】 (1)设t 时刻雪堆的体积为()V t ,侧面积为()S t .t 时刻雪堆形状如图所示先求()S t 与()V t .侧面方程是222222()()()((,):)()2xy x y h t z h t x y D x y h t +=-∈+≤. ⇒44,()()z x z yx h t y h t ∂∂=-=-∂∂. ⇒()xyxyD D S t dxdy ==⎰⎰.作极坐标变换:cos ,sin x r y r θθ==,则:02,0()xy D r t θπ≤≤≤≤.⇒2(003()22221()()2113[()16]().()4812t t S t d h t h t r h t h t πθππ==⋅+=⎰用先二后一的积分顺序求三重积分()()()h t D x V t dzdxdy =⎰⎰⎰,其中222()():()()()x y D z h t z t h t +≤-,即2221[()()]2x y h t h t z +≤-. ⇒()233301()[()()][()()]()2224h t V t h t h t z dz h t h t h t πππ=-=-=⎰. (2)按题意列出微分方程与初始条件.体积减少的速度是dV dt -,它与侧面积成正比(比例系数0.9),即 0.9dVS dt=- 将()V t 与()S t 的表达式代入得 22133()0.9()412dh h t h t dt ππ=-,即1310dh dt =-.①(0)130h =.②(3)解①得13()10h t t C =-+. 由②得130C =,即13()13010h t t =-+. 令()0h t =,得100t =.因此,高度为130厘米的雪堆全部融化所需时间为100小时.九、【解】由于(1,2)i i s β=是12,,s ααα线性组合,又12,,s ααα是0Ax =的解,所以根据齐次线性方程组解的性质知(1,2)i i s β=均为0Ax =的解.从12,,s ααα是0Ax =的基础解系,知()s n r A =-.下面来分析12,,s βββ线性无关的条件.设11220s s k k k βββ++=,即11212112222133211()()()()0s s s s t k t k t k t k t k t k t k t k αααα-++++++++=.由于 12,,s ααα线性无关,因此有112211222132110,0,0,0.s s s t k t k t k t k t k t k t k t k -+=⎧⎪+=⎪⎪+=⎨⎪⎪+=⎪⎩(*)因为系数行列式12211211221000000000(1)000s s st t t t t t t t t t +=+-, 所以当112(1)0ss st t ++-≠时,方程组(*)只有零解120s k k k ====.从而12,,s βββ线性无关.十、【解】 (1)由于AP PB = ,即22322(,,)(,,)(,,32)A x Ax A x Ax A x A x Ax A x Ax A x ==-2000(,,)103012x Ax A x ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦,所以000103012B ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦.(2)由(1)知AB ,那么A E B E ++,从而100||||1134011A EB E +=+==--.十一、【解】 (1){|}(1),0,0,1,2,mmn mn P Y m X n C p p m n n -===-≤≤=.(2){,}P Xn Y m ==={}{|}P X n P Y m X n ====(1),0,0,1,2,.!nm mn m n e C p p m n n n λλ--⋅-≤≤=十二、【解】 易见随机变量11()n X X ++,22()n X X ++,2,()n n X X +相互独立都服从正态分布2(2,2)N μσ.因此可以将它们看作是取自总体2(2,2)N μσ的一个容量为n 的简单随机样本.其样本均值为21111()2n ni n i i i i X X X X n n +==+==∑∑, 样本方差为2111(2)11n i n ii X X X Y n n +=+-=--∑. 因样本方差是总体方差的无偏估计,故21()21E Y n σ=-,即2()2(1)E Y n σ=-.。

2001年考研数学一试题答案与解析

2001年考研数学一试题答案与解析

2001年考‎研数学一试题‎答案与解析一、(1)【分析】 由通解的形式‎可知特征方程‎的两个根是12,1r r i =±,从而得知特征‎方程为22121212()()()220r r r r r r r r rr r r --=-++=-+=.由此,所求微分方程‎为'''220y y y -+=.(2)【分析】 grad r=,,,,r r r x y z x y z r r r ∂∂∂⎧⎫⎧⎫=⎨⎬⎨⎬∂∂∂⎩⎭⎩⎭.再求 divgra‎d r=()()()x y z x r y r z r ∂∂∂++∂∂∂ =222222333311132()()()x y z x y z r r r r r r r r r++-+-+-=-=.于是 divgra ‎d r|(1,2,2)-=(1,2,2)22|3r -=. (3)【分析】 这个二次积分‎不是二重积分‎的累次积分,因为10y -≤≤时12y -≤.由此看出二次‎积分是二重积‎0211(,)ydy f x y dx --⎰⎰分的一个累次‎积分,它与原式只差‎一个符号.先把此累次积‎分表为0211(,)(,)yDdy f x y dx f x y dxdy --=⎰⎰⎰⎰.由累次积分的‎内外层积分限‎可确定积分区‎域D :10,12y y x -≤≤-≤≤.见图.现可交换积分‎次序原式=02202111111(,)(,)(,)xyxdy f x y dx dx f x y dy dx f x y dy -----=-=⎰⎰⎰⎰⎰⎰.(4)【分析】 矩阵的元素没‎A 有给出,因此用伴随矩‎阵、用初等行变换‎求逆的路均堵‎塞.应当考虑用定‎义法.因为 2()(2)240A E A E E A A E -+-=+-=,故()(2)2A E A E E -+=,即2()2A E A E E +-⋅=.按定义知11()(2)2A E A E --=+. (5)【分析】 根据切比雪夫‎不等式2(){()}D x P X E X εε-≥≤, 于是2()1{()2}22D x P XE X -≥≤=. 二、(1)【分析】 当0x <时,()f x 单调增'()0f x ⇒≥,(A ),(C )不对;当0x>时,()f x :增——减——增'()f x ⇒:正——负——正,(B )不对,(D )对.应选(D ).(2)关于(A ),涉及可微与可‎偏导的关系.由(,)f x y 在(0,0)存在两个偏导‎数⇒(,)f x y 在(0,0)处可微.因此(A )不一定成立.关于(B )只能假设(,)f x y 在(0,0)存在偏导数(0,0)(0,0),f f x y∂∂∂∂,不保证曲面在‎(,)z f x y =(0,0,(0,0))f 存在切平面.若存在时,法向量n=(0,0)(0,0)1f f x y ⎫∂∂⎧±-=±⎨⎬∂∂⎩⎭,,{3,1,-1}与{3,1,1}不共线,因而(B )不成立.关于(C ),该曲线的参数‎方程为,0,(,0),x t y z f t =⎧⎪=⎨⎪=⎩它在点处的切‎(0,0,(0,0))f 向量为'0{',0,(,0)}|{1,0,(0,0)}{1,0,3}t x dt f t f dt===.因此,(C )成立. (3)【分析】 当(0)0f =时,'0()(0)lim x f x f x →=∃00()()lim lim x x f x f x x x→+→-⇔=∃.关于(A ):220001(1cos )1cos 1()lim (1cos )lim 1cos lim1cos 2h h t f h h f t f h t h h h h t→→→+---=⋅=--, 由此可知201lim (1cos )h f h h →-∃ ⇔ '(0)f + ∃.若()f x 在0x =可导⇒(A )成立,反之若(A )成立⇒'(0)f + ∃⇒'(0)f ∃.如()||f x x =满足(A ),但'(0)f 不∃.关于(D ):若()f x 在0x =可导,⇒''001(2)()lim [(2)()]lim[2]2(0)(0)2h h f h f h f h f h f f h h h→→-=-=-. ⇒(D )成立.反之(D )成立0l i m ((2)())0h f h f h →⇒-=⇒()f x 在0x =连续,⇒()f x 在0x =可导.如21,0()0,0x x f x x +≠⎧=⎨=⎩ 满足(D ),但在处不连续‎()f x 0x =,因而'(0)f 也不∃.再看(C ):2220001sin (sin )sin ()lim(sin )lim lim sin h h h h h f h h h h f t f h h h h h h h t→→→----=⋅=⋅-(当它们都∃时). 注意,易求得20sin lim 0h h h h →-=.因而,若'(0)f ∃⇒(C )成立.反之若(C )成立⇒0()lim t f t t →(即 '(0)f ∃).因为只要有界‎()f t t ,任有(C )成立,如()||f x x =满足(C ),但'(0)f 不∃.因此,只能选(B ).(4)【分析】 由43||40E A λλλ-=-=,知矩阵的特征‎A 值是4,0,0,0.又因是实对称‎A 矩阵,A 必能相似对角‎化,所以与对角矩‎A 阵B 相似.作为实对称矩‎阵,当A B 时,知与有相同的‎A B 特征值,从而二次型与‎T x Ax T x Bx 有相同的正负‎惯性指数,因此A 与B 合同.所以本题应当‎选(A ).注意,实对称矩阵合‎同时,它们不一定相‎似,但相似时一定‎合同.例如1002A ⎡⎤=⎢⎥⎣⎦与1003B ⎡⎤=⎢⎥⎣⎦,它们的特征值‎不同,故A 与B 不相似,但它们的正惯‎性指数均为2‎,负惯性指数均‎为0.所以A 与B 合同.(5)【分析】 解本题的关键‎是明确和的关‎XY系:X Y n +=,即Y n X =-,在此基础上利‎用性质:相关系数的绝‎XY ρ对值等于1的‎充要条件是随‎机变量与之间‎XY存在线性关系‎,即Y aX b =+(其中,a b 是常数),且当0a >时,1XY ρ=;当0a <时,1XY ρ=-,由此便知1XY ρ=-,应选(A ).事实上,(,)(,)Cov X Y Cov X n X DX =-=-,()DY D n X DX =-=,由此由相关系‎数的定义式有‎(,)1XY Cov X Y DXDX DY DX DYρ-===-.三、【解】原式=222211arctan ()[arctan ]22(1)x x x x xx xde e d e e e e e ---=--+⎰⎰=2221(arctan )21x x x x x xde de e e e e---++⎰⎰=21(arctan arctan )2x x x xe e e e C ---+++. 四、【解】先求(1)(1,(1,1))(1,1)1f f f ϕ===.求32''1()|3(1)(1)3(1)x d x dxϕϕϕϕ===,归结为求'(1)ϕ.由复合函数求‎导法'''12()(,(,))(,(,))(,)dx f x f x x f x f x x f x x dxϕ=+,'''''1212(1)(1,1)(1,1)[(1,1)(1,1)]f f f f ϕ=++.注意 '1(1,1)(1,1)2f f x∂==∂,'2(1,1)(1,1)3f f y∂==∂.因此'(1)23(23)17ϕ=++=,31()|31751x d x dxϕ==⨯=. 五、【分析与求解】关键是将展成‎arctan x 幂级数,然后约去因子‎x ,再乘上并化简‎21x +即可. 直接将展开办‎arctan x不到,但'(arctan )x 易展开,即'221(arctan )(1),||11n n n x x x x ∞===-<+∑, ①积分得 '2210000(1)arctan (arctan )(1)21n xx nnn n n x t dt t dt x n ∞∞+==-==-=+∑∑⎰⎰,[1,1]x ∈-. ② 因为右端积分‎在1x =±时均收敛,又arctan x 在1x =±连续,所以展开式在‎收敛区间端点‎1x =±成立.现将②式两边同乘以‎21x x+得2222220001(1)(1)(1)arctan (1)212121n n n n n n n n n x x x x x x x n n n +∞∞∞===+---=+=++++∑∑∑=12200(1)(1)2121n n n n n n x x n n -∞∞==--++-∑∑ =21111(1)()2121nnn x n n ∞=+--+-∑221(1)2114n nn x n∞=-=+-∑,[1,1]x ∈-,0x ≠上式右端当时‎0x=取值为1,于是221(1)2()1,[1,1]14n nn f x x x n ∞=-=+∈--∑.上式中令1x =21(1)111[(1)1](21422442n n f nππ∞=-⇒=-=⨯-=--∑.六、【解】用斯托克斯公‎式来计算.记为平面上所‎S2x y z ++=L为围部分.由L的定向,按右手法则取‎S 上侧,S 的单位法向量‎1(cos ,cos ,cos )(1,1,1)3n αβγ== .于是由斯托克‎斯公式得222222cos cos cos 23SI dSx y z y z z x x y αβγ∂∂∂=∂∂∂---⎰⎰=111[(24)(26)(22)]333Sy z z x x y dS --+--+--⎰⎰ =22(423)(2)(6)33S Sx y z dS x y z x y dS -++++=-+-⎰⎰⎰⎰利用.于是'2'211113x y Z Z ++=++=.按第一类曲面‎积分化为二重‎积分得2(6)32(6)3D DI x y dxdy x y dxdy =-+-=-+-⎰⎰⎰⎰,其中围在平面‎D S xy 上的投影区域‎||||1x y +≤(图).由关于轴的对‎D ,x y 称性及被积函‎数的奇偶性得‎()0Dx y dxdy -=⎰⎰⇒ 21212(2)24DI dxdy =-=-=-⎰⎰.七、【证明】 (1)由拉格朗日中‎值定理,(1,1)x ∀∈-,0,(0,1)x θ≠∃∈,使'()(0)()f x f xf x θ=+(θ与x 有关);又由''()f x 连续而''()0f x ≠,''()f x 在(1,1)-不变号,'()f x 在(1,1)-严格单调,θ唯一. (2)对使用的定义‎'()f x θ''(0)f .由题(1)中的式子先解‎出'()f x θ,则有'()(0)()f x ff x xθ-=.再改写成'''()(0)(0)()(0)f x f xf f x f x θ---=.'''2()(0)()(0)(0)f x f f x f xf x x θθθ---⋅=, 解出θ,令x →取极限得'''''2''0001(0)()(0)(0)()(0)12lim lim /lim (0)2x x x f f x f xf f x f x x f θθθ→→→---===. 八、【解】(1)设时刻雪堆的‎t 体积为()V t ,侧面积为()S t .t 时刻雪堆形状‎如图所示,先求()S t 与()V t .侧面方程是222222()()()((,):)()2xy x y h t z h t x y D x y h t +=-∈+≤.⇒44,()()z x z yx h t y h t ∂∂=-=-∂∂. ⇒ 22222()16()()1()()()xyxyD D z z h t x y S t dxdy dxdy x y h t ∂∂++=++=∂∂⎰⎰⎰⎰.作极坐标变换‎:cos ,sin x r y r θθ==,则1:02,0()2xy D r h t θπ≤≤≤≤. ⇒12()2220013()222221()()16()2113[()16]|().()4812h t h t S t d h t r rdr h t h t r h t h t πθππ=+=⋅+=⎰⎰用先二后一的‎积分顺序求三‎重积分()0()()h t D x V t dz dxdy=⎰⎰⎰,其中222()():()()()x y D z h t z t h t +≤-,即2221[()()]2x y h t h t z +≤-.⇒()233301()[()()][()()]()2224h t V t h t h t z dz h t h t h t πππ=-=-=⎰. (2)按题意列出微‎分方程与初始‎条件. (3)体积减少的速‎度是dVdt-,它与侧面积成‎正比(比例系数0.9),即将与的表达‎0.9dV S dt =-()V t ()S t 式代入得22133()0.9()412dh h t h t dt ππ=-,即1310dh dt =-. ①(0)130h =.②(3)解①得13()10h t t C =-+. 由②得130C =,即13()13010h t t =-+. 令()0h t =,得100t =.因此,高度为130‎厘米的雪堆全‎部融化所需时‎间为100小‎时. 九、【解】由于是线性组‎(1,2)i i s β= 12,,s ααα 合,又12,,s ααα 是0Ax =的解,所以根据齐次‎线性方程组解‎的性质知均为‎(1,2)i i s β= 0Ax =的解.从是的基础解‎12,,s ααα 0Ax =系,知()s n r A =-.下面来分析线‎12,,s βββ 性无关的条件‎.设11220s s k k k βββ++= ,即11212112222133211()()()()0s s s s t k t k t k t k t k t k t k t k αααα-++++++++= .由于线性无关‎12,,s ααα ,因此有112211222132110,0,0,0.s s s t k t k t k t k t k t k t k t k -+=⎧⎪+=⎪⎪+=⎨⎪⎪+=⎪⎩(*) 因为系数行列‎式1221121122100000000(1)000s s st t t t t t t t t t +=+-,所以当112(1)0s s st t ++-≠时,方程组(*)只有零解120s k k k ==== .从而线性无关‎12,,s βββ .十、【解】(1)由于AP PB =,即22322(,,)(,,)(,,32)A x Ax A x Ax A x A x Ax A x Ax A x ==-2000(,,)103012x Ax A x ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦, 所以000103012B ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦.(2)由(1)知A B ,那么A E B E ++ ,从而100||||1134011A EB E +=+==--.十一、【解】 (1){|}(1),0,0,1,2,m mn m n P Y m X n C p p m n n -===-≤≤= .(2){,}P X n Y m ==={}{|}P X n P Y m X n ====(1),0,0,1,2,.!nm mn m n e C p p m n n n λλ--⋅-≤≤=十二、【解】 易见随机变量‎11()n X X ++,22()n X X ++,2,()n n X X + 相互独立都服‎从正态分布2(2,2)N μσ.因此可以将它‎们看作是取自‎总体的一个容‎2(2,2)N μσ量为的简单随‎n 机样本.其样本均值为‎21111()2n ni n i i i i X X X X n n +==+==∑∑,样本方差为2111(2)11n i n ii X X X Y n n +=+-=--∑. 因样本方差是‎总体方差的无‎偏估计,故21()21E Y n σ=-,即.2()2(1)E Y n σ=-。

2001考研数学一试题与答案解析

2001考研数学一试题与答案解析

yOx2001年全国硕士研究生入学统一考试数学一试题一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.)(1)设12(sin cos )xy e C x C x =+(12,C C 为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为_____________.(2)设222z y x r++=,则div (grad r ))2,2,1(-=_____________.(3)交换二次积分的积分次序:⎰⎰--0112),(y dx y x f dy =_____________.(4)设矩阵A 满足240A A E +-=,其中E 为单位矩阵,则1()A E --=_____________. (5)设随机变量X 的方差是2,则根据切比雪夫不等式有估计≤≥-}2)({X E X P_____________.二、选择题(本题共5小题,每小题3分,满分15分.)(1)设函数)(x f 在定义域内可导,)(x f y =的图形如右图所示,则)(x f y '=的图形为(2)设),(y x f 在点(0,0)附近有定义,且1)0,0(,3)0,0(='='y x f f ,则 (A ) (0,0)|3z d dx dy =+.(B ) 曲面),(y x f z =在(0,0,(0,0))f 处的法向量为{3,1,1}.(C ) 曲线⎩⎨⎧==0),(y y x f z 在(0,0,(0,0))f 处的切向量为{1,0,3}.(D ) 曲线⎩⎨⎧==0),(y y x f z 在(0,0,(0,0))f 处的切向量为{3,0,1}.(3)设0)0(=f ,则)(x f 在x =0处可导的充要条件为(A ) 201lim (1cosh)h f h →-存在.(B )01lim(1)h h f e h →-存在. (C ) 201lim (sinh)h f h h→-存在.(D ) 01lim [(2)()]h f h f h h→-存在.(4)设1111400011110000,,1111000011110000A B ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦则A 与B (A ) 合同且相似. (B ) 合同但不相似. (C ) 不合同但相似.(D ) 不合同且不相似.(5)将一枚硬币重复掷n 次,以X 和Y 分别表示正面向上和反面向上的次数, 则X 和Y 的相关系数等于(A )-1.(B ) 0.(C )12. (D ) 1.三、(本题满分6分)求dx e e xx⎰2arctan .四、(本题满分6分)设函数),(y x f z =在点(1,1)处可微,且(1,1)1f =,(1,1)|2fx∂=∂,(1,1)|3f y ∂=∂,()(,x f x ϕ=(,))f x x .求13)(=x x dxd ϕ.五、(本题满分8分)设)(x f =210,arctan ,0,1,x x x x x +⎧≠⎨=⎩将)(x f 展开成x 的幂级数,并求级数∑∞=--1241)1(n nn 的和.六、(本题满分7分) 计算dz y x dy x z dx z y I L)3()2()(222222-+-+-=⎰,其中L 是平面2=++z y x 与柱面1=+y x 的交线,从Z 轴正向看去,L 为逆时针方向.七、(本题满分7分)设)(x f 在(1,1)-内具有二阶连续导数且0)(≠''x f ,试证:(1)对于(1,1)-内的任一0x ≠,存在惟一的)1,0()(∈x θ,使)(x f =)0(f +))((x x f x θ'成立; (2)01lim ()2x x θ→=.八、(本题满分8分)设有一高度为()h t (t 为时间)的雪堆在融化过程,其侧面满足方程)()(2)(22t h y x t h z +-=(设长度单位为厘米,时间单位为小时),已知体积减少的速率与侧面积成正比(比例系数为0.9),问高度为130(厘米)的雪堆全部融化需多少小时?九、(本题满分6分)设s ααα,,,21Λ为线性方程组0Ax =的一个基础解系,11122t t βαα=+,21223,t t βαα=+L ,121s s t t βαα=+,其中21,t t 为实常数.试问21,t t 满足什么条件时,s βββ,,,21Λ也为0Ax =的一个基础解系.十、(本题满分8分) 已知3阶矩阵A 与三维向量x ,使得向量组2,,x Ax A x 线性无关,且满足x A Ax x A 2323-=.(1)记P =(x A Ax x 2,,),求3阶矩阵B ,使1-=PBP A ;(2)计算行列式E A +.十一、(本题满分7分)设某班车起点站上客人数X 服从参数为λ(0λ>)的泊松分布,每位乘客在中途下车的概率为p (01p <<),且中途下车与否相互独立.以Y 表示在中途下车的人数,求:(1)在发车时有n 个乘客的条件下,中途有m 人下车的概率; (2)二维随机变量(,)X Y 的概率分布.十二、(本题满分7分) 设总体X 服从正态分布2(,)N μσ(0σ>),从该总体中抽取简单随机样本12,X X ,L ,2n X (2n ≥),其样本均值为∑==ni i X n X 2121,求统计量∑=+-+=ni i n i X X X Y 12)2(的数学期望()E Y .2001年考研数学一试题答案与解析一、填空题(1)【分析】 由通解的形式可知特征方程的两个根是12,1r r i =±,从而得知特征方程为22121212()()()220r r r r r r r r r r r r --=-++=-+=.由此,所求微分方程为'''220y y y -+=.(2)【分析】 先求grad r .grad r=,,,,r r r x y z x y z r r r ∂∂∂⎧⎫⎧⎫=⎨⎬⎨⎬∂∂∂⎩⎭⎩⎭. 再求 div grad r=()()()x y zx r y r z r∂∂∂++∂∂∂=222222333311132()()()x y z x y z r r r r r r r r r++-+-+-=-=.于是div grad r|(1,2,2)-=(1,2,2)22|3r -=.(3)【分析】 这个二次积分不是二重积分的累次积分,因为10y -≤≤时12y -≤.由此看出二次积分0211(,)ydy f x y dx --⎰⎰是二重积分的一个累次积分,它与原式只差一个符号.先把此累次积分表为0211(,)(,)yDdy f x y dx f x y dxdy --=⎰⎰⎰⎰.由累次积分的内外层积分限可确定积分区域D :10,12y y x -≤≤-≤≤.见图.现可交换积分次序原式=02202111111(,)(,)(,)xyxdy f x y dx dx f x y dy dx f x y dy -----=-=⎰⎰⎰⎰⎰⎰.(4)【分析】 矩阵A 的元素没有给出,因此用伴随矩阵、用初等行变换求逆的路均堵塞.应当考虑用定义法.因为2()(2)240A E A E E A A E -+-=+-=,故()(2)2A E A E E -+=,即 2()2A EA E E +-⋅=. 按定义知11()(2)2A E A E --=+.(5)【分析】 根据切比雪夫不等式2(){()}D x P X E X εε-≥≤,于是2()1{()2}22D x P XE X -≥≤=.二、选择题(1)【分析】 当0x <时,()f x 单调增'()0f x ⇒≥,(A ),(C )不对;当0x >时,()f x :增——减——增'()f x ⇒:正——负——正,(B )不对,(D )对. 应选(D ).(2)【分析】 我们逐一分析.关于(A ),涉及可微与可偏导的关系.由(,)f x y 在(0,0)存在两个偏导数⇒(,)f x y 在(0,0)处可微.因此(A )不一定成立.关于(B )只能假设(,)f x y 在(0,0)存在偏导数(0,0)(0,0),f f x y∂∂∂∂,不保证曲面(,)z f x y =在 (0,0,(0,0))f 存在切平面.若存在时,法向量n=(0,0)(0,0)1f f x y ⎫∂∂⎧±-=±⎨⎬∂∂⎩⎭,,{3,1,-1}与{3,1,1}不共线,因而(B )不成立.关于(C ),该曲线的参数方程为,0,(,0),x t y z f t =⎧⎪=⎨⎪=⎩它在点(0,0,(0,0))f 处的切向量为'0{',0,(,0)}|{1,0,(0,0)}{1,0,3}t x dt f t f dt===. 因此,(C )成立.(3)【分析】 当(0)0f =时,'0()(0)limx f x f x →=∃00()()lim lim x x f x f x x x→+→-⇔=∃.关于(A ):220001(1cos )1cos 1()lim (1cos )lim 1cos lim1cos 2h h t f h h f t f h t h h h h t→→→+---=⋅=--, 由此可知 201lim (1cos )h f h h→-∃ ⇔ '(0)f + ∃.若()f x 在0x =可导⇒(A )成立,反之若(A )成立⇒'(0)f + ∃⇒'(0)f ∃.如()||f x x =满足(A ),但'(0)f 不∃. 关于(D ):若()f x 在0x =可导,⇒''001(2)()lim [(2)()]lim[2]2(0)(0)2h h f h f h f h f h f f h h h→→-=-=-. ⇒(D )成立.反之(D )成立0lim((2)())0h f h f h →⇒-=⇒()f x 在0x =连续,⇒()f x 在0x =可导.如21,0()0,0x x f x x +≠⎧=⎨=⎩ 满足(D ),但()f x 在0x =处不连续,因而'(0)f 也不∃.再看(C ):2220001sin (sin )sin ()lim(sin )lim lim sin h h h h h f h h h h f t f h h h h h h h t→→→----=⋅=⋅-(当它们都∃时).注意,易求得20sin lim0h h h h →-=.因而,若'(0)f ∃⇒(C )成立.反之若(C )成立⇒0()lim t f t t→(即 '(0)f ∃).因为只要()f t t有界,任有(C )成立,如()||f x x =满足(C ),但'(0)f 不∃.因此,只能选(B ).(4)【分析】 由 43||40E A λλλ-=-=,知矩阵A 的特征值是4,0,0,0.又因A 是实对称矩阵,A 必能相似对角化,所以A 与对角矩阵B 相似.作为实对称矩阵,当A B :时,知A 与B 有相同的特征值,从而二次型T x Ax 与T x Bx 有相同的正负惯性指数,因此A 与B 合同.所以本题应当选(A ).注意,实对称矩阵合同时,它们不一定相似,但相似时一定合同.例如1002A ⎡⎤=⎢⎥⎣⎦与1003B ⎡⎤=⎢⎥⎣⎦, 它们的特征值不同,故A 与B 不相似,但它们的正惯性指数均为2,负惯性指数均为0.所以A 与B 合同.(5)【分析】 解本题的关键是明确X 和Y 的关系:X Y n +=,即Y n X =-,在此基础上利用性质:相关系数XY ρ的绝对值等于1的充要条件是随机变量X 与Y 之间存在线性关系,即YaX b =+(其中,a b 是常数),且当0a >时,1XY ρ=;当0a <时,1XY ρ=-,由此便知1XY ρ=-,应选(A ).事实上,(,)(,)Cov X Y Cov X n X DX =-=-,()DY D n X DX =-=,由此由相关系数的定义式有1XY ρ===-.三、【解】原式=222211arctan ()[arctan ]22(1)x x x x xxx de e d e e e e e ---=--+⎰⎰=2221(arctan )21x x x xx xde de e e e e ---++⎰⎰=21(arctan arctan )2xx x x e e e e C ---+++.四、【解】 先求(1)(1,(1,1))(1,1)1f f f ϕ===.求 32''1()|3(1)(1)3(1)x d x dxϕϕϕϕ===,归结为求'(1)ϕ.由复合函数求导法 '''12()(,(,))(,(,))(,)dx f x f x x f x f x x f x x dxϕ=+,'''''1212(1)(1,1)(1,1)[(1,1)(1,1)]f f f f ϕ=++.注意'1(1,1)(1,1)2f f x∂==∂,'2(1,1)(1,1)3f f y ∂==∂. 因此'(1)23(23)17ϕ=++=,31()|31751x d x dxϕ==⨯=.五、【分析与求解】 关键是将arctan x 展成幂级数,然后约去因子x ,再乘上21x +并化简即可.直接将arctan x 展开办不到,但'(arctan )x 易展开,即'221(arctan )(1),||11n n n x x x x ∞===-<+∑, ①积分得 '2210000(1)arctan (arctan )(1)21n xx nnn n n x t dt t dt x n ∞∞+==-==-=+∑∑⎰⎰,[1,1]x ∈-. ② 因为右端积分在1x =±时均收敛,又arctan x 在1x =±连续,所以展开式在收敛区间端点1x =±成立.现将②式两边同乘以21x x+得2222220001(1)(1)(1)arctan (1)212121n n n n n n n n n x x x x x x x n n n +∞∞∞===+---=+=++++∑∑∑=12200(1)(1)2121n n n nn n x x n n -∞∞==--++-∑∑=21111(1)()2121n n n x n n ∞=+--+-∑221(1)2114n nn x n ∞=-=+-∑ ,[1,1]x ∈-,0x ≠上式右端当0x =时取值为1,于是221(1)2()1,[1,1]14n nn f x x x n∞=-=+∈--∑. 上式中令1x =21(1)111[(1)1](21)1422442n n f n ππ∞=-⇒=-=⨯-=--∑.六、【解】用斯托克斯公式来计算.记S 为平面2x y z ++=上L 所为围部分.由L 的定向,按右手法则S 取上侧,S 的单位法向量(cos ,cos ,cos )3n αβγ==r .于是由斯托克斯公式得222222cos cos cos 23SI dS x y z y z z x x y αβγ∂∂∂=∂∂∂---⎰⎰=[(24(26(22]333Sy z z x x y dS ------⎰⎰=(423)(2)(6)33S Sx y z dS x y z x y dS ++++=+-利用. 于是'2'211113x y Z Z ++=++=按第一类曲面积分化为二重积分得(6)32(6)3D DI x y dxdy x y dxdy =+-=-+-⎰⎰, 其中D 围S 在xy 平面上的投影区域||||1x y +≤(图).由D 关于,x y 轴的对称性及被积函数的奇偶性得()0Dx y dxdy -=⎰⎰⇒21212(2)24DI dxdy =-=-=-⎰⎰.七、【证明】 (1)由拉格朗日中值定理,(1,1)x ∀∈-,0,(0,1)x θ≠∃∈,使'()(0)()f x f xf x θ=+(θ与x 有关);又由''()f x 连续而''()0f x ≠,''()f x 在(1,1)-不变号,'()f x 在(1,1)-严格单调,θ唯一. (2)对'()f x θ使用''(0)f 的定义.由题(1)中的式子先解出'()f x θ,则有'()(0)()f x f f x xθ-=.再改写成'''()(0)(0)()(0)f x f xf f x f x θ---=.'''2()(0)()(0)(0)f x f f x f xf x xθθθ---⋅=, 解出θ,令0x →取极限得'''''2''0001(0)()(0)(0)()(0)12lim lim /lim (0)2x x x f f x f xf f x f x x f θθθ→→→---===.八、【解】 (1)设t 时刻雪堆的体积为()V t ,侧面积为()S t .t 时刻雪堆形状如图所示先求()S t 与()V t .侧面方程是222222()()()((,):)()2xy x y h t z h t x y D x y h t +=-∈+≤. ⇒44,()()z x z yx h t y h t ∂∂=-=-∂∂. ⇒()xyxyD D S t dxdy ==⎰⎰.作极坐标变换:cos ,sin x r y r θθ==,则:02,0()xy D r t θπ≤≤≤≤.⇒2(003()22221()()2113[()16]().()4812t t S t d h t h t r h t h t πθππ==⋅+=⎰用先二后一的积分顺序求三重积分()()()h t D x V t dzdxdy =⎰⎰⎰,其中222()():()()()x y D z h t z t h t +≤-,即2221[()()]2x y h t h t z +≤-. ⇒()233301()[()()][()()]()2224h t V t h t h t z dz h t h t h t πππ=-=-=⎰. (2)按题意列出微分方程与初始条件.体积减少的速度是dV dt -,它与侧面积成正比(比例系数0.9),即 0.9dVS dt=- 将()V t 与()S t 的表达式代入得 22133()0.9()412dh h t h t dt ππ=-,即1310dh dt =-.①(0)130h =.②(3)解①得13()10h t t C =-+. 由②得130C =,即13()13010h t t =-+. 令()0h t =,得100t =.因此,高度为130厘米的雪堆全部融化所需时间为100小时.九、【解】由于(1,2)i i s β=L 是12,,s αααL线性组合,又12,,s αααL 是0Ax =的解,所以根据齐次线性方程组解的性质知(1,2)i i s β=L 均为0Ax =的解. 从12,,s αααL是0Ax =的基础解系,知()s n r A =-.下面来分析12,,s βββL 线性无关的条件.设11220s s k k k βββ++=L L ,即11212112222133211()()()()0s s s s t k t k t k t k t k t k t k t k αααα-++++++++=L .由于 12,,s αααL 线性无关,因此有112211222132110,0,0,0.s s s t k t k t k t k t k t k t k t k -+=⎧⎪+=⎪⎪+=⎨⎪⎪+=⎪⎩L(*)因为系数行列式12211211221000000000(1)000s s st t t t t t t t t t +=+-L L L M M M M ML , 所以当112(1)0ss st t ++-≠时,方程组(*)只有零解120s k k k ====L .从而12,,s βββL 线性无关.十、【解】 (1)由于AP PB = ,即22322(,,)(,,)(,,32)A x Ax A x Ax A x A x Ax A x Ax A x ==-2000(,,)103012x Ax A x ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦,所以000103012B ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦.(2)由(1)知A B :,那么A E B E ++:,从而100||||1134011A EB E +=+==--.十一、【解】 (1){|}(1),0,0,1,2,mmn mn P Y m X n C p p m n n -===-≤≤=L .(2){,}P X n Y m ==={}{|}P X n P Y m X n ====(1),0,0,1,2,.!nm mn m n e C p p m n n n λλ--⋅-≤≤=L十二、【解】 易见随机变量11()n X X ++,22()n X X ++,2,()n n X X +L 相互独立都服从正态分布2(2,2)N μσ.因此可以将它们看作是取自总体2(2,2)N μσ的一个容量为n 的简单随机样本.其样本均值为21111()2n ni n i i i i X X X X n n +==+==∑∑, 样本方差为2111(2)11n i n ii X X X Y n n +=+-=--∑. 因样本方差是总体方差的无偏估计,故21()21E Y n σ=-,即2()2(1)E Y n σ=-.。

2001年考研数学一真题

2001年考研数学一真题

f ( x, y ) 在(0,0)存在偏导数
f (0,0) f (0,0) ,不保证曲面 z f ( x, y ) 在 , x y
f (0,0) f (0,0) (0, 0, f (0, 0)) 存在切平面.若存在时,法向量 n= , , 1 {3,1,-1}与{3,1,1}不 y x
f ( x) 单调增 f ' ( x) 0 ,(A),(C)不对;
f ( x) :增——减——增 f ' ( x) :正——负——正,(B)不对,(D)对.
关于(A),涉及可微与可偏导的关系 .由 微.因此(A)不一定成立. 关于(B)只能假设
f ( x, y ) 在(0,0)存在两个偏导数 f ( x, y ) 在(0,0)处可
=(
于是
divgradr| (1, 2,2) =
2 2 |(1,2,2) . r 3
y 0时
(3)【分析】 这个二次积分不是二重积分的累次积分,因为 1
1 y 2 .由此看出二次积分 dy
1
0
2
1 y
f ( x, y)dx 是二重积分的一个累次
积分,它与原式只差一个符号.先把此累次积分表为
y'' 2 y' 2 y 0 .
(2)【分析】 先求 gradr. gradr=
r r r x y z , , , , . x y z r r r
再求
divgradr=
x y z ( ) ( ) ( ) x r y r z r 1 x2 1 y2 1 z2 3 x2 y 2 z 2 2 3 )( 3 )( 3 ) . r r r r r r r r3 r
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2001年考研数学一试题答案与解析一、(1)【分析】 由通解的形式可知特征方程的两个根是12,1r r i =±,从而得知特征方程为22121212()()()220r r r r r r r r r r r r --=-++=-+=.由此,所求微分方程为'''220y y y -+=.(2)【分析】 grad r=,,,,r r r x y z x y z r r r ∂∂∂⎧⎫⎧⎫=⎨⎬⎨⎬∂∂∂⎩⎭⎩⎭.再求 div grad r=()()()x y z x r y r z r ∂∂∂++∂∂∂=222222333311132()()()x y z x y z r r r r r r r r r++-+-+-=-=.于是div grad r|(1,2,2)-=(1,2,2)22|3r -=. (3)【分析】 这个二次积分不是二重积分的累次积分,因为10y -≤≤时12y -≤.由此看出二次积分0211(,)ydy f x y dx --⎰⎰是二重积分的一个累次积分,它与原式只差一个符号.先把此累次积分表为0211(,)(,)yDdy f x y dx f x y dxdy --=⎰⎰⎰⎰.由累次积分的内外层积分限可确定积分区域D :10,12y y x -≤≤-≤≤.见图.现可交换积分次序原式=02202111111(,)(,)(,)xyxdy f x y dx dx f x y dy dx f x y dy -----=-=⎰⎰⎰⎰⎰⎰.(4)【分析】 矩阵A 的元素没有给出,因此用伴随矩阵、用初等行变换求逆的路均堵塞.应当考虑用定义法.因为2()(2)240A E A E E A A E -+-=+-=,故()(2)2A E A E E -+=,即2()2A E A E E +-⋅=.按定义知11()(2)2A E A E --=+. (5)【分析】 根据切比雪夫不等式2(){()}D x P X E X εε-≥≤, 于是2()1{()2}22D x P XE X -≥≤=. 二、(1)【分析】 当0x <时,()f x 单调增'()0f x ⇒≥,(A ),(C )不对;当0x >时,()f x :增——减——增'()f x ⇒:正——负——正,(B )不对,(D )对.应选(D ). (2)关于(A ),涉及可微与可偏导的关系.由(,)f x y 在(0,0)存在两个偏导数⇒(,)f x y 在(0,0)处可微.因此(A )不一定成立.关于(B )只能假设(,)f x y 在(0,0)存在偏导数(0,0)(0,0),f f x y∂∂∂∂,不保证曲面(,)z f x y =在(0,0,(0,0))f 存在切平面.若存在时,法向量n=(0,0)(0,0)1f f x y ⎫∂∂⎧±-=±⎨⎬∂∂⎩⎭,,{3,1,-1}与{3,1,1}不共线,因而(B )不成立.关于(C ),该曲线的参数方程为,0,(,0),x t y z f t =⎧⎪=⎨⎪=⎩它在点(0,0,(0,0))f 处的切向量为'0{',0,(,0)}|{1,0,(0,0)}{1,0,3}t x dt f t f dt===.因此,(C )成立. (3)【分析】 当(0)0f =时,'0()(0)lim x f x f x →=∃00()()lim lim x x f x f x x x→+→-⇔=∃.关于(A ):220001(1cos )1cos 1()lim (1cos )lim 1cos lim1cos 2h h t f h h f t f h t h h h h t→→→+---=⋅=--, 由此可知 201lim (1cos )h f h h →-∃ ⇔ '(0)f + ∃.若()f x 在0x =可导⇒(A )成立,反之若(A )成立⇒'(0)f +∃⇒'(0)f ∃.如()||f x x =满足(A ),但'(0)f 不∃.关于(D ):若()f x 在0x =可导,⇒''001(2)()lim [(2)()]lim[2]2(0)(0)2h h f h f h f h f h f f h h h→→-=-=-. ⇒(D )成立.反之(D )成立0lim((2)())0h f h f h →⇒-=⇒()f x 在0x =连续,⇒()f x 在0x =可导.如21,0()0,0x x f x x +≠⎧=⎨=⎩ 满足(D ),但()f x 在0x =处不连续,因而'(0)f 也不∃.再看(C ):2220001sin (sin )sin ()lim(sin )lim lim sin h h h h h f h h h h f t f h h h h h h h t→→→----=⋅=⋅-(当它们都∃时). 注意,易求得20sin lim 0h h h h →-=.因而,若'(0)f ∃⇒(C )成立.反之若(C )成立⇒0()lim t f t t→(即 '(0)f ∃).因为只要()f t t 有界,任有(C )成立,如()||f x x =满足(C ),但'(0)f 不∃.因此,只能选(B ).(4)【分析】 由 43||40E A λλλ-=-=,知矩阵A 的特征值是4,0,0,0.又因A 是实对称矩阵,A 必能相似对角化,所以A 与对角矩阵B 相似.作为实对称矩阵,当A B 时,知A 与B 有相同的特征值,从而二次型Tx Ax 与Tx Bx 有相同的正负惯性指数,因此A 与B 合同.所以本题应当选(A ).注意,实对称矩阵合同时,它们不一定相似,但相似时一定合同.例如1002A ⎡⎤=⎢⎥⎣⎦与1003B ⎡⎤=⎢⎥⎣⎦,它们的特征值不同,故A 与B 不相似,但它们的正惯性指数均为2,负惯性指数均为0.所以A 与B 合同.(5)【分析】 解本题的关键是明确X 和Y 的关系:X Y n +=,即Y n X =-,在此基础上利用性质:相关系数XY ρ的绝对值等于1的充要条件是随机变量X 与Y 之间存在线性关系,即Y aX b =+(其中,a b 是常数),且当0a >时,1XY ρ=;当0a <时,1XY ρ=-,由此便知1XY ρ=-,应选(A ).事实上,(,)(,)Cov X Y Cov X n X DX =-=-,()DY D n X DX =-=,由此由相关系数的定义式有1XY ρ===-.三、【解】原式=222211arctan ()[arctan ]22(1)x x x x xxx de e d e e e e e ---=--+⎰⎰=2221(arctan )21x x x xx xde de e e e e ---++⎰⎰=21(arctan arctan )2x x x x e e e e C ---+++. 四、【解】先求(1)(1,(1,1))(1,1)1f f f ϕ===.求 32''1()|3(1)(1)3(1)x d x dxϕϕϕϕ===,归结为求'(1)ϕ.由复合函数求导法'''12()(,(,))(,(,))(,)dx f x f x x f x f x x f x x dxϕ=+,'''''1212(1)(1,1)(1,1)[(1,1)(1,1)]f f f f ϕ=++.注意 '1(1,1)(1,1)2f f x∂==∂,'2(1,1)(1,1)3f f y∂==∂.因此'(1)23(23)17ϕ=++=,31()|31751x d x dxϕ==⨯=. 五、【分析与求解】关键是将arctan x 展成幂级数,然后约去因子x ,再乘上21x +并化简即可. 直接将arctan x展开办不到,但'(arctan )x 易展开,即'221(arctan )(1),||11n nn x x x x ∞===-<+∑, ①积分得 '2210000(1)arctan (arctan )(1)21n xx nnn n n x t dt t dt x n ∞∞+==-==-=+∑∑⎰⎰,[1,1]x ∈-. ② 因为右端积分在1x =±时均收敛,又arctan x 在1x =±连续,所以展开式在收敛区间端点1x =±成立.现将②式两边同乘以21x x+得2222220001(1)(1)(1)arctan (1)212121n n n n n n n n n x x x x x x x n n n +∞∞∞===+---=+=++++∑∑∑ =12200(1)(1)2121n n n nn n x x n n -∞∞==--++-∑∑ =21111(1)()2121nnn x n n ∞=+--+-∑221(1)2114n nn x n∞=-=+-∑,[1,1]x ∈-,0x ≠上式右端当0x =时取值为1,于是221(1)2()1,[1,1]14n nn f x x x n∞=-=+∈--∑.上式中令1x =21(1)111[(1)1](21)1422442n n f n ππ∞=-⇒=-=⨯-=--∑. 六、【解】用斯托克斯公式来计算.记S 为平面2x y z ++=上L 所为围部分.由L 的定向,按右手法则S 取上侧,S 的单位法向量(cos ,cos ,cos )3n αβγ==.于是由斯托克斯公式得 222222cos cos cos 23SI dSx y z y z z x x y αβγ∂∂∂=∂∂∂---⎰⎰=[(24(26(22333Sy z z x x y dS --+----⎰⎰ =(423)(2)(6)33S Sx y z dS x y z x y dS ++++=+-⎰⎰利用.于是'2'211113x y Z Z ++=++=.按第一类曲面积分化为二重积分得(6)32(6)3D DI x y dxdy x y dxdy =+-=-+-⎰⎰⎰⎰,其中D 围S 在xy 平面上的投影区域||||1x y +≤(图).由D 关于,x y 轴的对称性及被积函数的奇偶性得()0Dx y dxdy -=⎰⎰⇒21224DI dxdy =-=-=-⎰⎰.七、【证明】 (1)由拉格朗日中值定理,(1,1)x ∀∈-,0,(0,1)x θ≠∃∈,使'()(0)()f x f xf x θ=+(θ与x 有关);又由''()f x 连续而''()0f x ≠,''()f x 在(1,1)-不变号,'()f x 在(1,1)-严格单调,θ唯一.(2)对'()f x θ使用''(0)f 的定义.由题(1)中的式子先解出'()f x θ,则有'()(0)()f x f f x xθ-=.再改写成'''()(0)(0)()(0)f x f xf f x f x θ---=.'''2()(0)()(0)(0)f x f f x f xf x x θθθ---⋅=,解出θ,令x →取极限得'''''2''0001(0)()(0)(0)()(0)12lim lim /lim (0)2x x x f f x f xf f x f x x f θθθ→→→---===. 八、【解】(1)设t 时刻雪堆的体积为()V t ,侧面积为()S t .t 时刻雪堆形状如图所示,先求()S t 与()V t .侧面方程是222222()()()((,):)()2xy x y h t z h t x y D x y h t +=-∈+≤.⇒44,()()z x z yx h t y h t ∂∂=-=-∂∂. ⇒()xyxyD D S t dxdy ==⎰⎰⎰⎰.作极坐标变换:cos ,sin x r y r θθ==,则:02,0()xy D r h t θπ≤≤≤≤. ⇒2(003()22221()()2113[()16]().()4812t t S t d h t h t r h t h t πθππ==⋅+=⎰用先二后一的积分顺序求三重积分()0()()h t D x V t dzdxdy=⎰⎰⎰,其中222()():()()()x y D z h t z t h t +≤-,即2221[()()]2x y h t h t z +≤-.⇒()233301()[()()][()()]()2224h t V t h t h t z dz h t h t h t πππ=-=-=⎰. (2)按题意列出微分方程与初始条件. (3)体积减少的速度是dV dt -,它与侧面积成正比(比例系数0.9),即0.9dVS dt =-将()V t 与()S t 的表达式代入得22133()0.9()412dh h t h t dt ππ=-,即1310dh dt =-. ① (0)130h =.②(3)解①得13()10h t t C =-+. 由②得130C =,即13()13010h t t =-+. 令()0h t =,得100t =.因此,高度为130厘米的雪堆全部融化所需时间为100小时. 九、【解】由于(1,2)i i s β=是12,,s ααα线性组合,又12,,s ααα是0Ax =的解,所以根据齐次线性方程组解的性质知(1,2)i i s β=均为0Ax =的解.从12,,s ααα是0Ax =的基础解系,知()s n r A =-. 下面来分析12,,s βββ线性无关的条件.设11220s s k k k βββ++=,即11212112222133211()()()()0s s s s t k t k t k t k t k t k t k t k αααα-++++++++=.由于12,,s ααα线性无关,因此有 112211222132110,0,0,0.s s st k t k t k t k t k t k t k t k -+=⎧⎪+=⎪⎪+=⎨⎪⎪+=⎪⎩ (*) 因为系数行列式12211211221000000000(1)000s s st t t t t t t t t t +=+-,所以当112(1)0ss st t ++-≠时,方程组(*)只有零解120s k k k ====.从而12,,s βββ线性无关.十、【解】(1)由于AP PB =,即22322(,,)(,,)(,,32)A x Ax A x Ax A x A x Ax A x Ax A x ==-2000(,,)103012x Ax A x ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦, 所以000103012B ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦.(2)由(1)知AB ,那么A EB E ++,从而100||||1134011A EB E +=+==--.十一、【解】 (1){|}(1),0,0,1,2,mmn mn P Y m X n C p p m n n -===-≤≤=.(2){,}P X n Y m ==={}{|}P X n P Y m X n ====(1),0,0,1,2,.!nm mn m n e C p p m n n n λλ--⋅-≤≤=十二、【解】 易见随机变量11()n X X ++,22()n X X ++,2,()n n X X +相互独立都服从正态分布2(2,2)N μσ.因此可以将它们看作是取自总体2(2,2)N μσ的一个容量为n 的简单随机样本.其样本均值为21111()2n ni n i i i i X X X X n n +==+==∑∑,样本方差为2111(2)11n i n ii X X X Y n n +=+-=--∑. 因样本方差是总体方差的无偏估计,故21()21E Y n σ=-,即.2()2(1)E Y n σ=-。

相关文档
最新文档