《两个数(量)之间的关系》基础习题
人教版三年级上册数学第五单元《倍的认识》知识点+

人教版三年级上册数学第五单元《倍的认识》知识点+练习题,先给孩子收藏《倍的认识》知识点“倍”的本质属性是什么?“倍”是由两个数量相比较而产生的,是两个量比较的结果,以一个量为标准,另一个量有这样相同的几份就是它的几倍。
可见,“1份数”在“倍的认识”中具有重要性与关键性。
只要“1份的个数”确定了,另一个量就是这样的几个几。
一、倍的意义要知道两个数的关系,先确定谁是1倍数,然后把另一个数和它作比较,另一个数里有几个1倍数就是它的几倍。
二、求一个数是另一个数的几倍的计算方法一个数÷另一个数=倍数三、求一个数的几倍是多少的计算方法这个数×倍数=这个数的几倍4、求几个相同加数的和,也是求一个加数几倍的积5、注意事项:“倍”不能作单位名称1、倍的意义:一个数里面有(几个)另一个数,就说一个数是另一个数的(几倍)。
例:30里面有(6)个5,就说30是5的(6倍)。
其中5是(一倍数),30是(多倍数)。
2、求一个数是另一个数的几倍,用(除法)。
用(一个数)÷(另一个数)=倍数例:72是8的几倍?列式:72÷8=93、求一个数的几倍是多少,用乘法。
例:4的8倍是多少?列式4×8=324、求一倍数(少)用除法;求多倍数(多)用乘法。
例:⑴64是几的8倍?列式为:64÷8=8⑵5的7倍是多少?列式为:5×7=355、倍数关系不带单位。
例:农场有鸡7只,鸭28只,鸭的只数是鸡的几倍?列式为:28÷7=4 答:鸭的只数是鸡的4倍。
6、求比一个数的几倍多几的数是多少,用(乘加)计算。
例:①求比4的6倍多10的数是多少?列式为:4×6+10=34②求比8的7倍多6的数是多少?列式为:7、求比一个数的几倍少几的数是多少,用(乘减)计算。
例:①求比6的9倍少12的数是多少?列式为:6×9﹣12=32②求比5的9倍少10的数是多少?列式为:5×9﹣10=35易错点1易错点1:混淆谁是谁的多少倍河里有许多动物在游泳,小鹅有4只,小鸭的只数是小鹅的2倍,小鹅的只数是河马的2倍,小鸭和河马各有多少只?错解:4÷2=2(只)4÷2=2(只)答小鸭有2只,河马有2只。
新北师大版七年级数学下册第三章《变量之间的关系》单元复习题含答案解析 (14)

一、选择题(共10题)1.甲、乙二人同时从A地出发,沿同一条道路去B地,途中都使用两种不同的速度V1和V2(V1<V2),甲用一半的路程使用速度V1,另一半的路程使用速度V2,乙用一半的时间使用速度V1,另一半的时间使用速度V2,关于甲乙二人从A地到达B地的路程与时间的函数图象及关系,有图中4个不同的图示分析,其中横轴t表示时间,纵轴S表示路程,其中正确的图示分析为( )A.图(1)B.图( 1)或图( 2)C.图( 3)D.图( 4)2.甲、乙两位同学进行长跑训练,甲和乙所跑的路程S(单位:米)与所用时间t(单位:秒)之间的函数图象分别为线段OA和折线OBCD.则下列说法正确的是( )A.两人从起跑线同时出发,同时到达终点B.跑步过程中,两人相遇一次C.起跑后160秒时,甲、乙两人相距最远D.乙在跑前300米时,速度最慢3.下列各曲线表示的y与x的关系中,y不是x的函数的是( )A.B.C.D.4.一个容器有进水管和出水管,每分钟的进水量和出水量是两个常数.从某时刻开始4min内只进水不出水,从第4min到第24min内既进水又出水,从第24min开始只出水不进水,容器内水量y(单位:L)与时间x(单位:min)之间的关系如图所示,则图中a的值是( )A.32B.34C.36D.385.如图,在△ABC中,AB=AC,MN是边BC上一条运动的线段(点M不与点B重合,点BC,MD⊥BC交AB于点D,NE⊥BC交AC于点E,在N不与点C重合),且MN=12MN从左至右的运动过程中,设BM=x,△BMD和△CNE的面积之和为y,则下列图象中,能表示y与x的函数关系的图象大致是( )A.B.C.D.6.圆周长公式c=2πr中,下列说法正确的是( )A.r是自变量,2,π,c是常量B.π,r是自变量,2为常量C.c,r为变量,2,π为常量D.c为变量,2,π,r为常量7.2020年初以来,红星消毒液公司生产的消毒液在库存量为m吨的情况下,日销售量与产量持平.自1月底抗击“新冠病毒”以来,消毒液需求量猛增,该厂在生产能力不变的情况下,消毒液一度脱销,下面表示2020年初至脱销期间,该厂库存量y(吨)与时间t(天)之间函数关系的大致图象是( )A.B.C.D.8.已知,A市到B市的路程为260千米,甲车从A市前往B市运送物资,行驶2小时在M地汽车出现故障,立即通知技术人员乘乙车从A市赶来维修(通知时间忽略不计),乙车到达M 地后又经过20分钟修好甲车后以原速原路返回A市,同时甲车以原来 1.5倍的速度前往B市,如图是两车距A市的路程y(千米)与甲车所用时间x(小时)之间的函数图象,下列四种说法:①甲车出发时的速度是60千米时;②乙车的速度是96千米/时;③乙车返回时y与x的函数关系式为y=−96x+384;④甲车到达B市时乙已返回A市2小时20分钟.其中正确的个数是( )A.1个B.2个C.3个D.4个9.如图①,点P从长方形ABCD的顶点A出发沿A→B→C以2cm/s的速度匀速运动到点C,图②是点P运动时,△APD的面积y(cm2)随运动时间x(s)变化而变化的函数关系图象,则长方形ABCD的面积为( )A.36cm2B.48cm2C.32cm2D.24cm210.某校在对某宿舍进行消毒的过程中,先经过5min的集中药物喷洒,再封闭宿舍10min,然后打开门窗进行通风,室内每立方米空气中含药量y(mg/m3)与药物在空气中的持续时间x(min)之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是( )A.经过5min集中喷洒药物,室内空气中的含药量最高达到10 mg/m3B.室内空气中的含药量不低于8 mg/m3的持续时间达到了11minC.当室内空气中的含药量不低于5 mg/m3且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效D.当室内空气中的含药量低于2 mg/m3时,对人体才是安全的,所以从室内空气中的含药量达到2 mg/m3开始,需经过59min后,学生才能进入室内二、填空题(共7题)11. 心理学家发现,学生对概念的接受能力 y 与提出概念所用的时间 x (单位:min )之间有如下关系:(其中0≤x ≤30).提出概念所用时间(x )257101213141720对概念的接受能力(y )47.853.556.35959.859.959.858.355(1)上表中反映了变量是 , 是自变量, 是因变量;(2)当提出概念所用时间是 10 min 时,学生的接受能力是 ;(3)根据表格中的数据,你认为提出概念 分钟时,学生的接受能力最强;(4)从表中可知,当时间 x 在 范围内,学生的接受能力逐步增强,当时间 x 在 范围内,学生的接受能力逐步降低.12. 一天早晨,小玲从家出发匀速步行到学校.小玲出发一段时间后,她的妈妈发现小玲忘带了一件必需的学习用品,于是立即下楼骑自行车,沿小玲行进的路线,匀速去追小玲.妈妈追上小玲将学习用品交给小玲后,立即沿原路线匀速返回家里,但由于路上行人渐多,妈妈返回时骑车的速度只是原来速度的一半.小玲继续以原速度步行前往学校.妈妈与小玲之间的距离 y (米)与小玲从家出发后步行的时间 x (分)之间的关系如图所示(小玲和妈妈上、下楼以及妈妈交学习用品给小玲耽搁的时间忽略不计).当妈妈刚回到家时,小玲离学校的距离为 米.13. 某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后卸完物品再另装货物共用 45 分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为 60 千米/时,两车之间的距离 y (千米)与货车行驶时间 x (小时)之间的函数图象,如图所示,现有以下 4 个结论:①快递车从甲地到乙地的速度为 100 千米/时;②甲、乙两地之间的距离为 120 千米;③图中点 B 的坐标为 (334,75);④快递车从乙地返回时的速度为 90千米/时,其中正确的是 (填序号).14.甲、乙两队参加了“端午情,龙舟韵”赛龙舟比赛,两队在比赛时的路程s(米)与时间t(秒)之间的函数图象如图所示,根据图象有以下四个判断:①乙队率先到达终点;②甲队比乙队多走了126米;③在47.8秒时,两队所走路程相等;④从出发到13.7秒的时间段内,甲队的速度比乙队的慢.所以正确判断的序号是.15.已知函数f(x)=√x+6,那么f(−2)=.16.两个少年在绿茵场上游戏.小红从点A出发沿线段AB运动到点B,小兰从点C出发,以相同的速度沿⊙O逆时针运动一周回到点C,两人的运动路线如图1所示,其中AC=DB.两人同时开始运动,直到都停止运动时游戏结束,其间他们与点C的距离y与时间x(单位:秒)的对应关系如图2所示.则下列说法正确的有.(填序号)①小红的运动路程比小兰的长;②两人分别在1.09秒和7.49秒的时刻相遇;③当小红运动到点D的时候,小兰已经经过了点D;④在4.84秒时,两人的距离正好等于⊙O的半径.17.已知A,B两地相距20千米,某同学步行由A地到B地,速度为每小时4千米,设该同学与B地的距离为y千米,步行的时间为x小时,则y与x之间的函数解析式为.三、解答题(共8题)18.等腰三角形的周长为16cm,设它的底边长为x cm,腰长为y cm.(1) 写出y关于x的函数解析式;(2) 求这个函数的定义域;(3) 当y=5时,求x的值.19.一销售员向某企业推销一种该企业生产必需的物品,若企业要40件,则销售员每件可获利40元,销售员(在不亏本的前提下)为扩大销售量,而企业为了降低生产成本,经协商达成协议,如果企业购买40件以上时,每多要1件,则每件降低1元.(1) 设每件降低x(元)时,销售员获利为y(元),试写出y关于x的函数关系式;(2) 当每件降低20元时,问此时企业需购进物品多少件?此时销售员的利润是多少?20.甲、乙两人同时从A地前往相距5千米的B地.甲骑自行车,途中修车耽误了20分钟,甲行驶的路程s(千米)关于时间t(分钟)的函数图象如图所示;乙慢跑所行的路程s(千米)关于时t(0≤t≤60).间t(分钟)的函数解析式为s=112(1) 在图中画出乙慢跑所行的路程关于时间的函数图象;(2) 乙慢跑的速度是每分钟千米;(3) 甲修车后行驶的速度是每分钟千米;(4) 甲、乙两人在出发后,中途 分钟时相遇.21. 如图①表示同一时刻的韩国首尔时间和北京时间,两地时差为整数.(1) 设北京时间为 x (时),首尔时间为 y (时),若 0≤x ≤12,求 y 关于 x 的函数表达式,并填写下表(同一时刻的两地时间).北京时间7:30 2:50首尔时间 12:15 (2) 如图②表示同一时刻的英国伦敦(夏时制)时间和北京时间,两地时差为整数.如果现在伦敦(夏时制)时间为 7:30,那么此时韩国首尔时间是多少?22. 如图,在 △ABC 中,∠ABC =90∘,∠C =40∘,点 D 是线段 BC 上的动点,将线段 AD 绕点 A顺时针旋转 50∘ 至 ADʹ,连接 BDʹ.已知 AB =2 cm ,设 BD 为 x cm ,BDʹ 为 y cm . 小明根据学习函数的经验,对函数 y 随自变量 x 的变化而变化的规律进行了探究,下面是小明的探究过程,请补充完整.(说明:解答中所填数值均保留一位小数)(1) 通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm00.50.7 1.0 1.5 2.0 2.3y/cm 1.7 1.3 1.10.70.9 1.1(2) 建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3) 结合画出的函数图象,解决问题:线段BDʹ的长度的最小值约为cm;若BDʹ≥BD,则BD的长度x的取值范围是.23.阅读下面的材料:如果函数y=f(x)满足:对于自变量x的取值范围内的任意x1,x2,(1)若x1<x2,都有f(x1)<f(x2),则称f(x)是增函数;(2)若x1<x2,都有f(x1)>f(x2),则称f(x)是减函数.例题:证明函数f(x)=6x(x>0)是减函数.证明:设0<x1<x2,f(x1)−f(x2)=6x1−6x2=6x2−6x1x1x2=6(x2−x1)x1x2,∵0<x1<x2,∴x2−x1>0,x1x2>0.∴6(x2−x1)x1x2>0.即f(x1)−f(x2)>0.∴f(x1)>f(x2).∴函数f(x)−6x(x>0)是减函数.根据以上材料,解答下面的问题:已知函数f(x)=2x−1x2(x<0),例如f(−1)=2×(−1)−1(−1)2=−3,f(−2)=2×(−2)−1(−2)2=−54.(1) 计算:f(−3)=;(2) 猜想:函数f(x)=2x−1x2(x<0)是函数(填“增”或“减”);(3) 请仿照例题证明你的猜想.24.某固体物质在受热熔解过程中物质温度T(∘C)与时间t(s)的关系如图,其中A阶段物质为固态,B阶段物质为固液共存态,C阶段物质为液态.(1) 物质温度上升速度最快的是阶段,最慢的是阶段.(2) 若物质的温度是60∘C,那么时间t(s)的变化范围是.(3) 请写出A阶段物质温度T(∘C)与时间t(s)的函数关系式.25.在疫情期间,某口罩生产厂为提高生产效益引进了新的设备,其中甲表示新设备的产量y(万个)与生产时间x(天)的关系,乙表示旧设备的产量y(万个)与生产时间x(天)的关系:(1) 由图象可知,新设备因工人操作不当停止生产了天;(2) 求新、旧设备每天分别生产多少万个口罩?(3) 在生产过程中,x为何值时,新旧设备所生产的口罩数量相同.答案一、选择题(共10题)1. 【答案】B【解析】由题意得:甲在一半路程处将进行速度的转换,4个选项均符合,乙在一半时间处将进行速度的转换,函数图象将在t1处发生弯折,只有(1)(2)(4)符合,再利用速度不同,所以行驶路程就不同,两人不可能同时到达目的地,故(4)错误,故只有(1)(2)正确.【知识点】用函数图象表示实际问题中的函数关系2. 【答案】C【知识点】用函数图象表示实际问题中的函数关系3. 【答案】C【解析】根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,A,B,D 选项中,都是一一对应关系,而C选项不满足函数的定义.【知识点】函数的概念4. 【答案】C【解析】由图象可知,进水的速度为:20÷4=5(L/min),出水的速度为:5−(35−20)÷(16−4)=3.75(L/min),第24分钟时的水量为:20+(5−3.75)×(24−4)=45(L),a=24+ 45÷3.75=36.【知识点】用函数图象表示实际问题中的函数关系5. 【答案】B【知识点】图像法6. 【答案】C【知识点】函数的概念7. 【答案】D【解析】根据题意可知,库存量y(吨)与时间t(天)之间函数关系的图象为先水平,再逐渐下降,最后为0.故选D.【知识点】用函数图象表示实际问题中的函数关系8. 【答案】B【解析】①前2小时甲车行驶80km,=40km/h;∴v=802②乙车总行驶路程为80×2=160km,总行驶时间为4−2−13=53h,∴v=16053=96km/h;③ ∵乙车速度为96km/h,∴乙返回时的直线k=−96,将(4,0)代入y=−96x+b得y=−96x+384;④ CD段甲车速度为40×1.5=60km/h,S=260−80=180km,∴t甲=18060=3h,乙车返回所用时间:t乙=8096=56h,3−56=136h,∴甲到达乙返回2h10min.∴②③正确.【知识点】用函数图象表示实际问题中的函数关系9. 【答案】C【解析】由题图可得AB=2×2=4(cm),BC=(6−2)×2=8(cm),所以长方形ABCD的面积是4×8=32(cm),故选C.【知识点】图像法10. 【答案】C【知识点】用函数图象表示实际问题中的函数关系二、填空题(共7题)11. 【答案】学生对概念的接受能力与老师提出概念的时间(单位:min)之间的关系;老师传授概念的时间;学生对概念的接受能力;10min;59.9;2∼13min;14∼20min【知识点】列表法12. 【答案】200【知识点】用函数图象表示实际问题中的函数关系13. 【答案】①③④【解析】设快递车出发时的速度为m千米/时,到由图象得3(m−6)=120,解得m=100,①正确;甲、乙两地之间的距离大于120千米,②错误;点B的横坐标是快递车返回的时刻:3×4560=334(h),纵坐标是此时货车到乙地的距离:120−34×60=75(km),∴点B的坐标为(334,75),③正确;设快递车从乙地返回是的速度为n千米/时,则(414−334)(n+60)=75,解得n=90,④正确.【知识点】用函数图象表示实际问题中的函数关系14. 【答案】③④【知识点】用函数图象表示实际问题中的函数关系15. 【答案】2【知识点】解析式法16. 【答案】④【解析】①由图可知,速度相同的情况下,小红比小兰提前停下来,时间花的短,故小红的运动路程比小兰的短,故本选项不符合题意;②两人分别在1.09秒和7.49秒的时刻与点C距离相等,故本选项不符合题意;③当小红运动到点D的时候,小兰也在点D,故本选项不符合题意;④当小红运动到点O的时候,两人的距离正好等于⊙O的半径,此时t=9.682=4.48.故本选项正确.故答案为:④.【知识点】用函数图象表示实际问题中的函数关系17. 【答案】y=20−4x【知识点】解析式法三、解答题(共8题)18. 【答案】(1) 依题意得2y+x=16,∴2y=16−x,∴y=8−12x,∴y关于x的函数解析式为y=8−12x.(2) ∵2y>x,2y=16−x,∴2x<16,∴x<8,∵ x >0, ∴ 0<x <8,∴ 这个函数的定义域为 0<x <8.(3) 当 y =5 时,8−12x =5,∴ −12x =−3,∴ x =6.【知识点】解析式法、实际问题中的自变量的取值范围19. 【答案】(1) y =(40−x )(40+x )=1600−x 2.(2) 当降低 20 元时,需购进 40+20=60 (件) 此时销售员的利润 y =1600−202=1200(元).【知识点】解析式法20. 【答案】(1) 略 (2) 112 (3) 320(4) 24【知识点】用函数图象表示实际问题中的函数关系21. 【答案】(1) 从题图①看出,同一时刻,首尔时间比北京时间多 1 小时, 所以 y 关于 x 的函数表达式是 y =x +1,0≤x ≤12. 填表如下:北京时间7:3011:152:50首尔时间8:3012:153:50(2) 设伦敦(夏时制)时间为 t 时,则北京时间为 (t +7) 时, 结合(1)可得,韩国首尔时间为 (t +8) 时,所以当伦敦(夏时制)时间为 7:30,韩国首尔时间为 15:30. 【知识点】解析式法22. 【答案】(1) 0.9 (2) 如图所示. (3) 0.7;0≤x ≤0.9【知识点】列表法、图像法23. 【答案】(1) −79(2) 减(3) 证明:设x1<x2<0,f(x1)−f(x2)=2x1−1x12−2x2−1x22=(x2−x1)[2x1x2−(x1+x2)](x1x2)2,∵x1<x2<0,∴x2−x1>0,x1x2>0,x1+x2<0,∴(x2−x1)[2x1x2−(x1+x2)](x1x2)2>0,即f(x1)−f(x2)>0,∴f(x1)>f(x2),∴函数f(x)=2x−1x2(x<0)是减函数,猜想得证.【解析】(1) 计算:f(−3)=2×(−3)−1(−3)2=−79.(2) 由(1)知,f(−3)=−79,当x=−2时,f(−2)=2×(−2)−1(−2)2=−54,∵−3<−2<0,f(−3)>f(−2),∴猜想:函数f(x)=2x−1x2(x<0)是减函数.【知识点】解析式法24. 【答案】(1) C;B(2) 20≤t≤50(3) T=3t(0≤t≤20).【知识点】用函数图象表示实际问题中的函数关系、正比例函数解决实际问题25. 【答案】(1) 2.(2) 新设备:4.8÷1=4.8(万个/天),乙设备:16.8÷7=2.4(万个/天),∴甲设备每天生产4.8万个口罩,乙设备每天生产2.4万个口罩.(3) ① 2.4x=4.8,解得x=2;② 2.4x=4.8(x−2),解得x=4.∴在生产过程中,x为2或4时,新旧设备所生产的口罩数量相同.【知识点】用函数图象表示实际问题中的函数关系。
三年级数学《和、差、倍》练习

三年级数学《和、差、倍》练习题和差问题:已知两数的和与两数的差,求两个数各是多少的应用题,叫和差问题应用公式:大数=(和+差) ÷2小数=(和-差) ÷2和倍问题:已知两个数的和与这两个数的倍数关系,求这两个数各是多少的应用题,我们通常把它叫做和倍问题。
公式:小数=两数和÷(倍数+1)大数=小数x倍数大数=两数和-小数注:小数为1倍量,大数为多倍量。
差倍问题:已知两数的差和它们之间的倍数关系,要求出这两个数各是多少的应用题叫差倍问题。
公式:小数=差÷(倍数-1)大数=小数x倍数大数=小数+差注:小数为1倍量,大数为多倍量。
练习题1.柴老师和乐乐一共有42张明信片,柴老师比乐乐多8张,请问柴老师和乐乐各自有多少张明信片?2.舞蹈社共有32名同学.其中女同学的人数是男同学的3倍,男、女同学各有多少人?3.A、B、C三个人的年龄和是60岁,A的年龄是B的2倍,C的年龄是B的3倍.三个人各自多少岁?4.体育老师买了一些足球和篮球,足球比篮球多28个.若足球的个数是篮球的3倍,请问足球和篮球各买了多少个?5.箱子里面有红球、绿球、白球三种球。
红球比绿球多20个,绿球比白球多30个,红球的个数是白球的3倍,这三种球各有多少个?6.两筐水果共重150千克,甲筐比乙筐少10千克,两筐水果各多少千克?7.大小两个桶共有油16千克,大桶的油是小桶的油的3倍,大小两桶各有多少千克?8.鸡比鸭多24只,鸡的只数是鸭的3倍,鸡鸭各有多少只?9.甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?10.甲班和乙班一起上体育课,甲班和乙班一共63人,如果甲班分5人到乙班,甲班还比乙班多3人,这两班分别有多少人?11.小春和弟弟两人今年的年龄和是24岁,四年后,小春比弟弟大12岁。
小春和弟弟四年后各多少岁?12.两熊一共吃了36个包子,熊大吃的包子是熊二的3倍,熊大、熊二各吃多少个?13.马路边种了些杨树与柳树,一共有100棵树,杨树的数量比柳树的2倍多10棵,那么杨树、柳树各多少棵?14.光头强一共砍了37棵杨树和柳树,其中杨树的棵树比柳树的4倍少3棵,杨树和柳树分别被砍了多少棵?15.两篮苹果共99各,如果从甲篮取出8各放进乙篮,则甲篮还比乙篮多3个,两篮中原来各有多少个?16.小明语文和数学平均93分,数学比语文高6分,语文、数学各多少分?17.甲乙两个仓库有大米共15吨,甲仓里新运进4吨,乙仓库里运出2吨。
初中七年级下册数学基础习题练习: 25.变量(一)

日期:姓名:掌握程度:优□良□中□差□变量(一)【小故事】函数概念的历史变迁当自变量在其取值范围内的每个值,因变量都有惟一的值与其对应时,我们就说这个因变量是自变量的函数。
本章我们是在初步了解函数。
最初是笛卡尔引入的函数概念,17世纪末,德国数学家莱布尼兹首先使用了“函数”这一术语,不过当时它是被用来表示“幂”、“坐标”、“切线长”等概念。
在这一意义上的“函数”与现在所指的函数是全然不同的。
到了18世纪,瑞士数学家约翰·贝努利和法国数学家达朗贝尔给函数下的定义,才更接近于现在函数的定义。
但其只是我们现在的研究的函数的一种表达形式——解析法。
1748年,瑞士数学家欧拉明确定义“函数”是解析表达式:“变量的函数是一个解析表达式,它是由这个变量和一些常量以任何方式组成的。
”1775年欧拉又给出了另一种定义:“如果某些变量,以这样一种方式依赖于另一些变量,即当后面这些变量变化时,前面这些变量也随之变化,那么前面的变量称为后面变量的函数。
”最早提出与现行课本上函数类似定义的是19世纪的法国数学家柯西。
1837年,德国数学家狄里克莱提出函数是一种对应关系,与柯西同时代的德国数学家黎曼也提出了类似的想法。
以上我们看到:函数这一概念可谓是历尽沧桑,经历了“解析的函数概念”、“图象的函数概念”直至“对应关系的函数概念”。
现行中学教材所采用的是“对应关系的函数概念”。
【知识要点】1.变量:在某一变化过程中不断变化的数量叫变量。
若一个变量y随着另一个变量x的变化而变化,则把x叫做自变量,y 叫做因变量。
2.借助表格,可以表示因变量随自变量的变化情况:3.表示变量之间的关系式:【经典例题】(如果是大题,请写出详细过程)例1.下列各题中,哪些量在发生变化?其中的自变量与因变量各是什么?(1)用总长为60m 的篱笆围成一个边长为L (m ),面积为S (㎡)的长方形场地; (2)正方形边长是3,若边长增加x ,则面积增加y 。
《两个未知数额和倍问题、差倍问题》说课稿

《两个未知数额和倍问题、差倍问题》说课稿各位老师大家好!今天,我说课的课题是《含有两个未知数的和倍、差倍问题》,它是义务教育教科书人教版六年级上册第三单元的内容。
下面,我将从说教材、说教法学法、说教学流程三个方面进行说课。
一、说教材:1、地位与作用:《和倍差倍问题》是人教版小学数学六年级上册《分数除法》这一单元中的解决问题例6,这类问题在五年级上学期列方程解应用题中出现过,它包含两个未知量,题中给出了这两个未知量之间的两种关系,要求学生根据这样的关系列方程解答。
由于这两种关系中,一种是两个量之间的倍数关系,另一种是两个量之间的和或差的关系,因此,这样的问题称为“和倍问题”或“差倍问题”。
通过本节课的学习,可以让学生体会数学知识方法的内在联系,为解决有关的分数问题提供更多的支持,同时也为后面的百分数问题打下坚实的基础。
2、学情分析:知识:学生在五年级已初步掌握了和倍差倍问题的解决方法,能识用方程解答此类问题,为本课时的学习奠定了知识基础。
能力:通过前五年的学习,学生已有一定的合作、交流的能力,为本课时的学习提供了经验支持。
3、说教学目标(1)知识与技能:会根据关键句弄清数量关系设未知数,能列方程解答和倍差倍的实际问题,理解解答思路,掌握解题方法。
(2)过程与方法:培养学生的主体意识、创新意识、合作意识,以及分析、观察能力和表达能力。
(3)情感态度与价值观:让学生体验到生活中处处是数学,体验数学的应用价值和数学学习的乐趣及成就感。
4、说重点难点:基于以上认识,我把本课的教学目标确定为:教学重点:列方程解答“和倍、差倍”的实际问题,理解解题思路,掌握解题方法。
教学难点:正确分析题目中的数量关系,会设未知数。
二、说教法学法:《新课标》指出:“数学教学应联系现实生活,使学生从中获得数学学习的积极情感体验,感受数学的力量”并且要“学会与人合作,并能与他人交流思维的过程和结果。
”因此,本课的教学中力求做到:1、针对问题、自主探索。
3.1 列代数式表示数量关系 第3课时 反比例关系 人教版数学七年级上册

9.举出生活中变量具有反比例关系的实例(1~2 例).
解:(答案不唯一)(1)要编织一块面积为 2 m2的矩形地毯,地毯的长 x(m)与宽 y(m)的乘积一定,为xy=2,具有反比例关系. (2) 李 明 家 离 学 校 的 距 离 为 2 000 m, 如 果 他 上 学 步 行 速 度 为 v m/min,从家里到学校的时间为t min,则v和t的乘积一定,为 vt=2 000,具有反比例关系.
谢谢观赏!
汇报人:WPS
250
300
销售量y/双
40
30
24
20
(1)观察表中数据,x,y满足什么关系?并写出x与y的关系式. (2)若运动鞋售价定为每双400元,则商场每天的利润为多少元?
解:(1)由表中数据,得x,y满足反比例关系, x与y的关系式为xy=6 000. (2)因为xy=6 000, 当x=400时,得y=15, 利润:(400-120)×15=4 200(元). 答:运动鞋售价定为每双400元时,商场每天的利润为4 200元.
第3课时 反Βιβλιοθήκη 例关系数学七年级上册人教版
栏目导航
预习导学 课堂互动 基础题 中档题 素养题
预习导学
1.两个相关联的量,一个量变化,另一个量也随着变化,且这两个量的乘 积一定,这两个量就叫作 成反比例 的量,他们之间的关系叫作
反比例关系.
2.如果用字母x和y表示两个相关联的量,用k表示他们的积(k是一个确 定的值,且k≠0),反比例关系可以用 xy=k .
解:(1)因为每小时耗油量×耗油的时间=总耗油量(一定),乘积一定, 所以每小时耗油量和耗油的时间成反比例. (2)因为每块地砖的面积和块数的乘积一定,符合反比例的意义, 所以每块地砖的面积和所用地砖的块数成反比例.
小学数学的等量关系练习题

小学数学的等量关系练习题数学是一门重要的学科,也是孩子们必须学习的内容之一。
在小学阶段,数学的教学旨在培养孩子们的数理思维能力,帮助他们建立数学概念,并学会应用数学知识解决实际问题。
等量关系是数学中的重要概念之一,通过练习题的形式,可以帮助学生更好地理解和应用等量关系。
一、相等关系等量关系是指两个或多个量之间的相等关系。
在数学中,我们使用“=”符号表示相等关系。
在小学数学的学习过程中,老师通常会使用练习题来让学生巩固和应用等量关系。
下面是一些小学数学的等量关系练习题:1. 填空题(1)2 + ___ = 7(2)8 - ___ = 3(3)6 × ___ = 24(4)20 ÷ ___ = 52. 选择题(1)2 × 3 = ___A. 6B. 5C. 4D. 3(2)10 ÷ 2 = ___A. 5B. 4C. 3D. 2(3)7 + 3 = ___A. 10B. 9C. 8D. 7(4)12 - 7 = ___A. 5B. 6C. 7D. 8二、实际问题除了简单的填空题和选择题,小学数学的等量关系还可以通过实际问题来练习和应用。
下面是一些涉及等量关系的实际问题:1. 问题一小明有5个苹果,小红比小明多2个苹果,请问小红一共有几个苹果?解答:小红比小明多2个苹果,意味着小明的苹果数加上2等于小红的苹果数,即5 + 2 = 7。
所以小红一共有7个苹果。
2. 问题二老师给小华发了一些红球和蓝球,红球比蓝球多4个,小华一共收到16个球,请问红球和蓝球各有几个?解答:红球比蓝球多4个,即红球数等于蓝球数加上4。
设蓝球数为x,则红球数为x + 4。
根据题意可得出方程式:x + (x + 4) = 16。
解方程可得x = 6,即蓝球有6个,红球有6 + 4 = 10个。
通过以上的练习题和实际问题,可以帮助孩子们巩固和应用等量关系的概念。
在解答这些题目时,学生需要观察题目中的关系,然后用数学知识进行计算,并给出准确的答案。
小学五年级上册数学《简易方程》知识点及练习题

小学五年级上册数学《简易方程》知识点及练习题【#五年级# 导语】方程是指含有未知数的等式。
是表示两个数学式(如两个数、函数、量、运算)之间相等关系的一种等式,使等式成立的未知数的值称为“解”或“根”。
求方程的解的过程称为“解方程”。
简易方程是小学生应该掌握的必要知识之一。
为大家准备了以下内容,希望对大家有帮助。
【篇一】小学五年级上册数学《简易方程》知识点1、方程的意义含有未知数的等式,叫做方程。
2、方程和等式的关系3、方程的解和解方程的区别使方程左右两边相等的未知数的值,叫做方程的解。
求方程的解的过程叫做解方程。
4、列方程解应用题的一般步骤(1)弄清题意,找出未知数,并用表示。
(2)找出应用题中数量之间的相等关系,列方程。
(3)解方程。
(4)检验,写出答案。
5、数量关系式加数=和-另一个加数减数=被减数–差被减数=差+减数因数=积另一个因数除数=被除数商被除数=商除数【篇二】小学五年级上册数学《简易方程》练习题一、填空。
1、某厂计划每月用煤a吨,实际用煤b吨,每月节约用煤( )吨。
2、一本书100页,平均每页有a行,每行有b个字,那么,这本书一共有( )个字。
3、用字母表示长方形的周长公式()4、根据运算定律写出:9n+5n=( + )n= a×0.8×0.125=(×)ab=ba运用()定律。
5、实验小学六年级学生订阅《希望报》186份,比五年级少订a份。
186+a 表示()6、一块长方形试验田有4.2公顷,它的长是420米,它的宽是()米。
7、一个等腰三角形的周长是43厘米,底是19厘米,它的腰是()。
8、甲乙两数的和是171.6,乙数的小数点向右移动一位,就等于甲数。
甲数是();乙数是()。
二、判断题。
(对的打√,错的打×)1、含有未知数的算式叫做方程。
()2、5x表示5个x相乘。
()3、有三个连续自然数,如果中间一个是a,那么另外两个分别是a+1和a-1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学精选试题
《两个数(量)之间的关系》基础习题
一、基础达标。
1、用分数表示下面各数。
50分钟=()小时 15厘米=()米
2分米=()米 6小时=()日
2、河北遵化市的清东陵南北长125千米,东西宽20千米。
宽是长的几分之几?
3、下面是2008~2012年我国高考报考人数统计表。
2008年2009年2010年2011年2012年
1050万人1020万人957万人933万人915万人
(1)2012年高考报考人数是2008年的几分之几?
(2)请你再提出一个数学问题,并解答。
二、技能达标。
1、动物园有8只梅花鹿,金丝猴的数量比梅花鹿多16只。
梅花鹿的数量是金丝猴数量的几分之几?金丝猴数量是梅花鹿数量的几倍?
2、迎宾小学有32人参加英语竞赛,其中有8人进入决赛。
进入决赛的人数是未进入决赛人数的几分之几?
1/ 1。