人教版数学七年级上册有理数
人教版七年级数学上册第一章有理数知识点总结

第一章有理数期末复习一、正数:大于0的数叫做正数。
负数:正数前加上符号“—”(负)的数叫做负数。
注意:0既不是正数,也不是负数;0是正数和负数的分界。
考点题目:1.如果80m表示向东走80m,那么-60m表示_____________2.在跳远测试中,合格的标准是4.00m,小明跳出了3.96m,记做-0.04m,小强的成绩被记做+0.18m,则小强跳了______m3.洗衣粉包装袋上有:“净重:300±5g”,请说明这段文字的含义袋号 1 2 3 4 5净重 303 298 300 294 305根据上面的数据解释这5袋洗衣粉的净重是否合格。
4.飞机在距地面800m的高空做飞行表演,它第一次上升了200m,第二次下降了300m,第三次又上升了-100米,此时它距地面多高?二、有理数:整数和分数统称为有理数。
整数:正整数,0,负整数统称为整数;分数:正分数,负分数统称为分数注意:小数可以化为分数,所以把小数看成分数;百分数也是分数。
正有理数:正整数,正分数有理数{ 0负有理数:负整数,负分数有理数{整数:正整数负整数 0分数:正分数负分数含有“π”的数均不是有理数。
考点题目:1.“0”的意义:①0是整数,也是有理数。
②0不是正数也不是负数。
③0是自然数2.把下列各数填在相应的集合中:-22,-π,-5%,92 ,-0.66……,0.121121112……,3.14正整数集合:。
负整数集合:。
负分数集合:。
有理数集合:。
负有理数集合:。
三、数轴:规定了单位长度,原点,正方向的直线。
考点题目:1.数轴上表示表示3的点和表示-6的点之间的距离是_____2.数轴上-3与2之间有___个整数,有____个有理数。
3.点A为数轴上表示-2的点,当点A沿数轴移动4个单位长度时,它所表示的数是_____4.在数轴上到原点的距离等于2的点所表示的数为_______5.把数轴上表示2的点移动5个单位长度后,所得的对应的点表示的数是_______6.画出数轴并标出下列各数对应的点四、相反数:只有符号不同的两个数叫做互为相反数注意:a和-a互为相反数(a表示任意一个数,正数,负数,0)0的相反数是0;互为相反数的两个数相加得0考点题目:1.-3的相反数是_______;0的相反数是_______;2.化简各数的符号:-(-5)=_______ +(+5)=_______ +(-5)=_______(+5)=________3.如果a=-a,那么表示数a的点在数轴的位置是_______4.如果a+2的相反数是-8,那么a=_______如果a的相反数是-9,那么a=_______5.一个数在数轴上所对应的点向左移动8个单位后,得到表示他的相反数的点,这个数是_______6.若a+2的相反数是-8,那么a=_______五、绝对值:数轴上表示数a的点与原点的距离叫做a的绝对值,记作|a|。
人教版七年级数学上册第1章第2节有理数(共38张PPT)

整数(不都是)自然数. • 3.分数的概念:把(单位“1)”平均分成若干份,表
示这样的一份或几份的数,叫做(分数 ).
一、相反意义的量
在日常生活中我们会遇到这样一些量:
前进100米和后退70米;收入700元和支出600 元;零上6℃ 和零下6℃ …… 这里出现的每一对量,虽然有着不同的内容,但有着一个 共同的特点:
则早晨6时温度为___4__℃,若早晨4时气温比中午11时低13℃, 则早晨4时温度为___—__2__℃。
1、如果全班某次数学测试的平均成绩为83分,某同学考
了85分,记作+2分,得90分应记作_+_7__分__,得80分应 记作_—___3_分_ 。
2、若将28计为0,则可以将27计为-1,试猜想若将27计
• 2.下列说法正确的是( C )
• A.整数包括正数和负数 • B.有理数包括正有理数和负有理数 • C.负整数是整数也是有理数 • D.有理数就是分数
例 1 下列说法正确的是( ) A.一个有理数不是整数就是分数 B.正整数和负整数统称整数 C.正整数、负整数、正分数、负分数统称有理 数 D.0不是有理数
负分数:如,
1 2
,-3.5,…
整数与分数统称为有理数
按数系扩张的自然顺序
有理数还可以这样分类: (按认识有理数的先后顺序) 正整数
有理数
正有理数
零
负有理数
正分数 负整数 负分数
注意:
1.正数与整数的区别:正数是相对负数 而言的,而整数是相对于分数而言的.
2.0既不是正数也不是负数,而是整数.
(3)在某次乒乓球质量检测中,一只乒乓球超出 标准质量0. 02克记作+0.02,那么-0.03克表示什么?
人教版数学七年级上册第一章有理数有理数的乘法

1.4.1 有理数的乘法
栏目索引
3.(独家原创试题)我们用有理数的运算研究下面的问题.规定:水位上升 为正,水位下降为负.如果水位每天下降4 cm,那么5天后的水位变化用算 式表示正确的是 ( ) A.(+4)×(+5) B.(+4)×(-5) C.(-4)×(+5) D.(-4)×(-5)
答案 C 根据“水位每天的变化情况×天数”列出算式即可.故选C.
(3)0×(-2 019)=0.
(4)(-3.25)× 123
=- 3.25
2 13
=- 143
2 13
=- 1 .
2
1.4.1 有理数的乘法
栏目索引
温馨提示 运用乘法法则计算时,先确定积的符号,再确定积的绝对值, 然后进行计算.为了便于运算,是带分数的因数先将其化为假分数再运 算.
12
6
正解
-24× 172
5 6
1
=-24× 7 -(-24)× 5-(-24)×1=-14+20+24=30.
12
6
栏目索引
1.4.1 有理数的乘法
栏目索引
错因分析 错解一运用分配律把括号前面的数乘进括号内时,忽略了24 前面的负号,导致错误;错解二运用分配律把括号前面的数乘进括号内
栏目索引
1.4.1 有理数的乘法
栏目索引
知识点二 有理数的倒数
5.(2018江苏常州中考)-3的倒数是 ( )
A.-3 B.3 C.- 1 D. 1
3
3
答案 C 乘积为1的两个数互为倒数,因为-3与- 1 的乘积为1,所以-3的
七年级上册人教版数学概念总结

第一章有理数1.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;(2)有理数的分类: ①②(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数Û 0和正整数;a>0 Û a是正数;a<0 Û a是负数;a≥0 Û a是正数或0 Û a是非负数;a≤ 0 Û a是负数或0 Û a是非正数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;(3)相反数的和为0 Û a+b=0 Û a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:或;绝对值的问题经常分类讨论;(3) ;;(4) |a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a·b|, .5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;倒数是本身的数是±1;若ab=1Û a、b互为倒数;若ab=-1Û a、b互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数, .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或(a-b)n=(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;(3)a2是重要的非负数,即a2≥0;若a2+|b|=0 Û a=0,b=0;(4)据规律底数的小数点移动一位,平方数的小数点移动二位.15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.第二章整式的加减1.单项式:在代数式中,若只含有乘法(包括乘方)运算。
人教版七年级数学上册 第一章《有理数》知识点归纳

人教版七年级数学上册第一章《有理数》知识点归纳一、有理数的有关概念1.正数与负数我们把以前学过的数大于零叫做正数。
有时在正数前面也加上“+”(正)号。
如+0.5、+3、+1/2……“+”号可以省略。
我们把在以前学过的数(0除外)前面加上负号“-”的数叫做负数。
如-3、-0.5、-2/3……0既不是正数也不是负数,0是正负数的分界。
正数与负数可以用来表示具有相反意义的量。
相反意义的量包含两个要素:一是它们的意义要相反;二是它们都具有数量。
与一个量成相反意义的量不止一个。
2.有理数正整数、0统称自然数;正整数、0、负整数统称整数;正分数和负分数统称分数。
整数和分数统称有理数整数可以看做分母为1的分数。
正整数、0、负整数、正分数、负分数都可以写成分数的形式。
可以这样说:有理数都能写成分数的形式;能写成分数(分子分母互质)形式的数是有理数.有理数的分类(两种)正整数整数零有理数负整数分数正分数负分数正整数正有理数正分数有理数零负有理数负整数负分数3. 数轴规定了原点、正方向、单位长度的直线叫做数轴。
数轴的三要素:原点、正方向、单位长度任何有理数都可以用数轴上的点表示,有理数与数轴上的点是一一对应的。
数轴上的点表示的数从左到右依次增大;原点左边的数是负数,原点右边的数是正数.4.相反数一般地,设a是一个正数,数轴上与原点的距离是a的点有两个,他们分别在原点的左右,表示-a和a,我们说这两点关于原点对称.只有符号不同的两个数叫做互为相反数.(绝对值相等,符号不同的两个数叫做互为相反数)正数的相反数是负数,负数的相反数是正数,0的相反数是0.在一个数前面添上“-”号,表示这个数的相反数.5.绝对值在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值。
对任意有理数a ,总有0a ≥。
正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
(互为相反数的两个数的绝对值相等。
)6.比较大小(1)数轴上两个点表示的数,右边的总比左边的大。
人教版七年级数学上册《有理数》教学反思(精选5篇)

人教版七年级数学上册《有理数》教学反思(精选5篇)七年级数学上册《有理数》教学反思1有理数乘方是初中数学教学的重点之一, 也是初中数学教学的一个难点。
所以我在教这一节课的教学中要从有理数乘方的意义、有理数乘方的符号法则、有理数乘方运算顺序、有理数乘方书写格式、有理数乘方常见错误等五个方面来教学。
一、要求学生深刻理解有理数乘方的意义。
即求n个相同的因数相乘的简便记法。
在教学上应该抓住以下几点: 乘方是一种运算。
相当于“+、-、×、÷”。
教师在教学时要让学生明白这一点, 同时要求学生掌握其书写方法, 及格式。
强调幂的意义, 幂的意义与“和、差、积、商”一样。
如2的3次方的结果是8。
所以说2的3次方的幂是8。
与2×4一样, 2×4=8。
所以不能说8是幂, 说成2的3次方的幂是8。
同时强调a的n次方具有两个意义, 它既表示n个a相乘。
又表示乘方的运算结果二、在有理数乘方的教学中主要强调它的`运算, 所以特别注意有理数乘方符号法则的教学。
法则是:正数的任何次幂是正数, 0的任何正整数次幂是0, 负数的正数次幂是负数, 负数的偶数次幂是正数, 教师在教学时强调做乘方时先确定符号再计算, 如(-2)的平方等于+2的平方等于4。
三、注意教学生的书写格式。
注意负数与分数作底数都要加括号。
四、注意讲清有理数乘方中的常见错误。
如2的平方前面带负号, 表示2的平方的相反数, -2加括号后再平方是表示–2的平方, 写法不同计算的结果不同。
有理数乘方是在乘法的基础之上的一种运算, 要结合乘法来教乘方。
同时讲清楚区别与联系。
七年级数学上册《有理数》教学反思2有理数加减混合运算是学生在此之前已经掌握了有理数的加法和减法运算后进行的。
通过本节课的教学结合学生正确掌握本节课的知识的反馈情况, 进行反思。
一、让学生在自主中学习, 培养学生能力由于本节课的教学内容是有理数加减混合运算, 而在这节课之前, 学习的是有理数加、减计算。
人教版七年级数学上册 有理数 知识点归纳(含例题)

1.1正数和负数比0大的数叫做正数,比0小的数叫做负数。
0既不是正数也不是负数,它是正数与负数的分界点。
在正数前面加上符号“-”的数就是负数。
例1、3.2、0.4、25%、15等都是正数;-3.2、-0.4、-25%、-15等都是负数。
正数前面可以加上符号“+”,也可以省略这个符号。
但负数前面的符号“-”不能省略。
例2、13可以写成+13,+13也可以省略“+”号,写成13 。
但是-13不能省略“-”号写作13 。
0和正数统称为非负数,0和负数统称为非正数。
正数和负数可以分别用来表示相反意义的量。
例3、存入100元记为+100,则取出200元记为-200 。
例4、向北走50米记为+50,则向南走70米记为-70 。
0不仅可以表示“没有”,还可以表示其它意思。
例5、0是正数和负数的分界。
例6、0℃不代表没有温度,相反,0℃是一个确定的温度。
1.2有理数正整数、0、负整数统称为整数,即:整数{ 正整数0负整数正分数、负分数统称为分数,即:分数{正分数负分数整数和分数统称为有理数。
有理数的分类:按定义分类 按性质分类有理数{ 整数{ 正整数0负整数分数{正分数负分数 有理数{正有理数{正整数正分数0负有理数{负整数负分数与小学不同,在初中,如果一个小数能化成分数,那么这个小数也是分数。
例1、因为0.2=15,1.5=32,2.666=223,所以0.2、1.5、2.666都是分数。
例2、无限不循环小数,如π、1.010010001…等都不是分数。
引入负数之后,奇数和偶数的范围扩大了。
例3、不仅1、3、5、7……是奇数,而且-1、-3、-5、-7……也是奇数。
例4、不仅0、2、4、6、8……是偶数,而且-2、-4、-6、-8……也是偶数。
用一条直线上的点表示数,这条直线叫做数轴。
它满足以下要求:①在直线上任取一个点表示数0,这个点叫做原点。
②通常规定直线上从原点向右为正方向,从原点向左为负方向。
在一些特殊情况下,也可以规定直线上从原点向上为正方向,从原点向下为负方向。
七年级数学上册第1章有理数:有理数的加法pptx教学课件新版新人教版

【想一想】
–2 + (+3) = +(3–2) –3 + (+2)= –(3–2) –2 + (+2)= (2–2)
加数异号
加数的绝对值不相等
你从上面三个式子中发现了什么?
【比一比】
有理数加法法则二:
异号两数相加,绝对值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.
你从上面两个式子中发现了什么?
同号两数相加,取相同的符号,并把绝对值相加.
有理数加法法则一:
【比一比】
如果小狗先向西行走3米,再继续向东行走2米,则小狗两次一共向哪个方向行走了多少米?
东
解:小狗两次一共向西走了(3–2)米.
用算式表示为 –3+(+2)= –(3–2)(米)
4.若│x│= 3,│y│= 2,且x>y,则x+y的值为( )
C
D
(1) (–0.6)+(–2.7); (2) 3.7+(–8.4);(3) 3.22+1.78; (4) 7+(–3.3).
加法运算律
(1)
【思考】
3
–5
﹢
﹦
__
)
–7
–9
(
﹢
3
–5
﹢
﹢
﹦
__
–7
–9
(
)
(3)
8
–4
﹢
﹦
__
)
–6
–2
(
﹢
8
–4
﹢
﹢
﹦
__
–6
–2