热释红外传感器实验
实验八红外光传感器----热释电红外传感器性能

实验八红外光传感器----热释电红外传感器性能一:实验原理:热释电红外传感器的具体结构和内部电路如图(26)所示,主要由滤光片、PZT热电元件、结型场效应管FET及电阻、二极管组成.。
其中滤光片的光谱特性决定了热释电传感器的工作范围。
本仪器所用的滤光片对5μm以下的光具有高反射率,而对于从人体发出的红外热源则有高穿透性,传感器接收到红外能量信号后就有电压信号输出。
二:实验所需部件:热释电红外传感器、慢速电机、热释电处理电路、电加热器、电压表三:实验步骤:1.将菲涅尔透镜装在热释电红外传感器探头上,探头方向对准热源方向,按图标符号将传感器接入处理电路,接好发光二极管。
开启电源,待电路输出稳定后开启热源,同时将慢速电机叶片拨开不使其挡住热源透射孔。
2.随热源温度上升,观察热释电红外传感器的V o端输出电压变化情况。
可以看出传感器并不因为热源温度上升而有所反应。
3.开启慢速电机,调节转速旋钮,使电机叶片转速尽量慢,不断的将透热孔开启——遮挡。
此时用电压表或示波器观察输出电压端V o就会发现输出电压随热源的变化而变化。
当达到告警电压时,则发光管闪亮。
4.逐步提高电机转速,当电机转速加快,叶片断续热源的频率增高到一定程度时,传感器又会出现无反应的情况,请分析这是什么原因造成的?(可结合热释电红外传感器工作电路原理分析)四:注意事项:慢速电机的叶片因为是不平衡形式,加之电机功率较小,所以开始转动时请用手拨动一下。
红外光传感器----热释电红外传感器人体探测一:实验原理:热释电红外传感器是一种红外光传感器,属于热电型器件,当热电元件PZT受到光照时能将光能转换为热能,受热的晶体两端产生数量相等符号相反的电荷,如果带上负载就会有电流流过,输出电压信号。
二:实验所需部件:热释电红外传感器、菲涅耳透镜、温控电加热炉、热释电红外传感器实验模块、{温度传感器实验模块}、电压表、示波器(图26)热释电传感器结构及电路原理三:实验所需部件:热释电红外传感器、菲涅尔透镜、电压表四:实验步骤:1.观察传感器探头,探头表面的滤光片使传感器对10μm左右的红外光敏感,可以安装在传感器前的菲涅耳透镜是一种特殊的透镜组,每个透镜单元都有一个不大的视场,相邻的两个透镜单元既不连续也不重叠,都相隔一个盲区,它的作用是将透镜前运动的发热体发出的红外光转变成一个又一个断续的红外信号,使传感器能正常工作。
实验八 热释电红外传感器实验

实验八 热释电红外传感器实验一 实验目的:了解热释电红外传感器基本原理和在实际中的应用二 基本原理:当已极化的热电晶体薄片受到辐射热时候,薄片温度升高,极化强度s p 下降,表面电荷减少,相当于”释放”一部分电荷,故名热释电。
释放的电荷通过一系列的放大,转化成输出电压。
如果继续照射,晶体薄片的温度升高到Tc(居里温度)值时,自发极化突然消失。
不再释放电荷,输出信号为零,见图8-1。
因此,热释电探测器只能探测交流的斩波式的辐射(红外光辐射要有变化量)。
当面积为A 的热释电晶体受到调制加热,而使其温度T 发生微小变化时,就有热释电电流。
dt dT APi ,A 为面积,P 为热电体材料热释电系数,dtdT 是温度的变化率。
8-1热释电效应图8-2 热释电实验接线图图8-3 成品实验接线图三需用器件与单元:光电器件实验(二)模板、主机箱、红外热释电探头、红外热释电探测器。
四实验内容:光电器件实验(二)模板分两部分,分为器件原理实验图(左),传感器实验图(右)1 原理实验(1)按图8-2接线:将红外热释电探头的三个插孔相应地连到实验模板热释电红外探头的输入端口上(红色插孔接D;蓝色接S;黑色接E),再将实验模板上的V CC+5V和“⊥”相应的连接到主控箱的电源上,再将实验模板的右边部分的探测器信号输入短接。
(2)打开主机箱电源,手在红外热释电探头端面晃动时,探头有微弱的电压变化信号输出,经两级电压放大后,可以检测出较大的电压变化,再经电压比较器构成的开关电路,使指示灯点亮。
观察这个现象过程。
现象:指示灯正常亮起2 传感器实验(1)红外热释电探测器有四个接线,按图8-3接线:将探头的1、3号线相应的连接到实验模板的+12V与“⊥”上,再将红外热释电探测器2、4号线分别接到实验模板的探测器信号输入端口上,再将实验模板的+12V和“⊥”接到主机箱+12V电源和“⊥”上。
(2)打开主机箱电源,需延时几分钟模板才能正常工作。
热释电人体红外线传感器电子技术课程设计及实训(1)

热释电人体红外线传感器电子技术课程设计及实训(1)热释电人体红外线传感器电子技术课程设计及实训1. 引言随着技术不断发展,红外传感作为一种非接触式的检测技术得到了广泛应用。
其中,热释电人体红外线传感器作为一种常用的传感器,被广泛应用于安防、灯光控制等领域。
为了培养学生的动手实践能力和创新精神,本文进行了一项关于热释电人体红外线传感器的电子技术课程设计及实训。
2. 课程设计本课程设计旨在让学生了解热释电人体红外线传感器的结构、原理、特点和应用,并让学生在实验中全面掌握传感器的使用。
具体包括以下内容:(1)热释电人体红外线传感器的原理和结构介绍热释电人体红外线传感器的原理和结构,让学生了解传感器的基本工作原理和组成部分。
(2)热释电人体红外线传感器的特点及应用介绍热释电人体红外线传感器的特点和应用,例如在安防、灯光控制等领域的应用。
(3)热释电人体红外线传感器的电路设计根据热释电人体红外线传感器的原理,设计一个简单的电路并进行实验。
让学生了解电路的设计和布局方法,并学会使用示波器、万用表等工具。
(4)热释电人体红外线传感器的信号处理介绍热释电人体红外线传感器的信号处理方法,例如滤波、放大、模数转换等。
让学生了解信号处理的基本流程和方法。
3. 实训内容实训内容主要包括以下内容:(1)热释电人体红外线传感器电路的装配学生将自己设计的电路连接起来,并进行调试。
让学生学会使用电路元件和工具,了解电路的装配方法。
(2)热释电人体红外线传感器信号的测试学生将自己设计的热释电人体红外线传感器连接到示波器上,并进行测试。
让学生了解信号的测试方法和示波器的使用方法。
(3)热释电人体红外线传感器信号处理的实现学生将从传感器中获取的信号进行信号处理,例如进行滤波和放大,让学生了解信号处理的方法和流程。
(4)热释电人体红外线传感器应用的实现学生将热释电人体红外线传感器应用到实际的场景中,例如在安防系统中进行实时监测。
让学生了解传感器的实际应用场景。
热释电红外传感器的工作原理及过程

热释电红外传感器的工作原理及过程嘿,朋友们!今天咱来聊聊热释电红外传感器这个神奇的小玩意儿。
你说它像不像一个超级敏锐的小侦探呀?热释电红外传感器呢,工作起来那叫一个厉害。
它就像是有一双特别的眼睛,能捕捉到我们人眼看不到的红外线。
这就好比我们在黑暗中啥也看不见,但它却能清楚地感知到周围的一切变化。
你想想看啊,它时刻都在警惕着,只要有物体发出红外线,它就能立刻察觉到。
这感觉就像是一个随时准备行动的小卫士,一点儿风吹草动都逃不过它的“法眼”。
它的工作原理呢,其实也不难理解。
就好像我们人能分辨不同的声音一样,热释电红外传感器能分辨不同的红外线信号。
当有物体的温度发生变化时,它就能感受到这种变化,然后迅速做出反应。
比如说,晚上你走进一个房间,在你还没开灯的时候,热释电红外传感器就已经察觉到你的到来啦!它是不是很厉害呢?它就像是一个默默守护的小精灵,虽然不声不响,但却发挥着巨大的作用。
而且哦,热释电红外传感器的应用那可太广泛啦!在我们的日常生活中,到处都能看到它的身影。
比如在一些自动门那里,它能感应到有人靠近,然后自动打开门,多方便呀!还有在一些安防系统中,它能及时发现异常情况,保障我们的安全。
你说,要是没有它,我们的生活得少了多少便利呀!它就像是一个默默奉献的小英雄,不张扬却不可或缺。
再想想看,如果把热释电红外传感器比作一个乐队的话,那红外线就是它演奏的音乐。
它能精准地捕捉到每一个音符,然后奏响美妙的乐章。
哎呀,热释电红外传感器真的是太神奇啦!它让我们的生活变得更加智能、更加便捷。
我们真应该好好感谢这个小小的科技宝贝呀!它虽然不起眼,但却有着大大的能量。
所以呀,朋友们,让我们好好珍惜热释电红外传感器给我们带来的便利吧!让它继续在我们的生活中发挥重要的作用,为我们的生活增添更多的精彩!这就是热释电红外传感器,一个神奇又实用的小玩意儿,你爱上它了吗?。
红外传感器测试实训报告

一、实训目的本次实训旨在让学生了解红外传感器的原理、结构、工作特性,并掌握红外传感器的测试方法。
通过实训,使学生能够熟练使用红外传感器进行实际测量,并具备分析测量结果、解决实际问题的能力。
二、实训内容1. 红外传感器原理与结构红外传感器是一种利用红外线特性进行测量的传感器。
其工作原理是:物体在辐射红外线时,红外传感器通过接收这些红外线并将其转换为电信号,从而实现对物体状态的测量。
红外传感器的结构主要由光学系统、探测器、信号调理电路和显示系统等组成。
其中,光学系统负责将红外线聚焦到探测器上;探测器将红外线转换为电信号;信号调理电路对电信号进行处理;显示系统将处理后的信号显示出来。
2. 红外传感器的测试方法(1)基本测试1)外观检查:检查红外传感器的外观是否有损坏、变形等现象。
2)连接检查:检查红外传感器的连接线是否完好,接触是否牢固。
3)工作电压测试:使用万用表测量红外传感器的工作电压,确保其符合规格要求。
(2)性能测试1)灵敏度测试:将红外传感器置于一定距离处,使用红外辐射源照射传感器,观察传感器输出信号的幅度。
通过改变照射强度,绘制灵敏度曲线,分析传感器的灵敏度。
2)响应时间测试:将红外传感器置于一定距离处,使用红外辐射源照射传感器,记录传感器输出信号从低电平到高电平的时间,以及从高电平到低电平的时间。
通过比较不同传感器的响应时间,分析其性能。
3)抗干扰能力测试:在红外传感器附近加入干扰源,如振动、射频等,观察传感器输出信号的变化,分析其抗干扰能力。
4)温度特性测试:将红外传感器置于不同温度环境下,观察传感器输出信号的变化,分析其温度特性。
5)距离特性测试:将红外传感器置于不同距离处,观察传感器输出信号的变化,分析其距离特性。
3. 实训项目本次实训选取了以下项目进行测试:(1)热释电红外传感器测试(2)红外雨量传感器测试(3)红外测距传感器测试三、实训过程1. 准备工作实训前,准备好所需的仪器设备,包括红外传感器、红外辐射源、万用表、信号发生器等。
热释电传感器响应距离特性实验

热释电传感器综合实验仪实验指导书-16-实验六热释电传感器响应距离特性实验一、实验目的1、掌握热释电红外传感控制器的电路调试方式;2、掌握热释电传感器的探测原理。
二、实验内容热释电传感器响应距离特性实验三、实验仪器热释电传感器综合实验仪一台双踪数字示波器一台连接导线若干四、实验原理热释电传感器利用的是热释电效应,是一种温度敏感传感器。
它由陶瓷氧化物或压电晶体元件组成,元件两个表面做成电极,当传感器监测范围内温度有ΔT 的变化时,热释电效应会在两个电极上产生电荷ΔQ,即在两电极之间产生一微弱电压ΔV。
由于它的输出阻抗极高,所以传感器中有一个场效应管进行阻抗变换。
热释电效应所产生的电荷ΔQ 会跟空气中的离子所结合而消失,当环境温度稳定不变时,ΔT=0,传感器无输出。
当人体进入检测区时,因人体温度与环境温度有差别,产生ΔT,则有信号输出;若人体进入检测区后不动,则温度没有变化,传感器也没有输出,所以这种传感器能检测人体或者动物的活动。
从原理上讲,任何发热体都会产生红外线,热释电人体红外线传感器对红外线的敏感程度主要表现在传感器敏感单元的温度所发生的变化,而温度的变化导致电信号的产生。
环境与自身的温度变化由其内部结构决定了它不向外输出信号,而传感器的低频响应和对特定波长红外线的响应决定了传感器只对外界的红外线的辐射而引起传感器的温度的变化而敏感,而这种变化对人体而言就是移动。
所以,传感器对人体的移动或运动敏感,对静止或移动很缓慢的人体不敏感;它可以抗可见光和大部分红外线的干扰。
总之,热释电传感器的响应距离与自身结构材料有关,也与外界环境有关联。
实际运用中,对红外热释电传感器来说,不加菲涅尔透镜时,探测距离较近,配上透镜后,其探测距离将十倍的增加。
本实验采用了LM324作为前置放大器,增益过高信号会产生漂移,过低会使增益下降,被测距离变近。
因此在设计时二者兼顾,缺一不可。
调节电位器W1,及调节比较电路门限参考电压,使无探测信号时,比较器输出低电平信号,有探测信号时,输出高电平。
热释电红外传感器说明

热释电红外传感器说明热释电红外传感器,这名字听起来是不是挺高大上的?它就是一种能“感知”温度变化的小玩意儿。
它就像是那种“灵敏的探子”,只要有热量经过,它立马就能感应到,真的是太厉害了!想想,如果你家里有个热释电传感器,它就能帮你发现那些“潜伏者”,比如偷偷溜进你家的小猫咪,或者是你正在忙着做饭却忘了关的电炉。
它的原理其实很简单,热释电材料在受到温度变化时,会产生电信号,传递给其他设备。
简单说,它就是一个温度的“侦探”,随时待命,等着捕捉热量的“踪迹”。
这玩意儿广泛应用于各个领域,尤其是安全监控。
想象一下,家里装了这样一个传感器,当有人靠近的时候,它会发出警报,简直就像是家里的“守护神”。
它还能搭配摄像头,瞬间变身为“全能侦探”,让你再也不怕漏掉任何可疑的动静。
你要是晚上睡觉,突然听到一声“嘀嘀”,别紧张,可能是热释电传感器在向你报告:有人来了!这东西也很省电,长时间工作也不用担心它会“罢工”,真是个节能的小能手。
再说说它的应用场景吧,真的是五花八门。
从家居到商业,再到智能交通,几乎无处不在。
在商场里,很多时候你都不知道,其实你身边就有它的身影。
比如说,当你走进一家店里,门口的传感器就会感应到你,自动开门,像个热情的迎宾员。
这种科技感,真让人忍不住想多逛逛。
还有那种智能家居系统,靠着热释电传感器,你的灯可以实现自动开关,晚上起床的时候再也不用摸黑了,想想就觉得方便!热释电红外传感器的优点可真不少。
它的响应速度极快,瞬间就能捕捉到热量变化,简直不费吹灰之力。
它的安装也超级简单,没啥技术含量,几乎人人都能搞定。
只要把它装在一个合适的位置,就能开始“工作”了!这让不少人都爱上了这个小家伙,像是给家里增添了一个“聪明的小助手”。
也有人觉得它可能会误报,比如当空调突然开起来时,它也许会“以为”有个人在活动,结果发出警报,哈哈,这时候就得自认倒霉了。
不过,热释电红外传感器也有一些小缺点。
比如,价格有点小贵,尤其是高精度的产品。
热释电红外传感器实验指导书

调试步骤: 调试步骤
1. 接通电源,近距离无人体移动,以下各点电位应为: 接通电源,近距离无人体移动,以下各点电位应为: 传感器输出端( 脚):0.4 ~ 1V; 传感器输出端(2脚): ; IC2输出端:2.5V; UA:3V; UB:2V 输出端: ; ; 如果有问题请检查接线、电阻值和器件。 如果有问题请检查接线、电阻值和器件。 2. 用手在传感器附近晃动,LED1、LED2交替闪亮,则说明 用手在传感器附近晃动, 交替闪亮, 电路工作正常。 电路工作正常。
电路工作原理
3V
2V 同相放大 热释电人体红外传感器 反相放大 窗口比较器
电路工作原理
> 3V 静态 2.5V < 2V 3V
2V 静态时两个比较器皆输出低电平, 静态时两个比较器皆输出低电平,LED1、LED2不亮 有人体经过时,热释电人体红外传感器产生变化电压,经高倍 有人体经过时, 释电人体红外传感器产生变化电压, 放大后, 输出电压超出上(下 门限 门限, 放大后,使IC2输出电压超出上 下)门限,LED1(LED2)亮。 亮
实验要求
1、什么是集成运放的线性和非线性应用,分别包 括哪些电路?反相输入比例运算电路和同相输入比例运算电路 两种应用的放大倍数是多少?反相:Auf=U0/Ui=-Rf/R1
同相:Auf=U0/Ui=1+ Rf/R1
2、计算IC1,IC2放大倍数 3、说明IC3,IC4工作原理 4、列出元件清单 5、假设电路图完成后,写出制作、调试详细步骤 6、画图(课件原理图有些地方缺电气连接点,自 己加上)
热释电人体红外传感器的应用
一、实验目的 二、电路及工作原理 三、特殊元件 四、调试步骤 五、样板
实验目的: 实验目的 1. 了解热释电人体红外传感器的结构和基本原理; 了解热释电人体红外传感器的结构和基本原理; 2. 了解热释电人体红外传感器的应用; 了解热释电人体红外传感器的应用; 3. 熟悉集成运放的线性应用和非线性应用。 熟悉件
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热释红外传感器实验学院:计信专业:自动化姜木北【实验目的】1. 理解热释红外传感器的工作原理;2. 掌握热释红外传感器的使用方法。
【实验设备】1. 装有IAR 开发工具的PC机一台;2. 下载器一个;3. 物联网多网技术综合教学开发设计平台一套。
【实验原理】1. 热释红外传感器简介普通人体会发射10um左右的特定波长红外线,用专门设计的传感器就可以针对性的检测这种红外线的存在与否,当人体红外线照射到传感器上后,因热释电效应将向外释放电荷,后续电路经检测处理后就能产生控制信号。
这种专门设计的探头只对波长为10μm左右的红外辐射敏感,所以除人体以外的其他物体不会引发探头动作。
探头内包含两个互相串联或并联的热释电元,而且制成的两个电极化方向正好相反,环境背景辐射对两个热释元件几乎具有相同的作用,使其产生释电效应相互抵消,于是探测器无信号输出。
一旦人侵入探测区域内,人体红外辐射通过部分镜面聚焦,并被热释电元接收,但是两片热释电元接收到的热量不同,热释电也不同,不能抵消,于是输出检测信号。
如图 1.127所示:为了增强敏感性并降低白光干扰,通常在探头的辐射照面覆盖有特殊的菲泥尔滤光透镜,菲泥尔滤光片根据性能要求不同,具有不同的焦距(感应距离),从而产生不同的监控视场视场越多,控制越严密。
传感器的光谱范围为1~10μm,中心为6μm,均处于红外波段是由装在TO-5型金属外壳的硅窗的光学特性所决定。
热释电红外传感器不但适用于防盗报警场所,亦适于对人体伤害极为严重的高压电及X射线、γ射线工业无损检测。
本实验所使用的热释电传感器输出信号为高低电平,当检测到人时输出高电平,否则输出低电平。
【电路连接】热释电(人体红外)传感器和CC2530节点电路连接如图 1.128所示:图中J13为传感器模组与CC2530单片机的P1口相连,J14与传感器的接口相连;C26为滤波电容,传感器工作电压为5V,“2”引脚为信号输出端。
【程序流程图】驱动程序流程图如图 1.129所示。
:【热释红外传感器的驱动程序】#include "Basic.h"#include "UART.h"void main(void){uint8 SensorValue;LEDPortInit();UART0_Init( BAUD_115200 );SetIOInput(1,0);for( ; ; ){SensorValue = GetIOLevel( 1, 0 );UART0_Send( "Safety Sensor:", sizeof("Safety Sensor:")-1 );UART0_Dis_uNum(SensorValue);if(0 == SensorValue)UART0_Send( "NoBody Nearby", sizeof("NoBody Nearby")-1 );else if(1 == SensorValue)UART0_Send( "Someone Nearby!", sizeof("Someone Nearby!")-1 );UART0_Send( "\r\n", sizeof("\r\n")-1 );SET_LED_D8;Delay(5);CLR_LED_D8;Delay(120);}}#include "Basic.h"void delay(uint n){uint i;for(i=0;i<n;i++);for(i=0;i<n;i++);for(i=0;i<n;i++);for(i=0;i<n;i++);for(i=0;i<n;i++);}void Delay(uint n){uint i,j,k;for(i=0;i<n;i++)for(j=0;j<100;j++)for(k=0;k<100;k++)}void LEDPortInit(void){P1SEL &= ~0X02;P2SEL &= ~0X01;P1DIR |= 0X02;P2DIR |= 0X01;CLR_LED_D8;CLR_LED_D9;}uint8 GetCh08bitADC(void){uint8 v = 0;ADCCFG = 0x01;ADCCON1 = 0x33;ADCCON2 = 0xB0;ADCCON1 |= 0x40;while(!(ADCCON1 & 0x80));v = ADCL;v = ADCH;return(v);}// pull: 0 - disable, 1 - pulldown, 2 - pullupvoid SetIOInput(uint8 group, uint8 bit){switch(group){case 0: P0DIR &= ~(1 << bit); P0SEL &= ~(1 << bit); P0INP |=(1 << bit); break;case 1: P1DIR &= ~(1 << bit); P1SEL &= ~(1 << bit); P1INP |=(1 << bit); break;case 2: P2DIR &= ~(1 << bit); P2SEL &= ~(1 << bit); P2INP |=(1 << bit); break;}}void SetIOOutput(uint8 group, uint8 bit){switch(group){case 0: P0DIR |= (1 << bit); P0SEL &= ~(1 << bit); break;case 1: P1DIR |= (1 << bit); P1SEL &= ~(1 << bit); break;case 2: P2DIR |= (1 << bit); P2SEL &= ~(1 << bit); break;}}uint8 GetIOLevel(uint8 group, uint8 bit){switch(group){case 0: return !!(P0 & (1 << bit));case 1: return !!(P1 & (1 << bit));case 2: return !!(P2 & (1 << bit));}return 0;}void SetIOLevel(uint8 group, uint8 bit, uint8 value){switch(group){if(value)P0 |= (1 << bit);elseP0 &=~(1 << bit);break;case 1:if(value)P1 |= (1 << bit);elseP1 &=~(1 << bit);break;case 2:if(value)P2 |= (1 << bit);elseP2 &=~(1 << bit);break;}}#include "UART.h"void UART0_Init(BaudSel baud){CLKCONCMD &= ~0X40; //晶振while(!(SLEEPSTA & 0X40)) CLKCONCMD &= ~0X47;SLEEPCMD |= 0X04; //关闭不用的RC振荡器PERCFG = 0X00;//位置1 P0口P0SEL |= 0X0C;//P0用作串口U0CSR |= 0X80;//UART方式switch(baud){case BAUD_2400: U0GCR |= 6; U0BAUD |= 59; break;case BAUD_4800: U0GCR |= 7; U0BAUD |= 59; break;case BAUD_9600: U0GCR |= 8; U0BAUD |= 59; break;case BAUD_14400: U0GCR |= 8; U0BAUD |= 216; break;case BAUD_19200: U0GCR |= 9; U0BAUD |= 59; break;case BAUD_28800: U0GCR |= 9; U0BAUD |= 216; break;case BAUD_38400: U0GCR |= 10; U0BAUD |= 59; break;case BAUD_57600: U0GCR |= 10; U0BAUD |= 216; break;case BAUD_76800: U0GCR |= 11; U0BAUD |= 59; break;case BAUD_115200: U0GCR |= 11; U0BAUD |= 216; break;case BAUD_230400: U0GCR |= 12; U0BAUD |= 216; break;default : U0GCR |= 11; U0BAUD |= 216; break; //BAUD_115200; }U0CSR |= 0X40;//允许接收IEN0 |= 0X84;//开总中断,接收中断}void UART0_Send(char *Data,int len){int i;for(i=0;i<len;i++){U0DBUF = *Data++;while(UTX0IF == 0)UTX0IF = 0;}}void UART0_Dis_uNum(uint16 uValue ){uint8 i;char cData[5] = {'0','0','0','0','0'};cData[0] = uValue % 100000 / 10000 + '0';cData[1] = uValue % 10000 / 1000 + '0';cData[2] = uValue % 1000 / 100 + '0';cData[3] = uValue % 100 / 10 + '0';cData[4] = uValue % 10 / 1 + '0';if(0 != uValue ){for( i=0; i<5; i++){if('0' != cData[i] )break;if('0' == cData[i] )cData[i] = ' ';}}else if(0 == uValue ){for( i=0; i<4; i++){cData[i] = ' ';}}UART0_Send(" ", 1);UART0_Send(cData, 5);UART0_Send(" ", 1);}void UART0_Dis_fNum(float fValue ){uint16 uValue = (uint16)( 100 * fValue );char cData[5] = {'0','0','.','0','0'};cData[0] = uValue % 10000 / 1000 + '0';cData[1] = uValue % 1000 / 100 + '0';cData[2] = '.';cData[3] = uValue % 100 / 10 + '0';cData[4] = uValue % 10 / 1 + '0';UART0_Send(" ", 1);UART0_Send(cData, 5);UART0_Send(" ", 1);}#pragma vector = URX0_VECTOR__interrupt void UART0_ISR(void){// static char temp[1];// temp[0] = U0DBUF;// UART0_Send(temp, 1);URX0IF = 0;//清中断标志}【实验现象及其结果】当运行程序,并靠近红外传感器时可以发现串口运行窗口中数据值一表示检测到人存在:(有人存在)。