12求根公式法

合集下载

人教版九年级上册公式法——根的判别式及求根公式

人教版九年级上册公式法——根的判别式及求根公式
人教版九年级上册公式法——根的判 别式及 求根公 式
人教版九年级上册公式法——根的判 别式及 求根公 式
例2 用公式法解下列方程:
解:a=1,b=-4,c=-7 Δ= b2-4ac=(-4)2-4×1×(-7) =44>0
b b2 4ac x
2a (4) 44 2 11
21
x1 2 11, x2 2 11
人教版九年级上册公式法——根的判 别式及 求根公 式
Δ=b2-4ac叫做一元二次方程ax2+bx+c=0(a≠0)的 根的判别式.
当b2-4ac>0时,方程ax2+bx+c=0(a≠0)有两个不等的实数根; 当b2-4ac=0时,方程ax2+bx+c=0(a≠0)有两个相等的实数根; 当b2-4ac<0时,方程ax2+bx+c=0(a≠0)无实数根.
人教版九年级上册公式法——根的判 别式及 求根公 式
解:a 2,b 2 2,c 1 b2 4ac (2 2)2 4 21 0 b x1 x2 2a 2 2 2 22 2
教版九年级上册公式法——根的判 别式及 求根公 式
(3)5x2-3x=x+1;
解:方程化为5x2-4x-1=0 a=5,b=-4,c=-1 Δ= b2-4ac=(-4)2-4×5×(-1)
方程无实数根
人教版九年级上册公式法——根的判 别式及 求根公 式
思考:运用公式法解一元二次方程时,有哪些注意 事项? 步骤:先将方程化为一般形式,确定a,b,c的值;
计算判别式Δ=b2-4ac的值,判断方程是否有解; 若Δ≥0,利用求根公式计算方程的根, 若Δ<0,方程无实数根. 易错点:计算Δ的值时,注意a,b,c符号的问题.

第五讲 公式法解一元二次方程和根的判别1

第五讲 公式法解一元二次方程和根的判别1

第五讲公式法解一元二次方程和根的判别式一、求根公式法:1.一般地,对于一元二次方程a+bx+c=0(a≠0),当时,它有两个实数根为这个公式叫做一元二次方程的求根公式,利用这个公式解一元二次方程的方法叫做求根公式法。

2.利用公式法解一元二次方程的一般步骤:(1)先把方程化为一般形式,即a+bx+c=0(a≠0)的形式;(2)正确地确定方程各项的系数a,b,c的值(注意正负号);(3)当-4ac<0时,方程没有实数根,就不需要解了(负数开方没有意义);(4)当-4ac≥0时,将a,b,c的值代入求根公式,求出方程的两个根。

二、一元二次方程的几种解法的联系及其特点:1.直接开平方法:适用于解形如=m(p≠0,m≥0)的方程,是配方法的基础。

2.配方法:是解一元二次方程通用的方法,是公式法法基础,没有配方法就没有公式法。

3.公式法:是解一元二次方程通用的方法,是解一元二次方程重要的方法。

4.因式分解法:是解一元二次方程比较简单的方法,但只适用于左边易因式分解而右边为0的一元二次方程。

(各种方法各有各的特点,具体选择解法根据方程特征)三、一元二次方程根的判别式:1.-4ac叫做一元二次方程a+bx+c=0(a≠0)的根的判别式,通常用符合“△”来表示,即△=2.一元二次方程a+bx+c=0(a≠0)的根的情况与△的关系:△>0 <=>△=0 <=>△<0 <=>△≥0 <=>例1.用公式法解方程:变式1:用公式法解方程:3+5x-2=0变式2:解关于x的方程:-m(3x-2m+n)-=0例2.选择适当的方法解下列方程:(1)7(=28 (2)-2y-399=0(3)2+1=2x (4)+3(2x+1)+2=0变式1:解方程:-y=-例3.不解方程,判断下列方程根的情况:(1)2+3x-4=0 (2)3+2=2x (3)+1= (4)a+bx=0(a≠0) (5)a+c=0(a≠0)变式1:关于X的方程+m(x+1)+x=0一定有实数根吗?为什么?例4.已知关于X的方程k-4kx+k-5=0有两个相等的实数根,求K的值并解这个方程。

求根公式-

求根公式-

第一讲 走进追问求根公式形如02=++c bx ax (0≠a )的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法.而公式法是解一元二次方程的最普遍、最具有一般性的方法. 求根公式aac b b x 2422,1-±-=内涵丰富:它包含了初中阶段已学过的全部代数运算;它回答了一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美.降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决.解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法. 【例题求解】【例1】满足1)1(22=--+n n n 的整数n 有 个. 思路点拨 从指数运算律、±1的特征人手,将问题转化为解方程.【例2】设1x 、2x 是二次方程032=-+x x 的两个根,那么1942231+-x x 的值等于( )A . 一4B .8C .6D .0思路点拨 求出1x 、2x 的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如1213x x -=,2223x x -=.【例3】 解关于x 的方程02)1(2=+--a ax x a .思路点拨 因不知晓原方程的类型,故需分01=-a 及01≠-a 两种情况讨论. 【例4】设方程04122=---x x ,求满足该方程的所有根之和.思路点拨 通过讨论,脱去绝对值符号,把绝对值方程转化为一般的一元二次方程求解. 【例5】 已知实数a 、b 、c 、d 互不相等,且x ad d c c b b a =+=+=+=+1111, 试求x 的值. 思路点拨 运用连等式,通过迭代把b 、c 、d 用a 的代数式表示,由解方程求得x 的值.注: 一元二次方程常见的变形形式有:(1)把方程02=++c bx ax (0≠a )直接作零值多项式代换;(2)把方程02=++c bx ax (0≠a )变形为c bx ax --=2,代换后降次;(3)把方程02=++c bx ax (0≠a )变形为c bx ax -=+2或bx c ax -=+2,代换后使之转化关系或整体地消去x .解合字母系数方程02=++c bx ax 时,在未指明方程类型时,应分0=a 及0≠a 两种情况讨论;解绝对值方程需脱去绝对值符号,并用到绝对值一些性质,如222x x x ==.A 组1.已知a 、b 是实数,且0262=-++b a ,那么关于x 的方程1)2(22-=++a x b x a 的根为 . (2001年北京市海淀区中考题)2.已知0232=--x x ,那么代数式11)1(23-+--x x x 的值是 .(2001年四川省中考题)3.若142=++y xy x ,282=++x xy y ,则y x +的值为 .(2001年TI 杯全国初中数学竞赛题)4.若两个方程02=++b ax x 和02=++a bx x 只有一个公共根,则( ) A .b a = B .0=+b a C .1=+b a D .1-=+b a(第十六届江苏省竞赛题) 5.当分式4312++-x x 有意义时,x 的取值范围是( )A .1-<xB .4>xC .41<<-xD .1-≠x 且4≠x(2002年重庆市竞赛题) 6.方程011)1(=+-++x x x x 的实根的个数是( ) A .0 B .1 C .2 D .3 7.解下列关于x 的方程:(1)03)12()1(2=-+-+-m x m x m ; (2)210x x --=; (3)x x x 26542-=-+.8.已知0222=--x x ,求代数式)1)(3()3)(3()1(2--+-++-x x x x x 的值.(2003年上海市中考题)9.是否存在某个实数m ,使得方程022=++mx x 和022=++m x x 有且只有一个公共的实根?如果存在,求出这个实数m 及两方程的公共实根;如果不存在,请说明理由.注: 解公共根问题的基本策略是:当方程的根有简单形式表示时,利用公共根相等求解,当方程的根不便于求出时,可设出公共根,设而不求,通过消去二次项寻找解题突破口.B 组10.若0152=+-x x ,则1539222+++-x x x = .11.已知m 、n 是有理数,方程02=++n mx x 有一个根是25-,则n m +的值为 .12.已知a 是方程020002=--x x 的一个正根。

公式法解一元二次方程和根与系数的关系知识点总结和重难点精析

公式法解一元二次方程和根与系数的关系知识点总结和重难点精析

公式法解一元二次方程和根与系数的关系知识点总结和重难点精析一、引言九年级数学中,一元二次方程是一个重要的知识点。

公式法解一元二次方程是求解一元二次方程的一种重要方法,而根与系数的关系也是这个知识点的重要组成部分。

掌握公式法解一元二次方程和根与系数的关系,对于提高学生解决数学问题的能力具有重要意义。

二、知识点总结1.一元二次方程的基本形式为ax²+bx+c=0(a≠0)。

它的解是x= [-b ±√(b²-4ac)] / 2a。

2.根与系数的关系是指一元二次方程的两个根x1和x2与方程的系数a、b、c之间的相互关系。

根据一元二次方程的求根公式,两个根的和为-b/a,两个根的积为c/a。

三、重难点精析1.应用公式法解一元二次方程时,首先需要将方程化为一般形式,并确定a、b、c的值。

难点在于如何找到a、b、c的值,需要根据题目中的条件进行转化。

2.根与系数的关系是难点之一,需要理解两根之和与两根之积的意义。

在解题中,通常利用根与系数的关系来求方程中字母系数的值或用字母代数式表示方程的两个根。

四、练习题1.用公式法解下列一元二次方程:(1)x²-6x+9=0;(2)3x²+4x-7=0;(3)y²+2y-1=0;(4)2x²-5x+3=0;2.已知方程x²-7x+12=0的两个根是x1和x2.求下列各式的值:(1)(x1+1)(x2+1);(2)(x1-1)(x2-1)3.根据下列各组中根与系数的关系,求下列各式的值:(1)已知x1、x2是方程x²-5x+6=0的两个根,求x1²+x2²的值;(2)已知x1、x2是方程x²-7x+12=0的两个根,求x1³-x2³的值。

五、总结本文总结了九年级数学中公式法解一元二次方程和根与系数的关系知识点,包括了一元二次方程的基本形式、解法以及根与系数的关系等重要内容。

12求根公式法

12求根公式法

求根公式法一、知识概述1、一元二次方程的求根公式将一元二次方程ax2+bx+c=0(a≠0)进行配方,当b2-4ac≥0时的根为.该式称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为求根公式法,简称公式法.说明:(1)一元二次方程的公式的推导过程,就是用配方法解一般形式的一元二次方程ax2+bx+c=0(a≠0);(2)由求根公式可知,一元二次方程的根是由系数a、b、c的值决定的;(3)应用求根公式可解任何一个有解的一元二次方程,但应用时必须先将其化为一般形式.2、一元二次方程的根的判别式(1)当b2-4ac>0时,方程有两个不相等的实数根;(2)当b2-4ac=0时,方程有两个相等的实数根;(3)当b2-4ac<0时,方程没有实数根.二、重难点知识1、对于一元二次方程的各种解法是重点,难点是对各种方法的选择,突破这一难点的关键是在对四种方法都会使用的基础上,熟悉各种方法的优缺点。

(1) “开平方法”一般解形如“”类型的题目,如果用“公式法”就显得多余的了。

- 1 -(2)“因式分解法”是一种常用的方法,一般是首先考虑的方法。

(3) “配方法”是一种非常重要的方法,一般不使用,但若能恰当地使用,往往能起到简化作用,思考于“因式分解法”之后,“公式法”之前。

如方程;用因式分解,则6391这个数太大,不易分解;用公式法,也太繁;若配方,则方程化为,就易解,若一次项系数中有偶因数,一般也应考虑运用。

(4)“公式法”是一般方法,只要明确了二次项系数、一次项系数及常数项,若方程有实根,就一定可以用求根公式求出根,但因为要代入(≥0)求值,所以对某些特殊方程,解法又显得复杂了。

2、在运用b2-4ac的符号判断方程的根的情况时,应注意以下三点:(1)b2-4ac是一元二次方程的判别式,即只有确认方程为一元二次方程时,才能确定a、b、c,求出b2-4ac;(2)在运用上述结论时,必须先将方程化为一般形式,以便确认a、b、c;(3)根的判别式是指b2-4ac,而不是三、典型例题讲解例1、解下列方程:(1); (2);(3).分析:用求根公式法解一元二次方程的关键是找出a、b、c的值,再代入公式计算,解:(1)因为a=1,,c=10- 2 -所以所以(2)原方程可化为因为a=1,,c=2所以所以.(3)原方程可化为因为a=1,,c=-1所以所以;所以.总结:- 3 -(1)用求根公式法解一元二次方程首先将方程化为一般形式;如果二次项系数为负数,通常将其化为正数;如果方程的系数含有分母,通常先将其化为整数,求出的根要化为最简形式;(2)用求根公式法解方程按步骤进行.例2、用适当方法解下列方程:① ②③ ④⑤ ⑥分析:要合理地选用适当的方法解一元二次方程,就必须熟悉各种方法的优缺点,处理好特殊方法和一般方法的关系。

1.2一元二次方程的解法公式法

1.2一元二次方程的解法公式法

(1)3x2+5x-1=0
解:a=3,b=5,c=-1,
b² -4ac=5² -4×3×(-1)=37>0
X= =
Х1=
Х2=
(2)4x² +1=-4x
解:移项,得4x² +4x+1=0
a=4,b=4,c=1,b² -4ac=4² -4×4×1=0
X=
X1=X2
==-
(3)x2+2x+2=0
解:a=1,b=2,c=2 ∵b² -4ac=2² -4×1×2=-4<0
2
b c b b x x a a 2a 2a
2
2
2

b b2 4ac x 2a 4a 2
2
b b 4ac x 2a 4a 2
2

b b 4ac x 2a 2a
2
一元二次方程的 求根公式
4、2x² -3x-1=0
解下列方程: 1、x2=4 3、8x2-10=0;
不含一次项
2、x2-3=0; 4、2x2 =80;
对于形如x2=a(a≥0)的方程,根据平方根的定
义,可解得 x1 a , x2 a 方法叫做直接开平方法.方程的
例1、用直接开平方法解下列方程:
(1 ( ) x 18 ) 25
(a≠0, b2-4ac≥0)
b b 4ac x 2a
2
b b 4ac x 2a
2
(a≠0, b2-4ac≥0)
解一元二次方程时,把各项系数的值 直接代入这个公式,若b2-4ac≥0,就可以 求得方程的根. 这种解一元二次方程的方
法叫做公式法.

一元二次方程的解法:公式法

一元二次方程的解法:公式法
b b2 4ac x
2a
(2)当 b2 4ac 时,方程无实数解
例 2 解方程:4x2 4x 10 1 8x
解:化为一般式: 4x2 +12x 9 0
a 4,b 12,c 9
bቤተ መጻሕፍቲ ባይዱ 4ac 122 4 49 0
x 12 0 3
3. 公式法
偃师市大口镇中学 张延峰
温故知新
用配方法解一元二次方程的一般步骤:
化1:化为一般式,并将二次项系数化为1; 移项:把常数项移到方程的右边; 配方:方程两边都加上一次项系数一半的平方 ;开方:左边降次,右边开平方; 求解:解两个一元一次方程; 定解:写出原方程的解.
用配方法解一般形式的一元二次方程
24
2
3 x1 x2 2
例 3 解方程: x 21 3x 6
解:去括号,化为一般式:
3x2 7x 8 0
a 3,b -7,c 8
b2 4ac ( 7)2 4 3 8 49 96 - 47 0
方程没有实数解。
随堂 练习 用公式法解下列方程:
(1) x2 4x 2
(2)5x2 4x 12 0
(3) 16x2 8x 3
课后小结
同学们,这节课你们都有哪些收获呢?
课后作业
1.课本第30页练习 2.课本第36页习题第二题的3、4
、5、6小题

见!
用公式法解方程:
例 1 解方程: 2x2 +x 6 0
例 2 解方程:4x2 4x 10 1 8x
例 3 解方程: x 21 3x 6
例 1 解方程: 2x2 +x 6 0

专题12公式法解一元二次方程-重难点题型(学生版)

专题12公式法解一元二次方程-重难点题型(学生版)

专题2.4 公式法解一元二次方程-重难点题型【题型1 用公式法解一元二次方程】【例1】(2021春•淮北月考)用公式法解方程:x 2﹣5x ﹣1=0.【变式1-1】(2020秋•朝阳区期中)用公式法解方程:3x 2﹣x ﹣1=0.【变式1-2】(2020春•江干区期末)解下列一元二次方程:34x 2−2x −12=0(公式法).【变式1-3】(2020秋•达川区期末)解方程:3x 2﹣4√3x +2=0(用公式法解).【题型2 求根公式的应用】【例2】(2020秋•和平区期中)若一元二次方程x 2+bx +4=0的两个实数根中较小的一个根是m (m ≠0),则b +√b 2−16=( ) A .mB .﹣mC .2mD .﹣2m【变式2-1】(2020•福州模拟)关于x 的一元二次方程ax 2+bx +c =0的两根分别为x 1=−b+√b 2+42,x 2=−b−√b 2+42,下列判断一定正确的是( ) A .a =﹣1B .c =1C .ac =﹣1D .ca =−1【变式2-2】(2020秋•宜兴市校级月考)已知a 是一元二次方程x 2﹣4x +2=0的两个实数根中较小的根, (1)求a 2﹣4a +2013的值; (2)化简求值:√a 2−2a+1a−1−1−2a+a 2a−1.【变式2-3】先阅读下列材料,然后回答问题:在一元二次方程ax 2+bx +c =0(a ≠0)中,若各项的系数之和为零,即a +b +c =0,则有一根为1,另一根为ca .证明:设方程的两根为x 1,x 2,由a +b +c =0, 知b =﹣(a +c ),∵x=−b±√b2−4ac2a=(a+c)±√(a+c)2−4ac2a=(a+c)±(a−c)2a∴x1=1,x2=c a.(1)若一元二次方程ax2+bx+c=0(a≠0)的各项系数满足a﹣b+c=0,则两根的情况怎样,试说明你的结论;(2)已知方程(ac﹣bc)x2+(bc﹣ab)x+(ab﹣ac)=0(abc≠0)有两个相等的实数根,运用上述结论证明:2 b =1a+1c.【题型3 应用根的判别式判断方程根的情况】【例3】(2021•河南模拟)下列关于x的方程有两个不相等的实数根的是()A.x2﹣2x+2=0B.x(x﹣2)=﹣1C.(x﹣k)(x+k)=2x+1D.x2+1=0【变式3-1】(2021•滨城区一模)关于x的一元二次方程x2+(﹣k+2)x﹣4+k=0根的情况,下列说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定【变式3-2】(2021•凉山州)函数y=kx+b的图象如图所示,则关于x的一元二次方程x2+bx+k﹣1=0的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法确定【变式3-3】(2021春•鹿城区校级期中)已知a,b,c分别是△ABC的边长,则一元二次方程(a+b)x2+2cx+a+b =0的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法判断【题型4 已知方程根的情况求字母系数的值或范围】【例4】(2021•菏泽)关于x的方程(k﹣1)2x2+(2k+1)x+1=0有实数根,则k的取值范围是()A.k>14且k≠1B.k≥14且k≠1C.k>14D.k≥14【变式4-1】(2021•广安)关于x的一元二次方程(a+2)x2﹣3x+1=0有实数根,则a的取值范围是()A.a≤14且a≠﹣2B.a≤14C.a<14且a≠﹣2D.a<14【变式4-2】(2021春•台江区校级月考)若关于x 的方程x 2−√m x +n =0有两个相等的实根,则m n= .【变式4-3】(2021•海门市模拟)关于x 的方程x 2+bx +c =0有两个相等的实数根,x 取m 和m +2时,代数式x 2+bx +c 的值都等于n ,则n = .【题型5 根的判别式的综合应用】【例5】(2021•海淀区二模)关于x 的一元二次方程x 2﹣mx +2m ﹣4=0. (1)求证:方程总有两个实数根;(2)若方程有一个根小于1,求m 的取值范围.【变式5-1】(2021春•萧山区期中)已知:关于x 的方程kx 2﹣(4k ﹣3)x +3k ﹣3=0 (1)求证:无论k 取何值,方程都有实根; (2)若x =﹣1是该方程的一个根,求k 的值;(3)若方程的两个实根均为正整数,求k 的值(k 为整数).【变式5-2】(2021•广东模拟)已知关于x 的一元二次方程x 2﹣(k +2)x +2k =0. (1)若x =1是这个方程的一个根,求k 的值和它的另一根; (2)求证:无论k 取任何实数,方程总有实数根.(3)若等腰三角形的一边长为5,另两边长恰好是这个方程的两个根,求这个等腰三角形的周长.【变式5-3】(2020秋•安居区期末)已知关于x 的方程x 2﹣(m +3)x +4m ﹣4=0的两个实数根. (1)求证:无论m 取何值,这个方程总有实数根.(2)若等腰三角形ABC 的一边长a =5,另两边b ,c 的长度恰好是这个方程的两个根,求△ABC 的周长.【题型6 根的判别式中新定义问题】【例6】(2021•郑州模拟)定义新运算“a *b ”:对于任意实数a ,b ,都有a *b =a 2+b 2﹣2ab ﹣2,其中等式右边是通常的加法、减法、乘法运算,例如:5*6=52+62﹣2×5×6﹣2=﹣1.若方程x *k =xk (k 为实数)是关于x 的方程,则方程的根的情况为( )A.只有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根【变式6-1】(2020春•瑶海区期末)对于实数a、b,定义运算“★”:a★b={a2−b(a≤b)b2−a(a>b),关于x的方程(2x+1)★(2x﹣3)=t恰好有两个不相等的实数根,则t的取值范围是()A.t<154B.t>154C.t<−174D.t>−174【变式6-2】(2021春•瑶海区期中)对于实数m、n,定义一种运算:m△n=mn+n.(1)求﹣2△√32得值;(2)如果关于x的方程x△(a△x)=−14有两个相等的实数根,求实数a的值.【变式6-3】(2020春•丽水期中)如图,四边形ACDE是证明勾股定理时用到的一个图形,a,b,c是全等的Rt △ABC和Rt△BED的边长,易知AE=√2c,这时我们把关于x的形如ax2+√2cx+b=0的一元二次方程称为“勾系一元二次方程”.请解决下列问题:(1)求证:关于x的“勾系一元二次方程”ax2+√2cx+b=0必有实数根;(2)若x=﹣1是“勾系一元二次方程”ax2+√2cx+b=0的一个根,且四边形ACDE的周长是12,求△ABC的面积.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求根公式法
一、知识概述
1、一元二次方程的求根公式
将一元二次方程ax2+bx+c=0(a≠0)进行配方,当b2-4ac≥0时的根为.
该式称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为求根公式法,简称公式法.
说明:(1)一元二次方程的公式的推导过程,就是用配方法解一般形式的一元二次方程ax2+bx+c=0(a≠0);
(2)由求根公式可知,一元二次方程的根是由系数a、b、c的值决定的;
(3)应用求根公式可解任何一个有解的一元二次方程,但应用时必须先将其化为一般形式.
2、一元二次方程的根的判别式
(1)当b2-4ac>0时,方程有两个不相等的实数根;
(2)当b2-4ac=0时,方程有两个相等的实数根;
(3)当b2-4ac<0时,方程没有实数根.
二、重难点知识
1、对于一元二次方程的各种解法是重点,难点是对各种方法的选择,突破这一难点的关键是在对四种方法都会使用的基础上,熟悉各种方法的优缺点。

(1) “开平方法”一般解形如“”类型的题目,如果用“公式法”就显得多余的了。

- 1 -
(2)“因式分解法”是一种常用的方法,一般是首先考虑的方法。

(3) “配方法”是一种非常重要的方法,一般不使用,但若能恰当地使用,往往能起到简化作用,思考于“因式分解法”之后,“公式法”之前。

如方程;用因式分解,则6391这个数太大,不易分解;用公式法,也太繁;若配方,则方程化为,就易解,若一次项系数中有偶因数,一般也应考虑运用。

(4)“公式法”是一般方法,只要明确了二次项系数、一次项系数及常数项,若方程有实根,就
一定可以用求根公式求出根,但因为要代入(≥0)求值,所以对某些特殊方程,解法又显得复杂了。

2、在运用b2-4ac的符号判断方程的根的情况时,应注意以下三点:
(1)b2-4ac是一元二次方程的判别式,即只有确认方程为一元二次方程时,才能确定a、b、c,求出b2-4ac;
(2)在运用上述结论时,必须先将方程化为一般形式,以便确认a、b、c;
(3)根的判别式是指b2-4ac,而不是
三、典型例题讲解
例1、解下列方程:
(1); (2);
(3).
分析:用求根公式法解一元二次方程的关键是找出a、b、c的值,再代入公式计算,
解:(1)因为a=1,,c=10
- 2 -
所以
所以
(2)原方程可化为
因为a=1,,c=2
所以
所以.
(3)原方程可化为
因为a=1,,c=-1
所以
所以;
所以.
总结:
- 3 -
(1)用求根公式法解一元二次方程首先将方程化为一般形式;如果二次项系数为负数,通常将其化为正数;如果方程的系数含有分母,通常先将其化为整数,求出的根要化为最简形式;
(2)用求根公式法解方程按步骤进行.
例2、用适当方法解下列方程:
① ②
③ ④
⑤ ⑥
分析:
要合理地选用适当的方法解一元二次方程,就必须熟悉各种方法的优缺点,处理好特殊方法和一般方法的关系。

就直接开平方法、配方法、公式法、因式分解法这四种方法而言,配方法、公式法是一般方法,而开平方法、因式分解法是特殊方法。

⑴ 公式法是最一般的方法,只要明确了二次项系数、一次项系数和常数项,若方程有实根,就
一定可以用求根公式求出根,但因为要代入一元二次方程的求根公式求值,所以对某些方程,解法又显得复杂了。

如①,可以直接开平方,就能马上得出解;若此时还用求根公式就显得繁琐了。

⑵ 配方法是一种非常重要的方法,在解一元二次方程时,一般不使用,但并不是一定不用,若能合理地使用,也能起到简便的作用。

若方程中的一次项系数有因数是偶数,则可使用,计算量也不
- 4 -
- 5 -
大。

如②,因为224比较大,分解时较繁,此题中一次项系数是-2。

可以利用用配方法来解,经过配方之后得到
,显得很简单。

⑶ 直接开平方法一般解符合型的方程,如第①小题。

⑷ 因式分解法是一种常用的方法,它的特点是解法简单,故它是解题中首先考虑的方法,若一元二次方程的一般式的左边不能分解为整数系数因式或系数较大难以分解时,应考虑变换方法。

小结:
课后练习: 用公式法解下列方程
(1)2
5610x x ++= (2)2
35(21)0x x ++=
(3)2111
282
x x --= (4)20.090.210.10y y -+=
(5)2
222x x -= (6)22(53)1x x --=
课程反馈
日期:________________
1.____________________________________________________________
2.____________________________________________________________
3.____________________________________________________________作业完成情况:
- 6 -。

相关文档
最新文档