电工电子仿真实践——用555多谐振荡器分析脉冲电路

合集下载

第7章 用555定时器组成的脉冲电路 (2)

第7章  用555定时器组成的脉冲电路 (2)

OUT(uo)为高电平,MOS管截止,电源经R1、R2对C充电, 2 V DD uC逐渐升高。 当uC> 时,比较器A输出,即RS 3 触发器的R端跳变为高电平,比较器B输出,即RS S 端跳变为低电平,使RS触发器置 0,输出OUT(uo)跳变 1 V DD 3 为低电平,MOS管导通,电容C通过R2及MOS管放电,uC下降。 当uC< ,比较器 B的输出使 RS触发器的S跳变为高电平, 比较器A的输出使RS触发器的R跳变为低电平,输出OUT(uo)
CC7556 等,器件的电源电压为 4.5 ~ 18 V ,能提供与 TTL 、 CMOS电路相兼容的逻辑电平;双极型的有 5G555(NE555)。下 面以CC7555为例, 介绍555定时器的功能。 CC7555 为双列直插式封装,共有8个引脚。 图9.2.1 (a )
为CC7555的电路结构图, 图9.2. 1(b)是它的外引脚排列图。

CMOS门取10~100MΩ。电容C1、C2作为非门间的耦合,
其容抗对石英晶体的谐振频率f0应可忽略不计。 在振荡器输出端再加一级反相器, 可以提高带负载能 力, 改善输出波形。 图 7.3.6 ( a )是在输出端加一级分频后再输出的可以 产生两相时钟信号的电路, 7.3.6 ( b )是其工作波形。
同时C2的放电也使G1转为截止, 电路进入另一暂稳态:
G1 截止,G2 导通, C1 放电,C2 充电。当 C2 充电到使 G1 输 入端电平达到阈值电压 UT时, G1 又转为导通,同时C1 放 电使G2又转为截止 …… 如此周而复始,输出uo即为连续 的矩形波。
由于电路中接入了石英晶体,这个振荡器只能谐振在 频率 f0 上。对于 TTL 门, R1 、 R2 通常取 0.7 ~ 2kΩ ,而对于

实验555定时器构成的多谐振荡器

实验555定时器构成的多谐振荡器

555定时器构成的多谐振荡器555定时器是一种模拟电路和数字电路相结合的中规模集成器件,它性能优良,适用范围很广,外部加接少量的阻容元件可以很方便地组成单稳态触发器和多谐振荡器,以及不需外接元件就可组成施密特触发器。

因此集成555定时被广泛应用于脉冲波形的产生与变换、测量与控制等方面。

本实验根据555定时器的功能强以及其适用范围广的特点,设计实验研究它的内部特性和简单应用。

一、原理1、555定时器内部结构555定时器是一种模拟电路和数字电路相结合的中规模集成电路,其内部结构如图(A)及管脚排列如图(B)所示。

它由分压器、比较器、基本R--S触发器和放电三极管等部分组成。

分压器由三个5K 的等值电阻串联而成。

分压器为比较器、提供参考电压,比较器的参考电压为23ccV,加在同相输入端,比较器的参考电压为13,加在反相输入端。

比较器由两个结构相同的集成运放、组成。

高电平触发信号加在的反相输入端,与同相输入端的参考电压比较后,其结果作为基本R--S触发器_DR端的输入信号;低电平触发信号加在的同相输入端,与反相输入端的参考电压比较后,其结果作为基本R—S触发器_DS端的输入信号。

基本R--S触发器的输出状态受比较器、的输出端控制。

2、多谐振荡器工作原理由555定时器组成的多谐振荡器如图(C)所示,其中R1、R2和电容C为外接元件。

其工作波如图(D)所示。

设电容的初始电压=0,t =0时接通电源,由于电容电压不能突变,所以高、低触发端==0<13VCC,比较器A1输出为高电平,A2输出为低电平,即_1D R =,_0D S =(1表示高电位,0表示低电位),R S -触发器置1,定时器输出01u =此时_0Q =,定时器内部放电三极管截止,电源经,向电容C充电,逐渐升高。

当上升到13cc V 时,输出由0翻转为1,这时__1D D R S ==,R S -触发顺保持状态不变。

所以0<t<期间,定时器输出为高电平1。

定时器NE555构成的多谐振荡器产生秒脉冲,两块74LS19

定时器NE555构成的多谐振荡器产生秒脉冲,两块74LS19

电子课程设计报告发射器控制器系名专业年级姓名指导教师2010年10月10 日目录一、课程设计目的描述及要求 (2)二、设计总框图 (2)三、各单元电路的设计方案及原理说明 (2)四、元件型号芯片介绍 (4)五、系统总体电路图 (6)六、调试步骤和测试结果 (7)七、总结 (7)1.课程设计目的:设计一个采用中小规模集成电路构成的电子秒表 2.课程设计题目的描述和要求设计一个采用中小规模集成电路构成的电子秒表,具体指标如下: 1.准确计时,计数分辨率为1S 。

2.秒表由2位数码管显示,计时周期为60S ,显示满刻度为59S 。

3.课程设计报告内容根据设计任务要求,电子秒表的工作原理框图如图1所示。

主要包括三大部分:脉冲信号发生器 倒计时器 时间显示器。

由定时器NE555构成的多谐振荡器产生秒脉冲,两块74LS192芯片级联成60进制倒计时器,计时器输出的数据通过译码器和数码管显示出来。

(1) 总方框图3.各单元电路的设计方案及原理说明3.1 秒脉冲系统所需要的秒脉冲由定时器NE555所构成的多谐振荡器提供,多谐振荡器如图1—1(a )所示,图中NE555外引线排列如图1—1(b )所示。

其中1脚是电路地GND ;8脚是正电源端Ucc ,工作电压范围为5~18V ;2脚是低触发端TR ;3脚是输出端OUT ;4脚是主复位端R ;5脚是控制电压端Uc ;6脚是高触发端TH ;7脚放电端DISC 。

R1、R2和C 为定时电阻和电容,C1为电压控制端稳定电容。

在信号的输出端产生矩形脉冲,其振荡频率为 f=1.44/( R1+2R2)C 。

秒脉冲(脉冲信号发生器) →计数器(倒计时器)(个位)→ 译码器时间显示器(数码管)→ 时间显示器(数码管)译码器计数器(倒计时器)(十位)→→↓TH Uc集成电路5553.2倒计时器倒计时器由两位4位十进制可逆同步计数器(双时钟)74LS192、非门和或门构成。

其组成如图所示,其中 74LS192是上升沿触发,CPU 为加计数时钟输入端;CPD 为减计数时钟输入端;LD 为异步预置端,低有效;CR 为异步清零端,高有效;CO 为进位输出端,当1001后输出低电平;BO 为借位输出端,当0000后输出低电平;D3D2D1D0为数据预置端;Q3Q2Q1Q0为数据输出端。

定时器NE555构成的多谐振荡器产生秒脉冲,两块74LS19

定时器NE555构成的多谐振荡器产生秒脉冲,两块74LS19

电子课程设计报告发射器控制器系名专业年级姓名指导教师2010年10月10 日目录一、课程设计目的描述及要求 (2)二、设计总框图 (2)三、各单元电路的设计方案及原理说明 (2)四、元件型号芯片介绍 (4)五、系统总体电路图 (6)六、调试步骤和测试结果 (7)七、总结 (7)1.课程设计目的:设计一个采用中小规模集成电路构成的电子秒表 2.课程设计题目的描述和要求设计一个采用中小规模集成电路构成的电子秒表,具体指标如下: 1.准确计时,计数分辨率为1S 。

2.秒表由2位数码管显示,计时周期为60S ,显示满刻度为59S 。

3.课程设计报告内容根据设计任务要求,电子秒表的工作原理框图如图1所示。

主要包括三大部分:脉冲信号发生器 倒计时器 时间显示器。

由定时器NE555构成的多谐振荡器产生秒脉冲,两块74LS192芯片级联成60进制倒计时器,计时器输出的数据通过译码器和数码管显示出来。

(1) 总方框图3.各单元电路的设计方案及原理说明3.1 秒脉冲系统所需要的秒脉冲由定时器NE555所构成的多谐振荡器提供,多谐振荡器如图1—1(a )所示,图中NE555外引线排列如图1—1(b )所示。

其中1脚是电路地GND ;8脚是正电源端Ucc ,工作电压范围为5~18V ;2脚是低触发端TR ;3脚是输出端OUT ;4脚是主复位端R ;5脚是控制电压端Uc ;6脚是高触发端TH ;7脚放电端DISC 。

R1、R2和C 为定时电阻和电容,C1为电压控制端稳定电容。

在信号的输出端产生矩形脉冲,其振荡频率为 f=1.44/( R1+2R2)C 。

秒脉冲(脉冲信号发生器) →计数器(倒计时器)(个位)→ 译码器时间显示器(数码管)→ 时间显示器(数码管)译码器计数器(倒计时器)(十位)→→↓TH Uc集成电路5553.2倒计时器倒计时器由两位4位十进制可逆同步计数器(双时钟)74LS192、非门和或门构成。

其组成如图所示,其中 74LS192是上升沿触发,CPU 为加计数时钟输入端;CPD 为减计数时钟输入端;LD 为异步预置端,低有效;CR 为异步清零端,高有效;CO 为进位输出端,当1001后输出低电平;BO 为借位输出端,当0000后输出低电平;D3D2D1D0为数据预置端;Q3Q2Q1Q0为数据输出端。

PSpice仿真555多谐振荡器课程设计报告

PSpice仿真555多谐振荡器课程设计报告

《PSpice电路设计与分析》课程设计报告题目:555定时器的应用姓名:学号:班级:2015年 6 月 27 日目录1.设计任务及要求............................................. 错误!未定义书签。

2.理论分析................................................... 错误!未定义书签。

555定时器构成的多谐振荡器电路图.............................. 错误!未定义书签。

555定时器构成的多谐振荡器理论分析............................ 错误!未定义书签。

3.电路参数设计............................................... 错误!未定义书签。

4.仿真结果及所得曲线........................................ 错误!未定义书签。

5.曲线分析及总结............................................. 错误!未定义书签。

6.心得体会................................................... 错误!未定义书签。

通过此次仿真实验的学习,让我学习到很多,懂得如何使用PSpice软件,如何用此软件作图。

在做这个实验的时候虽然每个步骤书上都已经给出了,但由于自己的粗心,还是出现了很多问题,比如画第一个原理图的时候把与信号源连接的电容和三级管之间的节点给忽略了,结果得出是输入/输出波形有很大的问题,后来还是同学帮忙指出了这个问题,才能使实验顺利进行下去;还有,连线的时候,线不能穿过元件,不然就对后面的波形图产生影响。

通过这个我理解了再一次有了粗心的教训。

此次实验不光让我学习如何使用PSpice软件,还让我学会了如何截图,让我又学到了一个知识。

555定时器构成的多谐振荡器

555定时器构成的多谐振荡器

之答禄夫天创作多谐振荡器是一种能发生矩形波的自激振荡器,也称矩形波发生器。

“多谐”指矩形波中除了基波成分外,还含有丰富的高次谐波成分。

多谐振荡器没有稳态,只有两个暂稳态。

在工作时,电路的状态在这两个暂稳态之间自动地交替变换,由此发生矩形波脉冲信号,经常使用作脉冲信号源及时序电路中的时钟信号。

一、用555定时器构成的多谐振荡器1.电路组成:用555定时器构成的多谐振荡器电路如图6-11(a)所示:图中电容C、电阻R1和R2作为振荡器的定时元件,决定着输出矩形波正、负脉冲的宽度。

定时器的触发输入端(2脚)和阀值输入端(6脚)与电容相连;集电极开路输出端(7脚)接R1、R2相连处,用以控制电容C的充、放电;外界控制输入端(5脚)通过0.01uF电容接地。

2.工作原理:多谐振荡器的工作波形如图6-11(b)所示:电路接通电源的瞬间,由于电容C来不及充电,Vc=0v,所以555定时器状态为1,输出Vo为高电平。

同时,集电极输出端(7脚)对地断开,电源Vcc对电容C充电,电路进入暂稳态I,此后,电路周而复始地发生周期性的输出脉冲。

多谐振荡器两个暂稳态的维持时间取决于RC充、放电回路的参数。

暂稳态Ⅰ的维持时间,即输出Vo的正向脉冲宽度T1≈0.7(R1+R2)C;暂稳态Ⅱ2C。

因此,振荡周期T=T1+T2=0.7(R1+2R2)C,振荡频率f=1/T。

正向脉冲宽度T1与振荡周期T之比称矩形波的占空比D,由上述条件可得D=(R1+R2)/(R1+2R2),若使R2>>R1,则D≈1/2,即输出信号的正负向脉冲宽度相等的矩形波(方波)。

二、多谐振荡器应用举例:1.模拟声响发生器:将两个多谐振荡器连接起来,前一个振荡器的输出接到后一个振荡器的复位端,后一个振荡器的输出接到扬声器上。

这样,只有当前一个振荡器输出高电平时,才驱动后一个振荡器振荡,扬声器发声;而前一个振荡器输出低电平时,导致后面振荡器复位并停止震荡,此时扬声器无音频输出。

用555构成的多谐振荡器

555构成多谐振荡器的报警电路设计一、设计目的555定时器是一种模拟电路和数字电路相结合的中规模集成器件,它性能优良,适用范围很广,外部加接少量的阻容元件可以很方便地组成单稳态触发器和多谐振荡器,以及不需外接元件就可组成施密特触发器。

因此集成555定时被广泛应用于脉冲波形的产生与变换、测量与控制等方面。

本实验根据555定时器的功能强以及其适用范围广的特点,设计实验研究它的内部特性和简单应用。

555 定时器是一种模拟和数字功能相结合的中规模集成器件。

一般用双极性工艺制作的称为555,555 定时器的电源电压范围宽,可在4.5V~16V 工作,7555 可在3~18V 工作,输出驱动电流约为200mA,因而其输出可与TTL、CMOS 或者模拟电路电平兼容。

555 定时器成本低,性能可靠,只需要外接几个电阻、电容,就可以实现多谐振荡器、单稳态触发器及施密特触发器等脉冲产生与变换电路。

它也常作为定时器广泛应用于仪器仪表、家用电器、电子测量及自动控制等方面。

555 定时器的内部包括两个电压比较器,三个等值串联电阻,一个RS 触发器,一个放电管T 及功率输出级。

它提供两个基准电压VCC /3 和2VCC /3图8-1 555定时器内部方框图通过对本次设计能够更好地掌握555的作用及应用。

同时掌握报警电路的原理及设计方法。

二、设计要求①画出电路原理图(或仿真电路图);②元器件及参数选择;③电路仿真与调试;④PCB文件生成与打印输出。

(3)制作要求自行装配和仿真,并能发现问题和解决问题。

(4)编写设计报告写出设计与制作的全过程,附上有关资料和图纸,有心得体会。

三、设计原理多谐振荡器是能产生矩形波的一种自激振荡器电路,由于矩形波中除基波外还含有丰富的高次谐波,故称为多谐振荡器。

多谐振荡器没有稳态,只有两个暂稳态,在自身因素的作用下,电路就在两个暂稳态之间来回转换,故又称它为无稳态电路。

由555定时器构成的多谐振荡器如图1所示,R1,R2和C是外接定时元件,电路中将高电平触发端(6脚)和低电平触发端(2脚)并接后接到R2和C的连接处,将放电端(7脚)接到R1,R2的连接处。

实验报告-多谐振荡器

韶关学院仿真实验报告册仿真实验课程名称:数字电子技术实验仿真仿真实验项目名称:基于555定时器的多谐振荡器的设计仿真类型(填■):(基础□、综合□、设计■)院系:物理与机电工程学院专业班级:13电子(2)班姓名:学号:指导老师:刘堃完成时间:成绩:一、实验目的1、熟悉555集成时基电路的电路结构、工作原理及其特点;掌握555集成时基电路的基本应用。

2、掌握Multisim10软件在数字电子技术实验中的应用。

二、实验设备Multisim10软件。

三、实验原理 (1)555定时器集成芯片555是一种能够产生时间延迟和多种脉冲信号的控制电路,是数字、模拟混合型的中规模集成电路。

芯片引脚排列如图1所示,内部电路如图2所示。

电路使用灵活、方便,只需外接少量的阻容元件就可以构成单稳、多谐和施密特触发器,广泛应用于信号的产生、变换、控制与检测。

它的内部电压标准使用了三个5 k Ω的电阻,故取名555电路。

电路类型有双极型和CMOS 型两大类,两者的工作原理和结构相似。

几乎所有的双极型产品型号最后的三位数码都是555或556;所有的CMOS 产品型号最后四位数码都是7555或7556,两者的逻辑功能和引脚排列完全相同,易于互换。

555和7555是单定时器,556和7556是双定时器。

双极型的555电路电源电压为+5 V ~ +15 V ,输出的最大电流可达200 mA ;CMOS 型的电源电压是+3 V~+18 V 。

555内部电路有两个电压比较器、基本RS 触发器和放电开关管T 。

比较器的参考电压由三只5 k Ω的电阻分压提供,比较器A 1同相端参考电平为CC V 32、比较器A 2的反相端参考图1 555芯片引脚排列图 图2 555定时器内部电路电平为CC V 31。

A 1和A 2的输出端控制RS 触发器状态和放电管开关状态。

当输入信号超出CCV 32时,比较器A 1翻转,触发器复位,555的输出端○脚输出低电平,开关管导通,电路充电。

555仿真实验报告-多谐振荡器

仿真实验报告册仿真实验课程名称:数字电子技术实验仿真仿真实验项目名称:基于555定时器的多谐振荡器的设计仿真类型(填■):(基础□、综合□、设计■)院系:物理与机电工程学院专业班级:13电子(2)班姓名:学号:指导老师:刘堃完成时间:2014.03.25成绩:一、实验目的1、熟悉555集成时基电路的电路结构、工作原理及其特点;掌握555集成时基电路的基本应用。

2、掌握Multisim10软件在数字电子技术实验中的应用。

二、实验设备Multisim10软件。

三、实验原理 (1)555定时器集成芯片555是一种能够产生时间延迟和多种脉冲信号的控制电路,是数字、模拟混合型的中规模集成电路。

芯片引脚排列如图1所示,内部电路如图2所示。

电路使用灵活、方便,只需外接少量的阻容元件就可以构成单稳、多谐和施密特触发器,广泛应用于信号的产生、变换、控制与检测。

它的内部电压标准使用了三个5 k Ω的电阻,故取名555电路。

电路类型有双极型和CMOS 型两大类,两者的工作原理和结构相似。

几乎所有的双极型产品型号最后的三位数码都是555或556;所有的CMOS 产品型号最后四位数码都是7555或7556,两者的逻辑功能和引脚排列完全相同,易于互换。

555和7555是单定时器,556和7556是双定时器。

双极型的555电路电源电压为+5 V ~ +15 V ,输出的最大电流可达200 mA ;CMOS 型的电源电压是+3 V~+18 V 。

555内部电路有两个电压比较器、基本RS 触发器和放电开关管T 。

比较器的参考电压由三只5 k Ω的电阻分压提供,比较器A 1同相端参考电平为CC V 32、比较器A 2的反相端参考电平为CC V 31。

A 1和A 2的输出端控制RS 触发器状态和放电管开关状态。

当输入信号超出CC V 32时,比较器A 1翻转,触发器复位,555的输出端○3脚输出低电平,开关管导通,电路充电。

当输入信号低于CC V 31时,比较器A 2翻转,触发器置位,开关管截止,电路放电,555的○3脚输出高电平。

数字电路实验(06)555定时器及其应用:多谐振荡器

数字电路实验(06)555定时器及其应⽤:多谐振荡器⼀.实验要求1.1.实验⽬的1. 熟悉多谐振荡器的实现流程;2. 掌握555定时器的使⽤⽅法;3. 掌握泰克⽰波器TBS1102的使⽤。

1.2.实验器材1. VCC2. Ground3. 普通电阻4. 普通电容5. 555定时器6. 泰克⽰波器TBS11021.3.实验原理555时基电路是⼀种将模拟功能与逻辑功能巧妙结合在同⼀硅⽚上的组合集成电路。

555定时器构成的多谐振荡器能⾃⾏产⽣矩形脉冲的输出,是脉冲产⽣(形成)电路,它是⼀种⽆稳电路。

1. 多谐振荡器电路组成在电路接通电源的瞬间,由于电容C来不及充电,电容电压Vc=0V,所以555定时器的输出状态为1,输出Vo为⾼电平。

同时,集电极输出端对地断开,电源Vcc对电容C充电,电路进⼊暂稳态I。

当电容电压Vc充到2/3Vcc时,输出Vo为低电平,同时集电极输出对地短路,电容电压随之通过集电极输出端放电,电路进⼊暂稳态II。

此后,电路周⽽复始地产⽣周期性的输出脉冲。

2. 振荡频率的估算电容充电时间T1。

电容充电时,时间常数τ1=(R1+R2)C,起始值Vc(0+)=1/3Vcc,最终值Vc(∞)= Vcc,转换值Vc(T1)=2/3Vcc,带⼊过渡过程计算公式进⾏计算,计算公式为:电容放电时间T2。

电容放电时,时间常数τ2=R2C,起始值Vc(0+)=2/3Vcc,终值Vc(∞)= 0,转换值Vc(T2)=1/3Vcc,代⼊RC过渡过程计算公式进⾏计算,计算公式为:T2=0.7R2C电路振荡周期T,计算公式为:T=T1+T2=0.7(R1+2R2)C电路振荡频率f,计算公式为:输出波形占空⽐q=T1/T,即脉冲宽度与脉冲周期之⽐,称为占空⽐。

计算公式为:q= T1/T=0.7(R1+R2)C/(0.7(R1+2R2)C)=( R1+R2)/( R1+2R2)⽤555定时器构成多谐振荡器的原理图如图1所⽰。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

$$$$大学
电工电子仿真实践课程设计
2014年7月4日
电工电子仿真实践课程设计任务书
课程 电工电子仿真实践课程设计
题目 用555多谐振荡器分析脉冲电路 专业 电气工程及其自动化 姓名 学号 主要内容:
根据仿真软件Multisim 的主要功能特点,利用其先进的仿真功能对用555定时器接成的多谐振荡器特性进行仿真研究。

基本要求:
本次课程设计要求设计一个用555定时器接成的多谐振荡器,该多谐振荡器的功能要求如下:
1、采用全部分立元件电路设计一种用555定时器接成的多谐振荡器;
2、RC 积分电路中的电容F C C n 91021==;
3、RC 积分电路中的负载电阻Ω=k R 511,Ω=k R 472;
4、高电平V VDD 5=。

主要参考资料:
[1] 刘伟,李思强.Multisim8电工电子仿真实践[M].哈尔滨:黑龙江科学技术出版社,2007.
[2] 李庆常.数字电子技术基础[M].北京:机械工业出版社,2008. [3] 阎石.数字电子技术基础[M].北京:高等教育出版社,2006.
[4] 陈滟涛,杨俊起,谢东磊等.Multisim7在《电工学》教学中的应用[J].中国现代教育装备,2008,02:86-87.
[5] 张肃文.高频电子线路[M ].北京:高等教育出版社,2007.
完成期限 2014.6.30——2014.7.4 指导教师 陶国彬 刘超 专业负责人
2014年 7 月4日
目录
1 设计 (1)
2 方案选择与电路原理图的设计 (1)
2.1 振荡器的选择 (2)
2.2 基本电路的选择 (2)
2.3 电路方案的确定 (2)
3 元件选取与电路图的绘制 (3)
3.1 元件选取 (3)
3.2 电路图的绘制 (3)
4 虚拟仪器设置与仿真分析计算 (4)
4.1虚拟仪器设置 (4)
4.2虚拟仪表输出波形 (5)
4.3仿真分析计算 (5)
5 仿真分析方法实验与结果分析 (6)
6 修改电路参数的仿真计算 (6)
7 总结 (7)
参考文献 (9)
1 设计
本设计为一个用555定时器接成的多谐振荡器,多谐振荡器是一种自激振荡器,在接通电源后,不需要外加触发信号,便能自动产生矩形脉冲,由于矩形脉冲中含有丰富的高次谐波分量,所以成为多谐振荡器。

现将555定时器构成施密特触发器,再将施密特触发器的输出端经RC积分电路接回到它的输入端,即可构成多谐振荡器,且其电容C的电压C V将在+T V和-T V 之间反复震荡。

之后用Multisim软件对多谐振荡器进行仿真实现。

根据实例电路图和已经给定的原件参数,使用Multisim软件模拟电路,并对其进行分析、显示波形图、计算数据等操作。

2方案选择与电路原理图的设计
使用555定时器作为构成多谐振荡器的基本器件。

将555定时器的两个输入端接在一起作为信号输入端,即可得到施密特触发器。

再将施密特触发器的输出端经RC积分电路接回到它的输入端,即可构成多谐振荡器。

通过观察示波器可以得到输出电压波形和振荡频率。

结构框图如下:
图2.1结构框图
方案原理图如图2.2所示:
图2.2方案原理图
2.1振荡器的选择
由于要测定的是关于不加外加触发信号时且能自动产生矩形脉冲信号的自激振荡器,所以选取多谐振荡器。

2.2基本电路的选择
由于要测定的是在555定时器基础上改装的多谐振荡器的输出电压波形,所以选取555定时器作为基本电路。

2.3电路方案的确定
先将555定时器接成施密特触发器,再将施密特触发器的输出端经RC积分电路接回到它的输入端,即可构成多谐振荡器,且其电容C的电压
V将在+T V和-T V
C
之间反复震荡。

3 元件选取与电路图的绘制
3.1 元件选取
1、RC 积分电路中的负载电阻的选择
根据生产机械的实际情况,为了实现多谐振荡器工作的要求,选用Ω=k R 511,
Ω=k R 472两个电阻。

2、 RC 积分电路中的电容的选择
根据生产机械的实际情况,为了实现多谐振荡器工作的要求,选用F C C n 91021==两个电容。

3、外接直流稳压电源大小的选择
只要能够让555定时器构成的多谐振荡器正常工作、能够正常的测出输出电压的波形并得出振荡频率即可,所以选取直流稳压电源V VDD 5=。

3.2 电路图的绘制
电路参数计算包括振荡周期计算,振荡频率计算及占空比的计算。

1、振荡周期的计算
电容C 的充电时间1T 和放电时间2T 各为
2ln )(ln
)(21211C R R V V V V C R R T T CC T CC +=--+=+
-
(3-1)
2ln 00ln 222C R V V C R T T T =--=-
+
(3-2)
故电路的振荡周期为
2ln )2(2121C R R T T T +=+= (3-3) 2、振荡频率的计算 振荡频率为
2
ln )2(1121C R R T f +==
(3-4)
通过改变RC 的参数可改变振荡频率。

3、占空比的计算 输出占空比为
2
12
1
12R R R R T T q ++==
(3-5) 电路输出脉冲的占空比始终大于50%。

电路图如图3.1所示:
图3.1 电路图
4 虚拟仪器设置与仿真分析计算
4.1虚拟仪器设置
选取XSC1示波器作为观察输出电压波形的示波器。

4.2虚拟仪表输出波形
示波器观测的输出波形如图4.1所示:
图4.1 示波器观测波形
4.3仿真分析计算
电路的理论振荡周期为:
ms C R R T T T 922ln )2(12121≈+=+=; (4-1)
实际结果为ms 837.91。

5 仿真分析方法实验与结果分析
利用Multisim8中的示波器对输出波形的周期进行观测,得C V 和O V 的波形如图4.1所示。

用示波器中的时间线进行测量,得到波形的周期ms T 837.91=。

理论分析的周期为:
ms C R R T T T 922ln )2(12121≈+=+=。

(5-1) 可见,用Multisim8得到的分析结果与理论计算结果完全符合。

6 修改电路参数的仿真计算
将原设计中的1R 取值改为Ωk 47,得到新的方案原理图如图6.1所示::
图6.1 方案原理图
示波器波形如图6.2所示:
图6.2 示波器观测波形
理论值
ms C R R T T T 892ln )2(12121≈+=+= (6-1)
实际值
ms T 015.89= (6-2) 用Multisim8得到的分析结果与理论计算结果仍完全符合。

7 总结
本课程设计就555定时器接成的多谐振荡器系统进行原理图设计,使用Multisim8软件进行了仿真,验证了设计的合理性和可行性。

具体内容包括:
1、设计了555多谐振荡器系统的电路,包括将555定时器改装成施密特触发器,然后再改装成多谐振荡器;
2、根据设计任务指标计算了各部分系统参数,如振荡周期、振荡频率、占空比,并进行了相应元件选取,如电阻、电容、555定时器;
电工电子仿真实践课程设计(报告)
3、利用Multisim8软件进行了仿真,仿真结果表明用Multisim8得到的分析结果与理论计算结果完全符合。

8
参考文献
[1] 刘伟,李思强.Multisim8电工电子仿真实践[M].哈尔滨:黑龙江科学技术出版社,2007.
[2] 李庆常.数字电子技术基础[M].北京:机械工业出版社,2008.
[3] 阎石.数字电子技术基础[M].北京:高等教育出版社,2006.
[4] 陈滟涛,杨俊起,谢东磊等.Multisim7在《电工学》教学中的应用[J].中国现代教育装备,2008,02:86-87.
[5] 张肃文.高频电子线路[M].北京:高等教育出版社,2007.
9
东北石油大学课程设计成绩评价表
指导教师:年月日。

相关文档
最新文档