历年初三数学单元综合测试题
人教版九年级数学上册 圆 几何综合单元测试卷(含答案解析)

人教版九年级数学上册 圆 几何综合单元测试卷(含答案解析)一、初三数学 圆易错题压轴题(难)1.已知圆O 的半径长为2,点A 、B 、C 为圆O 上三点,弦BC=AO ,点D 为BC 的中点,(1)如图,连接AC 、OD ,设∠OAC=α,请用α表示∠AOD ;(2)如图,当点B 为AC 的中点时,求点A 、D 之间的距离: (3)如果AD 的延长线与圆O 交于点E ,以O 为圆心,AD 为半径的圆与以BC 为直径的圆相切,求弦AE 的长. 【答案】(1)1502AOD α∠=︒-;(2)7AD =3)33133122or 【解析】【分析】(1)连接OB 、OC ,可证△OBC 是等边三角形,根据垂径定理可得∠DOC 等于30°,OA=OC 可得∠ACO=∠CAO=α,利用三角形的内角和定理即可表示出∠AOD 的值.(2)连接OB 、OC ,可证△OBC 是等边三角形,根据垂径定理可得∠DOB 等于30°,因为点D 为BC 的中点,则∠AOB=∠BOC=60°,所以∠AOD 等于90°,根据OA=OB=2,在直角三角形中用三角函数及勾股定理即可求得OD 、AD 的长.(3)分两种情况讨论:两圆外切,两圆内切.先根据两圆相切时圆心距与两圆半径的关系,求出AD 的长,再过O 点作AE 的垂线,利用勾股定理列出方程即可求解.【详解】(1)如图1:连接OB 、OC.∵BC=AO∴OB=OC=BC∴△OBC 是等边三角形∴∠BOC=60°∵点D 是BC 的中点∴∠BOD=1302BOC ∠=︒ ∵OA=OC∴OAC OCA ∠=∠=α∴∠AOD=180°-α-α-30︒=150°-2α(2)如图2:连接OB、OC、OD.由(1)可得:△OBC是等边三角形,∠BOD=130 2BOC∠=︒∵OB=2,∴OD=OB∙cos30︒=3∵B为AC的中点,∴∠AOB=∠BOC=60°∴∠AOD=90°根据勾股定理得:AD=227AO OD+=(3)①如图3.圆O与圆D相内切时:连接OB、OC,过O点作OF⊥AE∵BC是直径,D是BC的中点∴以BC为直径的圆的圆心为D点由(2)可得:3D的半径为1∴31设AF=x 在Rt △AFO 和Rt △DOF 中,2222OA AF OD DF -=-即()2222331x x -=-+- 解得:331x 4+= ∴AE=3312AF +=②如图4.圆O 与圆D 相外切时:连接OB 、OC ,过O 点作OF ⊥AE∵BC 是直径,D 是BC 的中点∴以BC 为直径的圆的圆心为D 点由(2)可得:3D 的半径为1∴31在Rt △AFO 和Rt △DOF 中,2222OA AF OD DF -=-即()2222331x x -=-解得:331x 4-= ∴AE=3312AF -=【点睛】本题主要考查圆的相关知识:垂径定理,圆与圆相切的条件,关键是能灵活运用垂径定理和勾股定理相结合思考问题,另外需注意圆相切要分内切与外切两种情况.2.已知:在△ABC中,AB=6,BC=8,AC=10,O为AB边上的一点,以O为圆心,OA长为半径作圆交AC于D点,过D作⊙O的切线交BC于E.(1)若O为AB的中点(如图1),则ED与EC的大小关系为:ED EC(填“”“”或“”)(2)若OA<3时(如图2),(1)中的关系是否还成立?为什么?(3)当⊙O过BC中点时(如图3),求CE长.【答案】(1)ED=EC;(2)成立;(3)3【解析】试题分析:(1)连接OD,根据切线的性质可得∠ODE=90°,则∠CDE+∠ADO=90°,由AB=6,BC=8,AC=10根据勾股定理的逆定理可证得∠ABC=90°,则∠A+∠C=90°,根据圆的基本性质可得∠A=∠ADO,即可得到∠CDE=∠C,从而证得结论;(2)证法同(1);(3)根据直角三角形的性质结合圆的基本性质求解即可.(1)连接OD∵DE为⊙O的切线∴∠ODE=90°∴∠CDE+∠ADO=90°∵AB=6,BC=8,AC=10∴∠ABC=90°∴∠A+∠C=90°∵AO=DO∴∠A=∠ADO∴∠CDE=∠C∴ED=EC;(2)连接OD∵DE为⊙O的切线∴∠ODE=90°∴∠CDE+∠ADO=90°∵AB=6,BC=8,AC=10∴∠ABC=90°∴∠A+∠C=90°∵AO=DO∴∠A=∠ADO∴∠CDE=∠C∴ED=EC;(3)CE=3.考点:圆的综合题点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.3.如图,△ABC内接于⊙O,AB是直径,过点A作直线MN,且∠MAC=∠ABC.(1)求证:MN是⊙O的切线.(2)设D是弧AC的中点,连结BD交AC于点G,过点D作DE⊥AB于点E,交AC于点F.①求证:FD=FG.②若BC=3,AB=5,试求AE的长.【答案】(1)见解析;(2)①见解析;②AE=1【解析】【分析】(1)由AB为直径知∠ACB=90°,∠ABC+∠CAB=90°.由∠MAC=∠ABC可证得∠MAC+∠CAB=90°,则结论得证;(2)①证明∠BDE=∠DGF即可.∠BDE=90°﹣∠ABD;∠DGF=∠CGB=90°﹣∠CBD.因为D是弧AC的中点,所以∠ABD=∠CBD.则问题得证;②连接AD、CD,作DH⊥BC,交BC的延长线于H点.证明Rt△ADE≌Rt△CDH,可得AE=CH.根据AB=BH可求出答案.【详解】(1)证明:∵AB是直径,∴∠ACB=90°,∴∠CAB+∠ABC=90°;∵∠MAC=∠ABC,∴∠MAC+∠CAB=90°,即MA⊥AB,∴MN是⊙O的切线;(2)①证明:∵D是弧AC的中点,∴∠DBC=∠ABD,∵AB是直径,∴∠CBG+∠CGB=90°,∵DE⊥AB,∴∠FDG+∠ABD=90°,∵∠DBC =∠ABD ,∴∠FDG =∠CGB =∠FGD ,∴FD =FG ;②解:连接AD 、CD ,作DH ⊥BC ,交BC 的延长线于H 点.∵∠DBC =∠ABD ,DH ⊥BC ,DE ⊥AB ,∴DE =DH ,在Rt △BDE 与Rt △BDH 中,DH DE BD BD=⎧⎨=⎩, ∴Rt △BDE ≌Rt △BDH (HL ),∴BE =BH ,∵D 是弧AC 的中点,∴AD =DC ,在Rt △ADE 与Rt △CDH 中,DE DH AD CD =⎧⎨=⎩, ∴Rt △ADE ≌Rt △CDH (HL ).∴AE =CH .∴BE =AB ﹣AE =BC+CH =BH ,即5﹣AE =3+AE ,∴AE =1.【点睛】本题是圆的综合题,考查了切线的判定,圆周角定理,全等三角形的判定与性质,等腰三角形的判定,正确作出辅助线来构造全等三角形是解题的关键.4.如图,在平面直角坐标系中,O 为坐标原点,△ABC 的边BC 在y 轴的正半轴上,点A 在x 轴的正半轴上,点C 的坐标为(0,8),将△ABC 沿直线AB 折叠,点C 落在x 轴的负半轴D (−4,0)处.(1)求直线AB 的解析式;(2)点P 从点A 出发以每秒5AB 方向运动,过点P 作PQ ⊥AB ,交x 轴于点Q ,PR ∥AC 交x 轴于点R ,设点P 运动时间为t (秒),线段QR 长为d ,求d 与t 的函数关系式(不要求写出自变量t 的取值范围);(3)在(2)的条件下,点N 是射线AB 上一点,以点N 为圆心,同时经过R 、Q 两点作⊙N ,⊙N 交y 轴于点E ,F .是否存在t ,使得EF =RQ ?若存在,求出t 的值,并求出圆心N 的坐标;若不存在,说明理由.【答案】(1)132y x =-+(2)d =5t (3)故当 t =85,或815,时,QR =EF ,N (-6,6)或(2,2).【解析】 试题分析:(1)由C (0,8),D (-4,0),可求得OC ,OD 的长,然后设OB=a ,则BC=8-a ,在Rt △BOD 中,由勾股定理可得方程:(8-a )2=a 2+42,解此方程即可求得B 的坐标,然后由三角函数的求得点A 的坐标,再利用待定系数法求得直线AB 的解析式;(2)在Rt △AOB 中,由勾股定理可求得AB 的长,继而求得∠BAO 的正切与余弦,由PR//AC 与折叠的性质,易证得RQ=AR ,则可求得d 与t 的函数关系式;(3)首先过点分别作NT ⊥RQ 于T ,NS ⊥EF 于S ,易证得四边形NTOS 是正方形,然后分别从点N 在第二象限与点N 在第一象限去分析求解即可求解;试题解析:(1)∵C (0,8),D (-4,0),∴OC=8,OD=4,设OB=a ,则BC=8-a ,由折叠的性质可得:BD=BC=8-a ,在Rt △BOD 中,∠BOD=90°,DB 2=OB 2+OD 2,则(8-a )2=a 2+42, 解得:a=3,则OB=3,则B (0,3),tan ∠ODB=34OB OD = , 在Rt △AOC 中,∠AOC=90°,tan ∠ACB=34OA OC = , 则OA=6,则A (6,0),设直线AB 的解析式为:y=kx+b ,则60{3k bb+==,解得:1{23kb=-=,故直线AB的解析式为:y=-12x+3;(2)如图所示:在Rt△AOB中,∠AOB=90°,OB=3,OA=6,则22135,tan2OBOB OA BAOOA+=∠==,255OAcos BAOAB∠==,在Rt△PQA中,905APQ AP t∠=︒=,则AQ=10cosAPtBAO=∠,∵PR∥AC,∴∠APR=∠CAB,由折叠的性质得:∠BAO=∠CAB,∴∠BAO=∠APR,∴PR=AR,∵∠RAP+∠PQA=∠APR+∠QPR=90°,∴∠PQA=∠QPR,∴RP=RQ,∴RQ=AR,∴QR=12AQ=5t,即d=5t;(3)过点分别作NT⊥RQ于T,NS⊥EF于S,∵EF=QR,∴NS=NT,∴四边形NTOS是正方形,则TQ=TR=1522QR t=,∴1115151022224NT AT AQ TQ t t t==-=-=()(),分两种情况,若点N 在第二象限,则设N (n ,-n ),点N 在直线132y x =-+ 上, 则132n n -=-+ , 解得:n=-6,故N (-6,6),NT=6,即1564t = , 解得:85t = ; 若点N 在第一象限,设N (N ,N ),可得:132n n =-+ , 解得:n=2,故N (2,2),NT=2, 即1524t =, 解得:t=815∴当 t =85,或815,时,QR =EF ,N (-6,6)或(2,2)。
【初三数学】包头市九年级数学上(人教版)第二十五章概率单元综合练习卷(含答案)

人教版九年级数学上册第二十五章概率单元测试(含答案)一、单选题1.下列事件是必然事件的为()A.明天太阳从西方升起B.掷一枚硬币,正面朝上C.打开电视机,正在播放“成都新闻”D.任意一个三角形,它的内角和等于180︒2.下列事件中的不可能事件是()A.常温下加热到100C︒水沸腾B.3天内将下雨C.经过交通信号灯的路口遇到红灯D.三根长度分别为2、3、5的木棒摆成三角形3.下列事件中,随机事件是()A.抛掷一枚普通正方体骰子所得的点数小于7B.任意打开七年级下册数学教科书,正好是第136页C.任意画一个三角形,其内角和是180D.将油滴入水中,油会浮在水面上4.某小组做“用频率估计概率”的试验时,统计了某结果出现的频率,绘制了如图的折线统计图,则符合这一结果的试验最有可能的是()A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌花色是红桃C.袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D.掷一个质地均匀的正六面体骰子,向上的面点数是偶数5.如图,在边长为1的小正方形网格中,△ABC的三个顶点均在格点上,若向正方形网格中投针,落在△ABC内部的概率是()A.12B.34C.38D.7166.一个箱子中放有红、黄、黑三种只有颜色不同的小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,这个游戏是()A.公平的B.不公平的C.先摸者赢的可能性大D.后摸者赢的可能性大7.小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是()A.12B.13C.23D.18.在一个不透明的袋子里放入8个红球,2个白球,小明随意地摸出一球,这个球是白球的概率为()A.45B.14C.15D.349.如图把一个圆形转盘按1:2:3:4的比例分成A、B、C、D四个扇形区域,自由转动转盘,停止后指针落在B区域的概率为()A.25B.15C.35D.11010.如图,在方格纸中,随机选择标有序号①②③④⑤⑥中的一个小正方形涂黑,与图中的阴影部分构成轴对称图形的概率是()A.B.C.D.11.小鸡孵化场孵化出 只小鸡,在 只上做记号,再放入鸡群中让其充分跑散,再任意抓出 只,其中左右记号的大约是( ) A. 只B. 只C. 只D. 只12.如图,在水平地面上的甲、乙两个区域分别由若干个大小完全相同的正三角形瓷砖组成,小红在甲、乙两个区域内分别随意抛一个小球, (甲)表示小球停留在甲区域中的灰色部分的概率, (乙)小球停留在乙区域中的灰色部分的概率,下列说法正确的是( )A. (甲)< (乙)B. (甲)> (乙)C. (甲)= (乙)D. (甲)与 (乙)的大小关系无法确定二、填空题13.在一个不透明的布袋中装有4个白球和n 个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是13,则n =_____. 14.2018年10月1日是第70个国庆节,从数串“20181001”中随机抽取一个数字,抽到数字1的概率是________.15.在进行某批乒乓球的质量检验时,当抽取了2000个乒乓球时,发现优等品有1886个,则这批乒乓球“优等品”的概率的估计值是_____________.(精确到0.01)16.在0,15,2___________.三、解答题17.学校为调查学生的运动情况,抽取了部分同学,对这一周的运动次数做了调查统计,并制成了如图所示的不完整的统计图表.学生运动次数统计表请你根据统计图表中的信息,解答下列问题:(1)填空:a=________;b=_________;(2)求被调查学生运动次数的平均数;(3)现有体质达标测试,学校决定派运动4次的同学参加测试,从甲乙丙丁四位同学选取2位参赛,请以画树状图或者列表的方式,求恰好选取甲乙的概率.18.某校随机抽取九年级部分同学接受一次内容为“最适合自己的考前减压方式”的调查活动,学校收集整理数据后,将减压方式分为五类,并绘制了图1、图2两个不完整的统计图,请根据图中的信息解答下列问题:(1)九年级接受调查的同学共有多少名,并补全条形统计图;(2)九年级共有500名学生,请你估计该校九年级听音乐减压的学生有多少名;(3)若喜欢“交流谈心”的5名同学中有三名男生和两名女生,心理老师想从5名同学中任选两名同学进行交流,请用画树状图或列表的方法求同时选出的两名同学都是女生的概率.19.遵义市举行中学生“汉字听写大赛”,某校100名学生参加学校选拔赛根据成绩按A、B、C、D四个等级进行统计,绘制了如下不完整的频数分布表和扇形图根据图表中的信息,解答下列问题:成绩等级频数分布表人教版九年级数学上册第二十五章概率单元测试(含答案)一、单选题1.下列事件是必然事件的为()A.明天太阳从西方升起B.掷一枚硬币,正面朝上C.打开电视机,正在播放“成都新闻”D.任意一个三角形,它的内角和等于180︒2.下列事件中的不可能事件是()A.常温下加热到100C︒水沸腾B.3天内将下雨C.经过交通信号灯的路口遇到红灯D.三根长度分别为2、3、5的木棒摆成三角形3.下列事件中,随机事件是()A.抛掷一枚普通正方体骰子所得的点数小于7B.任意打开七年级下册数学教科书,正好是第136页C.任意画一个三角形,其内角和是180D.将油滴入水中,油会浮在水面上4.某小组做“用频率估计概率”的试验时,统计了某结果出现的频率,绘制了如图的折线统计图,则符合这一结果的试验最有可能的是()A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌花色是红桃C.袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D.掷一个质地均匀的正六面体骰子,向上的面点数是偶数5.如图,在边长为1的小正方形网格中,△ABC的三个顶点均在格点上,若向正方形网格中投针,落在△ABC内部的概率是()A.12B.34C.38D.7166.一个箱子中放有红、黄、黑三种只有颜色不同的小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,这个游戏是()A.公平的B.不公平的C.先摸者赢的可能性大D.后摸者赢的可能性大7.小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是()A.12B.13C.23D.18.在一个不透明的袋子里放入8个红球,2个白球,小明随意地摸出一球,这个球是白球的概率为()A.45B.14C.15D.349.如图把一个圆形转盘按1:2:3:4的比例分成A、B、C、D四个扇形区域,自由转动转盘,停止后指针落在B区域的概率为()A.25B.15C.35D.11010.如图,在方格纸中,随机选择标有序号①②③④⑤⑥中的一个小正方形涂黑,与图中的阴影部分构成轴对称图形的概率是()A.B.C.D.11.小鸡孵化场孵化出 只小鸡,在 只上做记号,再放入鸡群中让其充分跑散,再任意抓出 只,其中左右记号的大约是( ) A. 只B. 只C. 只D. 只12.如图,在水平地面上的甲、乙两个区域分别由若干个大小完全相同的正三角形瓷砖组成,小红在甲、乙两个区域内分别随意抛一个小球, (甲)表示小球停留在甲区域中的灰色部分的概率, (乙)小球停留在乙区域中的灰色部分的概率,下列说法正确的是( )A. (甲)< (乙)B. (甲)> (乙)C. (甲)= (乙)D. (甲)与 (乙)的大小关系无法确定二、填空题13.在一个不透明的布袋中装有4个白球和n 个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是13,则n =_____. 14.2018年10月1日是第70个国庆节,从数串“20181001”中随机抽取一个数字,抽到数字1的概率是________.15.在进行某批乒乓球的质量检验时,当抽取了2000个乒乓球时,发现优等品有1886个,则这批乒乓球“优等品”的概率的估计值是_____________.(精确到0.01)16.在0,15,2___________.三、解答题17.学校为调查学生的运动情况,抽取了部分同学,对这一周的运动次数做了调查统计,并制成了如图所示的不完整的统计图表.学生运动次数统计表请你根据统计图表中的信息,解答下列问题:(1)填空:a=________;b=_________;(2)求被调查学生运动次数的平均数;(3)现有体质达标测试,学校决定派运动4次的同学参加测试,从甲乙丙丁四位同学选取2位参赛,请以画树状图或者列表的方式,求恰好选取甲乙的概率.18.某校随机抽取九年级部分同学接受一次内容为“最适合自己的考前减压方式”的调查活动,学校收集整理数据后,将减压方式分为五类,并绘制了图1、图2两个不完整的统计图,请根据图中的信息解答下列问题:(1)九年级接受调查的同学共有多少名,并补全条形统计图;(2)九年级共有500名学生,请你估计该校九年级听音乐减压的学生有多少名;(3)若喜欢“交流谈心”的5名同学中有三名男生和两名女生,心理老师想从5名同学中任选两名同学进行交流,请用画树状图或列表的方法求同时选出的两名同学都是女生的概率.19.遵义市举行中学生“汉字听写大赛”,某校100名学生参加学校选拔赛根据成绩按A、B、C、D四个等级进行统计,绘制了如下不完整的频数分布表和扇形图根据图表中的信息,解答下列问题:成绩等级频数分布表人教版九年级上数学第25章概率初步单元测试(带答案)一、单选题1. 在一次比赛前,教练预言说:“这场比赛我们队有60%的机会获胜”,则下列说法中与“有60%的机会获胜”的意思接近的是( ) A.他这个队赢的可能性较大B.若这两个队打10场,他这个队会赢6场C.若这两个队打100场,他这个队会赢60场D.他这个队必赢2. 如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是( ) A.61 B.41 C.31 D.127 3. 小亮是一名职业足球队员,根据以往比赛数据统计,小亮进球率为 10% ,他明天将参加一场比赛,下面几种说法正确的是( )A.小亮明天的进球率为 10%B.小亮明天每射球10次必进球1次C.小亮明天有可能进球D.小亮明天肯定进球 4. 下列说法正确的是( )A.“打开电视机,正在播放《达州新闻》”是必然事件B.天气预报“明天降水概率50%,是指明天有一半的时间会下雨”C.甲、乙两人在相同的条件下各射击10次,他们成绩的平均数相同,方差分别是S 2=0.3,S 2=0.4,则甲的成绩更稳定D.数据6,6,7,7,8的中位数与众数均为75. 小燕一家三口在商场参加抽奖活动,每人只有一次抽奖机会:在一个 不透明的箱子中装有红、黄、白三种球各 1 个,这些球除颜色外无其他差别,从箱子中随机摸出 1 个球,然后放回箱子中轮到下一个人摸球,三人摸到球的颜色都不相同的概率是( ) A.271 B.31 C.91 D.92 6. 甲乙两人轮流在黑板上写下不超过 10 的正整数(每次只能写一个数),规定禁止在黑板上写已经写过的数的约数,最后不能写的为失败者,如果甲写第一个,那么,甲写数字( )时有必胜的策略. A.10 B.9 C.8 D.67. 如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是( ) A.32 B.61 C.31 D.21 8. 有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为( ) A.54 B.53 C.52 D.519. 某小组做“用频率估计概率”的实验时,绘出的某一结果出现的频率折线图,则符合这一结果的实验可能是( )A.抛一枚硬币,出现正面朝上B.掷一个正六面体的骰子,出现3点朝上C.一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃D.从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球10. 在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为( ) A.21 B.31 C.103 D.51 11. 一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别有数字1—6)朝上一面的数字。
江西初三初中数学单元试卷带答案解析

江西初三初中数学单元试卷班级:___________ 姓名:___________ 分数:___________一、选择题1.点A(-2,5)在反比例函数y =(k≠0)的图象上,则k 的值是( ) A .10 B .5C .-5D .-102.点A(1,y 1)、B(3,y 2)是反比例函数y =图象上的两点,则y 1、y 2的大小关系是( ) A .y 1>y 2 B .y 1=y 2 C .y 1<y 2 D .不能确定3.如图,AB ∥CD ,AD 与BC 相交于点O.若AO =2,DO =4,BO =3,则BC 的长为( )A .6B .9C .12D .154.志远要在报纸上刊登广告,一块的长方形版面要付广告费180元,他要把该版面的边长都扩大为原来的3倍,在每平方厘米版面广告费相同的情况下,他该付广告费( )A .540元B .1080元C .1620元D .1800元5.如图,在矩形ABCD 中,AB =2,BC =3.若点E 是边CD 的中点,连接AE ,过点B 作BF ⊥AE 交AE 于点F ,则BF 的长为( )A .B .C .D .6.如图,P 为反比例函数y = (k >0)在第一象限内图象上的一点,过点P 分别作x 轴、y 轴的垂线交一次函数y =-x -4的图象于点A 、B.若∠AOB =135°,则k 的值是( )A. 2B. 4C. 6D. 87.如图,直线y =ax 与双曲线y = (x >0)交于点A(1,2),则不等式ax >的解集是________.二、填空题1.已知反比例函数y =的图象在第二、四象限,则m 的取值范围是________.2.如图,在△ABC 中,DE ∥BC ,分别交AB ,AC 于点D 、E .若AD=3,DB=2,BC=6,则DE 的长为 . 3.如图,在平行四边形ABCD 中,点E 是边AD 的中点,EC 交对角线BD 于点F ,若,则________.4.如图,四边形ABCD 为正方形,点A 、B 在y 轴上,点C 的坐标为(-4,1),反比例函数y =的图象经过点D ,则k 的值为________.5.如图,等边△ABC 的边长为30,点M 为线段AB 上一动点,将等边△ABC 沿过点M 的直线折叠,使点A 落在直线BC 上的点D 处,且BD ∶DC =1∶4,折痕与直线AC 交于点N ,则AN 的长为________.三、解答题1.如图,在平面直角坐标系中,A (6,0),B (6,3),画出△ABO 的所有以原点O 为位似中心的△CDO ,且△CDO 与△ABO 的相似比为,并写出C 、D 的坐标.2.已知正比例函数y 1=ax(a≠0)与反比例函数y 2= (k≠0)的图象在第一象限内交于点A(2,1).(1)求a ,k 的值;(2)在直角坐标系中画出这两个函数的大致图象,并根据图象直接写出y 1>y 2时x 的取值范围.3.在平面直角坐标系中,已知反比例函数y =的图象经过点A(1,).连接OA ,将线段OA 绕O 点顺时针旋转30°得到线段OB ,判断点B 是否在此反比例函数的图象上,并说明理由.4.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上.已知纸板的两条直角边DE =0.4m ,EF =0.2m ,测得边DF 离地面的高度AC =1.5m ,CD =8m ,则树高AB 是多少?5.如图,在▱ABCD 中,点E 在边BC 上,点F 在边AD 的延长线上,且DF =BE ,EF 与CD 交于点G.(1)求证:BD ∥EF ;(2)若=,BE=4,求EC的长.6.如图,点E是△ABC的内心,AE的延长线与BC相交于点F,与△ABC的外接圆相交于点D(1)求证:△BFD∽△ABD;(2)求证:DE=DB.7.如图,在平面直角坐标系中,A,B两点的纵坐标分别为7和1,直线AB与y轴所夹锐角为60°.(1)求线段AB的长;(2)求经过A,B两点的反比例函数的解析式.8.如图,设反比例函数的解析式为(k>0).(1)若该反比例函数与正比例函数y=2x的图象有一个交点的纵坐标为2,求k的值;(2)若该反比例函数与过点M(﹣2,0)的直线l:y=kx+b的图象交于A,B两点,如图所示,当△ABO的面积为时,求直线l的解析式.9.如图,在Rt△ABC中,∠ACB=90°,CP平分∠ACB交边AB于点P,点D在边AC上,连接PD.(1)如果PD∥BC,求证:AC·CD=AD·BC;(2)如果∠BPD=135°,求证:CP2=CB·CD.10.如图,分别位于反比例函数y=,y=在第一象限图象上的两点A,B,与原点O在同一直线上,且.(1)求反比例函数y=的表达式;(2)过点A作x轴的平行线交y=的图象于点C,连接BC,求△ABC的面积.11.正方形ABCD 的边长为6cm ,点E ,M 分别是线段BD ,AD 上的动点,连接AE 并延长,交边BC 于F ,过M 作MN ⊥AF ,垂足为H ,交边AB 于点N .(1)如图①,若点M 与点D 重合,求证:AF =MN ;(2)如图②,若点M 从点D 出发,以1cm/s 的速度沿DA 向点A 运动,同时点E 从点B 出发,以cm/s 的速度沿BD 向点D 运动,运动时间为t s.①设BF =y cm ,求y 关于t 的函数表达式;②当BN =2AN 时,连接FN ,求FN 的长.江西初三初中数学单元试卷答案及解析一、选择题1.点A(-2,5)在反比例函数y =(k≠0)的图象上,则k 的值是( ) A .10 B .5C .-5D .-10【答案】D【解析】试题解析:∵点A (-2,5)在反比例函数y=(k≠0)的图象上,∴k 的值是:k=xy=-2×5=-10.故选D .2.点A(1,y 1)、B(3,y 2)是反比例函数y =图象上的两点,则y 1、y 2的大小关系是( ) A .y 1>y 2 B .y 1=y 2 C .y 1<y 2 D .不能确定【答案】A【解析】∵反比例函数y =中的9>0,∴经过第一、三象限,且在每一象限内y 随x 的增大而减小,又∵A (1,y ₁)、B (3,y ₂)都位于第一象限,且1<3,∴y ₁>y ₂,故选A.3.如图,AB ∥CD ,AD 与BC 相交于点O.若AO =2,DO =4,BO =3,则BC 的长为( )A .6B .9C .12D .15【答案】B【解析】根据平行线分线段成比例定理得出比例式,代入求出OD ,即可求出答案.解:∵AB ∥CD ,∴=,∵AO=2,DO=4,BO=3, ∴OC=6, ∴BC=3+6=9,故选B.“点睛”本题考查了平行线分线段成比例定理的应用,能根据平行线分线段成比例定理得出比例式是解此题的关键.4.志远要在报纸上刊登广告,一块的长方形版面要付广告费180元,他要把该版面的边长都扩大为原来的3倍,在每平方厘米版面广告费相同的情况下,他该付广告费()A.540元B.1080元C.1620元D.1800元【答案】C【解析】根据题意可知一块10cm×5cm的长方形版面要付广告费180元,因此每平方厘米的广告费为:180÷50=元,然后根据相似三角形的性质,由该版面的边长都扩大为原来的3倍,广告费为:3×10×3×5×=1620元故选:C【考点】相似三角形的应用5.如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A.B.C.D.【答案】B【解析】如图,连接BE.∵四边形ABCD是矩形,∴AB=CD=2,BC=AD=3,∠D=90°,在Rt△ADE中,AE===,∵==3=•AE•BF,∴BF=.故选B.点睛:本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.6.如图,P为反比例函数y= (k>0)在第一象限内图象上的一点,过点P分别作x轴、y轴的垂线交一次函数y =-x-4的图象于点A、B.若∠AOB=135°,则k的值是()A. 2B. 4C. 6D. 8【答案】D【解析】设一次函数y=-x-4交y轴于点C.如图,作BF⊥x轴,OE⊥AB,CQ⊥AP,设P点坐标.∵直线AB的解析式为y=-x-4,PB⊥y轴,PA⊥x轴,∴∠PBA=∠PAB=45°,∴PA=PB.∵P点坐标为,∴OD=CQ=n.∵当x=0时,y=-x-4=-4,∴OC=DQ=4,∴AD=AQ+DQ=n+4.GE=OE=OC=2.同理得BG=BF=PD=,∴BE=BG+EG=+2.∵∠AOB=135°,∴∠OBE+∠OAE=45°.∵∠DAO+∠OAE=45°,∴∠DAO=∠OBE.又∵∠BEO=∠ADO=90°,∴△BOE∽△AOD,∴=,即=,∴k=8.故选D.点睛:本题主要考查了相似三角形的判定与性质及反比例函数图象上点的坐标特征,解题的关键是正确作出辅助线,构造相似三角形.7.如图,直线y=ax与双曲线y= (x>0)交于点A(1,2),则不等式ax>的解集是________.【答案】x>1【解析】∵直线y=ax与双曲线y= (x>0)交于点A(1,2),∴不等式ax>的解集是x>1,故答案为:x>1.二、填空题1.已知反比例函数y=的图象在第二、四象限,则m的取值范围是________.【答案】m<-2【解析】∵反比例函数y=的图象在第二、四象限,∴m+2<0,解得m<−2,故答案为m<−2.2.如图,在△ABC中,DE∥BC,分别交AB,AC于点D、E.若AD=3,DB=2,BC=6,则DE的长为.【答案】.【解析】首先根据DE∥BC证得两三角形相似,利用相似三角形的对应边的比相等列式计算即可.试题解析:∵DE∥BC,∴△ADE∽△ABC,∴,又∵AD=3,DB=2,BC=6,∴AB=AD+DB=5,即:,∴DE=.【考点】相似三角形的判定与性质.3.如图,在平行四边形ABCD中,点E是边AD的中点,EC交对角线BD于点F,若,则________.【答案】4【解析】因为E为AD中点,AD∥BC,所以,△DFE∽△BFC,所以,,,所以,=1,又,所以,4。
全国初三初中数学单元试卷带答案解析

全国初三初中数学单元试卷班级:___________ 姓名:___________ 分数:___________一、选择题1.已知,则的值是()A.B.C.D.2.若,则=()A.B.C.D.3.已知,则直线y=kx+2k一定经过()A.第1,2象限B.第2,3象限C.第3,4象限D.第1,4象限4.如图所示,一张矩形纸片ABCD的长AB=acm,宽BC=bcm,E、F分别为AB、CD的中点,这张纸片沿直线EF对折后,矩形AEFD的长与宽之比等于矩形ABCD的长与宽之比,则a:b等于()A.:1 B.1: C.:1 D.1:5.已知a,b,c是互不相等的正实数,且,则代数式的值为()A.2009B.2010C.2011D.06.设(2y﹣z):(z+2x):y=1:5:2,则(3y﹣z):(2z﹣x):(x+3y)=()A.1:5:7B.3:5:7C.3:5:8D.2:5:87.已知k===,且+n2+9=6n,则关于自变量x的一次函数y=kx+m+n的图象一定经过第()象限.A.一、二B.二、三C.三、四D.一、四二、填空题1.四条线段a、b、c、d成比例,其中b=3cm,c=2cm,d=6cm,则a=_________cm.2.小明和他的同桌在太阳下行走,小明高1.75m,他的影子长2.0m,小明的同桌比他矮5cm,此刻她的影长是_________m(保留两位小数)3.在中国地理地图册上,连接上海、香港、台湾三地构成一个三角形,用刻度尺测得它们之间的距离如图所示.飞机从台湾直飞上海的距离约为1284千米,那么飞机从台湾绕道香港再到上海的飞行距离约为千米.4.如图,格点图中有2个三角形,若相邻两个格点的横向距离和纵向距离都为1,则AB= ___,BC= ______,DE= _____,EF= ____,计算= _____,= ____,我们会得到AB 与DE 这两条线段的比值与BC ,EF 这两条线段的比值 _____(填相等或不相等),即=,那么这四条线段叫做 ______ ,简称比例线段.5.若a 是2,4,6的第四比例项,则a= ______ ;若x 是4和16的比例中项,则x= ______ , 若a :b :c=1:2:5,且a+b+c=40,则a= _______ ,b= _________ ,c= _________ .6.如图,在△ABC 中,已知AB=3cm ,BC=5.6cm ,AC=5cm ,且,则BD= _____cm ,DC=_____cm .7.某弹簧若悬挂50kg 的物体,伸长3cm ,则悬挂80kg 的物体时弹簧伸长 _________ cm 8.若x :y :z=3:4:7且2x ﹣y+z=18,则x+2y ﹣z= _________ . 9.已知x :y=2:3,写出下列各式一定成立的序号 _________ ①;②;③;④;⑤.10.已知a ,b ,c ,d 为正整数,且,,则的值是 _________ ;的值是_________.三、解答题1.(1)已知a 、b 、c 、d 是成比例线段,其中a=3cm ,b=2cm ,c=6cm ,求线段d 的长.(2)已知线段a 、b 、c ,a=4cm ,b=9cm ,线段c 是线段 a 和b 的比例中项.求线段c 的长. (3)已知y=y 1+y 2,y 1与x 成正比例,y 2与x 成反比例,且当x=1时,y=4,x=2时,y=5. 求:①y 与x 之间的函数关系式;②当x=4时,求y 的值.2.已知a 、b 、c 、d 四条线段依次成比例,其中a=3cm ,b=(x ﹣1)cm ,c=5cm ,d=(x+1)cm .求x 的值.3.已知:,设,,,求A 、B 、C 的值,并且比较它们大小.4.已知,求的值.5.已知:,2x ﹣3y+4z=22,求:代数式x+y ﹣z 的值.6.已知==,求的值.全国初三初中数学单元试卷答案及解析一、选择题1.已知,则的值是( )A.B.C.D.【答案】D【解析】先设出b=5k,得出a=13k,再把a,b的值代入即可求出答案.解:令a,b分别等于13和5,∵,∴a=13,∴==;故选D.【考点】比例的性质.点评:此题考查了比例的性质.此题比较简单,解题的关键是注意掌握比例的性质与比例变形.2.若,则=()A.B.C.D.【答案】D【解析】由题干可得2b=3a﹣3b,根据比等式的性质即可解得a、b的比值.解:∵,∴5b=3a,∴,故选D.【考点】比例的性质点评:本题是基础题,考查了比例的基本性质,比较简单.3.已知,则直线y=kx+2k一定经过()A.第1,2象限B.第2,3象限C.第3,4象限D.第1,4象限【答案】B【解析】根据已知条件分情况讨论k的值,即可知道直线一定经过的象限.当a+b+c≠0时,此时直线为y=x+1,直线一定经过1,2,3象限.当a+b+c=0时,此时直线为y=﹣x﹣2,即直线必过2,3,4象限.综合两种情况,则直线必过第2,3象限.解:分情况讨论:当a+b+c≠0时,根据比例的等比性质,得:k=,此时直线为y=x+1,直线一定经过1,2,3象限.当a+b+c=0时,即a+b=﹣c,则k=﹣1,此时直线为y=﹣x﹣2,即直线必过2,3,4象限.综合两种情况,则直线必过第2,3象限.故选B.【考点】一次函数的性质;比例的性质.点评:注意求k的方法,要分情况讨论进行求解.还要非常熟悉根据直线的k,b值确定直线所经过的象限.4.如图所示,一张矩形纸片ABCD的长AB=acm,宽BC=bcm,E、F分别为AB、CD的中点,这张纸片沿直线EF对折后,矩形AEFD的长与宽之比等于矩形ABCD的长与宽之比,则a:b等于()A.:1 B.1: C.:1 D.1:【答案】A【解析】根据题意,得b:=a:b,根据比例的基本性质,得a2=2b2.则可求得a=b,故a:b可求.解:∵b:=a:b,∴a2=2b2,∴a=b,则a:b=:1.故选A.【考点】比例线段;比例的性质.点评:能够根据题意正确写出比例式,再根据比例的基本性质表示两个字母之间的关系,即可求解.5.已知a,b,c是互不相等的正实数,且,则代数式的值为()A.2009B.2010C.2011D.0【答案】D【解析】设=k,则x=,y=,z=,三式相加可得x+y+z=0,即可得出答案.解:设=k,则x=,y=,z=,∴x+y+z=++=0,∴==0.故选D.【考点】分式的化简求值;比例的性质.点评:本题考查了分式的化简求值,难度适中,关键是正确设出=k.6.设(2y﹣z):(z+2x):y=1:5:2,则(3y﹣z):(2z﹣x):(x+3y)=()A.1:5:7B.3:5:7C.3:5:8D.2:5:8【答案】B【解析】先根据已知条件,利用z来表示x和y,然后再将其代入所求化简、求值.解:由已知,得2(2y﹣z)=y,即y=z,①5(2y﹣z)=z+2x,即x=5y﹣3z,②由①②,得x=z,③把①③代入(3y﹣z):(2z﹣x):(x+3y),得(3y﹣z):(2z﹣x):(x+3y)=z:z:z=3:5:7.故选B.【考点】分式的化简求值;比例的性质.点评:本题主要考查了分式的化简求值.解答此题时,采用了转化已知条件后代入求值法.7.已知k===,且+n2+9=6n,则关于自变量x的一次函数y=kx+m+n的图象一定经过第()象限.A.一、二B.二、三C.三、四D.一、四【答案】A【解析】首先由+n2+9=6n,根据二次根式和完全平方式确定m n的值,再由k===,利用比例的性质确定K的值,根据函数的图象特点即可判断出选项.解:+n2+9=6n,=﹣(n﹣3)2,∴m=5,n=3,∵k===,∴a+b﹣c=ck,a﹣b+c=bk,﹣a+b+c=ak,相加得:a+b+c=(a+b+c)k,当a+b+c=0时,k为任何数,当a+b+c≠0时,k=1,即:y=kx+8或y=x+8,所以图象一定经过一二象限.故选A.【考点】一次函数的性质;非负数的性质:算术平方根;比例的性质.点评:本题主要考查了一次函数的性质、算术平方根,比例的性质等知识点,能根据已知确定m n k的值和画出草图是解此题的关键.二、填空题1.四条线段a、b、c、d成比例,其中b=3cm,c=2cm,d=6cm,则a=_________cm.【答案】1【解析】由四条线段a、b、c、d成比例,根据比例线段的定义,即可得,又由b=3cm,c=2cm,d=6cm,即可求得a的值.解:∵四条线段a、b、c、d成比例,∴,∵b=3cm,c=2cm,d=6cm,∴,解得:a=1cm.故答案为:1.【考点】比例线段.点评:此题考查了比例线段的定义.此题比较简单,解题的关键是熟记比例线段的定义.2.小明和他的同桌在太阳下行走,小明高1.75m,他的影子长2.0m,小明的同桌比他矮5cm,此刻她的影长是_________m(保留两位小数)【答案】1.94【解析】先设小明的同桌的影长是xm,由于两人的身高与影长之比相等,从而可列出相等关系,求解即可.解:设小明的同桌的影长是xm,根据题意可得=,解得x≈1.95.故答案是1.94.【考点】比例线段.点评:本题考查了比例线段,解题的关键是知道两个人的身高与影长之比相等.3.在中国地理地图册上,连接上海、香港、台湾三地构成一个三角形,用刻度尺测得它们之间的距离如图所示.飞机从台湾直飞上海的距离约为1284千米,那么飞机从台湾绕道香港再到上海的飞行距离约为千米.【答案】3852【解析】根据图中数据可以发现,飞机从台湾绕道香港再到上海的飞行的图上距离是飞机从台湾直飞上海的图上距离的3倍,根据题意列出比例式求解即可得出结果.解:根据图上距离,发现:飞机从台湾绕道香港再到上海的飞行的图上距离是飞机从台湾直飞上海的图上距离的3倍,所以飞机从台湾绕道香港再到上海的飞行的实际距离设为x(千米),=,解得x=3852,故答案为3852.【考点】比例线段.点评:本图考查了比例线段的知识,解题时注意:图上距离的比=实际距离的比.4.如图,格点图中有2个三角形,若相邻两个格点的横向距离和纵向距离都为1,则AB=___,BC=______,DE=_____,EF=____,计算=_____,=____,我们会得到AB与DE这两条线段的比值与BC,EF 这两条线段的比值_____(填相等或不相等),即=,那么这四条线段叫做______,简称比例线段.【答案】,3,2,6,,,相等,成比例线段【解析】两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.掌握勾股定理的内容.解:根据已知,得BC=3,EF=6.根据勾股定理,得AB==,DE==2.所以=,=.根据比例线段的概念即可判断.故填,3,2,6,,,相等,成比例线段.【考点】比例线段.点评:不是水平线或铅垂线的线段要能够熟练运用勾股定理求解,进一步求得两条线段的比值,根据两个比值判断是否是成比例线段.5.若a是2,4,6的第四比例项,则a=______;若x是4和16的比例中项,则x=______,若a:b:c=1:2:5,且a+b+c=40,则a=_______,b=_________,c=_________.【答案】12 ±8 5 10 25【解析】根据第四比例项的概念,得2:4=6:a,则a可求;根据比例中项的概念,得x2=4×16,则x可求;若a:b:c=1:2:5,则设a=k,b=2k,c=5k,又因为a+b+c=40,可得k的值.则a、b、c可求.解:∵a是2,4,6的第四比例项∴2:4=6:a∴a=12;∵x是4和16的比例中项∴x2=4×16,解得x=±8设a=k,b=2k,c=5k∵a+b+c=40∴k+2k+5k=40,解得k=5∴a=5,b=10,c=25.【考点】比例线段.点评:此题的重点是理解第四比例项、比例中项的概念,根据概念正确写出比例式.第三小题的解决方法是已知几个量的比值时,常用的解法是:设一个未知数,把题目中的几个量用所设的未知数表示出来,实现消元.6.如图,在△ABC中,已知AB=3cm,BC=5.6cm,AC=5cm,且,则BD=_____cm,DC=_____cm.【答案】2.1 3.5【解析】根据已知条件,利用比例的基本性质可得到BD,进而得到DC.解:∵AB=3cm,AC=5cm,且,∴=,又∵BC=5.6,∴BD=5.6×=2.1cm,∴DC=BC﹣BD=5.6﹣2.1=3.5cm.【考点】比例线段.点评:根据比例式得到要求的两条线段的比,再进一步根据已知条件求解.7.某弹簧若悬挂50kg的物体,伸长3cm,则悬挂80kg的物体时弹簧伸长_________cm【答案】4.8【解析】根据弹簧的伸长与所挂物体的克数成比例,即可列出方程,解此方程即可.解:设悬挂80kg的物体时弹簧伸长xcm则=解得:x=4.8cm.故填4.8.【考点】比例线段.点评:此题主要考查对应成比例,属基本知识,比较简单.8.若x:y:z=3:4:7且2x﹣y+z=18,则x+2y﹣z=_________.【答案】8【解析】由x:y:z=3:4:7,可设x=3a,y=4a,z=7a,又由2x﹣y+z=18,即可得方程6a﹣4a+7a=18,解方程即可求得x,y,z的值,则可求得x+2y﹣z的值.解:∵x:y:z=3:4:7,设x=3a,y=4a,z=7a,∵2x﹣y+z=18,∴6a﹣4a+7a=18,∴9a=18,∴a=2,∴x=6,y=8,z=14,∴x+2y﹣z=6+16﹣14=8.故答案为:8.【考点】比例的性质.点评:此题考查了比例的性质与一元一次方程的解法.此题比较简单,解题的关键是注意掌握由x:y:z=3:4:7,可设x=3a,y=4a,z=7a的解题方法.9.已知x:y=2:3,写出下列各式一定成立的序号_________①;②;③;④;⑤.【答案】②④【解析】设x=2k,y=3k,代入后进行约分,看看结果是否相等即可.解:∵x:y=2:3,∴=设x=2k,y=3k,∴==≠,∴①错误;==,∴②正确;=≠,∴③错误;==,∴④正确;=≠,∴⑤错误;故答案为:②④.【考点】比例的性质.点评:本题考查了比例和分式的基本性质的应用,主要考查学生的化简能力和辨析能力.10.已知a,b,c,d为正整数,且,,则的值是_________;的值是_________.【答案】21 7【解析】交换两个等式中比例外项的位置,得到用d表示的b的式子,根据四个数都是正整数可得相关值,代入求解即可.解:由题意得:=;=,∴=,解得:b=﹣=1+﹣,∵b,d为正整数,∴﹣为自然数,∴1≤d≤7, ∴d=7,b=1, ∴===21;=7,故答案为21,7.【考点】比例的性质.点评:考查反比性质的应用;整理只含b ,d 的等式是解决本题的突破点;难点是得到b ,d 可能的值.三、解答题1.(1)已知a 、b 、c 、d 是成比例线段,其中a=3cm ,b=2cm ,c=6cm ,求线段d 的长.(2)已知线段a 、b 、c ,a=4cm ,b=9cm ,线段c 是线段 a 和b 的比例中项.求线段c 的长. (3)已知y=y 1+y 2,y 1与x 成正比例,y 2与x 成反比例,且当x=1时,y=4,x=2时,y=5. 求:①y 与x 之间的函数关系式;②当x=4时,求y 的值. 【答案】(1)4cm (2)6cm (3)①y=2x+ ②【解析】(1)根据已知得到=,代入a 、b 、c 的值即可求出;(2)根据线段c 是线段 a 和b 的比例中项,得到c 2=ab ,代入即可求出答案;(3)①设y 1=ax (a≠0)设y 2=b≠0),根据已知得到y=ax+,把当x=1,y=4和x=2,y=5代入即可求出a 、b 的值,即可得到答案;②把x=4代入①即可求出y 的值. 解:(1)∵a 、b 、c 、d 是成比例线段, ∴=,∵a=3,b=2,c=6, 代入得:d=4,答:线段d 的长是4cm .(2)解:∵线段c 是线段 a 和b 的比例中项, ∴c 2=ab ,∵a=4,b=9,代入得:c=6, 答:线段c 的长是6cm .(3)①解:∵y 1与x 成正比例, 设y 1=ax ,(a≠0), ∵y 2与x 成反比例, 设y 2=(b≠0) ∴y=ax+,把x=1,y=4和x=2,y=5代入得:, 解得:,∴y=2x+,答:y 与x 之间的函数关系式是y=2x+. ②解:由①知:y=2x+, 当x=4时,y=,答:当x=4时,y 的值是.【考点】比例线段;待定系数法求正比例函数解析式;待定系数法求反比例函数解析式;比例的性质.点评:本题主要考查了比例线段,比例的性质,用待定系数法求反比例函数、正比例函数的解析式等知识点,解此题的关键是能熟练地利用性质进行计算.2.已知a 、b 、c 、d 四条线段依次成比例,其中a=3cm ,b=(x ﹣1)cm ,c=5cm ,d=(x+1)cm .求x 的值. 【答案】4cm【解析】根据比例的基本性质熟练进行比例式和等积式的互相转换.根据题意得a:b=c:d,代入数值即可求得.解:∵a、b、c、d四条线段依次成比例,∴a:b=c:d.∵a=3cm,b=(x﹣1)cm,c=5cm,d=(x+1)cm,∴3:(x﹣1)=5:(x+1),∴x=4cm.故x的值为4cm.【考点】比例线段.点评:本题主要考查比例线段的定义.注意根据已知条件写比例式的时候,一定要注意顺序.然后根据比例的基本性质进行求解.3.已知:,设,,,求A、B、C的值,并且比较它们大小.【答案】C>B>A【解析】令=k,则x=2k,y=7k,z=5k,分别代入A、B、C即可求得其值.解:令=k,则x=2k,y=7k,z=5k,故===,==1,==2,故C>B>A.【考点】比例的性质.点评:本题考查了比例的性质,解题的关键是设出一个系数,用这个系数表示出x、y、z的值后代入即可求解.4.已知,求的值.【答案】2或0【解析】根据比例的等比性质计算,注意分两种情况:a+b+c+d≠0;a+b+c+d=0进行讨论.解:设=x,分情况进行:当a+b+c+d≠0时,根据等比性质,得x===1,∴a=b=c=d,∴==2;当a+b+c+d=0时,则=0.故的值为2或0.【考点】比例的性质.点评:本题考查了等比性质:若,则=k,(b+d+…+n≠0).特别注意条件的限制(分母是否为0).5.已知:,2x﹣3y+4z=22,求:代数式x+y﹣z的值.【答案】2【解析】根据题意,设x=2k,y=3k,z=4k.又因为2x﹣3y+4z=22,则可得k的值,从而求得x、y、z的值,故x+y+z可求.解:设,则x=2k,y=3k,z=4k,∵2x﹣3y+4z=22,∴4k﹣9k+16k=22,∴k=2,∴x+y﹣z=2k+3k﹣4k=k=2.【考点】比例的性质;代数式求值.点评:本题考查了比例的性质和代数式求值.已知几个量的比值时,常用的解法是:设一个未知数,把题目中的几个量用所设的未知数表示出来,实现消元.6.已知==,求的值.【答案】【解析】先设===k,可得x=2k,y=3k,z=4k,再把x、y、z的值都代入所求式子计算即可.解:设===k,可得x=2k,y=3k,z=4k,∴==.【考点】比例的性质.点评:本题考查了比例的性质.解题的关键是先假设===k,可得x=2k,y=3k,z=4k,降低计算难度.。
【初三数学】滁州市九年级数学下(人教版)第二十八章 《锐角三角函数》单元综合练习题(含答案解析)

九年级数学人教版《锐角三角函数》单元测试题(Word 版有答案)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在Rt △ABC 中,∠C =90°,各边都扩大2倍,则锐角A 的正弦值( )A .扩大2倍B .缩小12 C .不变 D .无法确定2.在Rt △ABC 中,∠C =90°,AB =5,BC =3,则∠A 的余弦值是( )A.35B.34C.43D.453.已知在Rt △ABC 中,∠C =90°,∠A =α,BC =2,那么AB 的长等于( )A.2sin α B .2sin α C.2cos αD .2cos α 4.在Rt △ABC 中,∠C =90°,sinA =45,AC =6 cm ,则BC 的长度为( )A .6 cmB .7 cmC .8 cmD .9 cm 5.在Rt △ABC 中,∠B =90°,tanA =512,则cosA =( )A.125 B.1213 C.513 D.5126.三角形的三个内角之比为1∶2∶3,则最小角的正切值是( )A .1 B.22 C.33D. 3 7.(-sin60°,cos60°)关于y 轴对称的点的坐标是( )A .(32,12) B .(-32,12) C .(-32,-12) D .(-12,-32) 8.如图,在网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则∠ABC 的正切值是( )A .2 B.255 C.55 D.129.如图,在△ABC 中,AD ⊥BC ,垂足为D.若AC =62,∠C =45°,tan ∠ABC =3,则BD 等于( )A .2B .3C .3 2D .2 310.如图,在Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D ,则下列结论不正确的是( )A .sinB =AD AB B .sinB =ACBCC .sinB =AD AC D .sinB =CDAC11.将宽为2 cm 的长方形纸条折叠成如图所示的形状,那么折痕PQ 的长是( )A.23 3 cm B.433 cm C. 5 cm D .2 cm12.某数学兴趣小组同学进行测量大树CD 高度的综合实践活动,如图,在点A 处测得直立于地面的大树顶端C 的仰角为36°,然后沿在同一剖面的斜坡AB 行走13 m 至坡顶B 处,再沿水平方向行走6 m 至大树脚底点D 处,斜面AB 的坡度(或坡比)i =1∶2.4,那么大树CD 的高度约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)( )A .8.1 mB .17.2 mC .19.7 mD .25.5 m13.如图,在矩形ABCD 中,点E 是CD 的中点,点F 是BC 上一点,且FC =2BF ,连接AE ,EF.若AB =2,AD =3,则cos ∠AEF 的值是( )A. 3B.32 C.22 D.1214.如图,以坐标原点O 为圆心,半径为1的弧交坐标轴于A ,B 两点,P 是AB ︵上一点(不与A ,B 重合),连接OP ,设∠POB =α,则点P 的坐标是( )A .(sin α,sin α)B .(cos α,cos α)C .(sin α,cos α)D .(cos α,sin α)15.如图,已知点C 与某建筑物底端B 相距306米(点C 与点B 在同一水平面上),某同学从点C 出发,沿同一剖面的斜坡CD 行走195米至坡顶D 处,斜坡CD 的坡度(或坡比)i =1∶2.4,在D 处测得该建筑物顶端A 的俯视角为20°,则建筑物AB 的高度约为(精确到0.1米,参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)( )A .29.1米B .31.9米C .45.9米D .95.9米16.如图,在四边形ABCD 中,∠BAD =∠ADC =90°,AB =AD =22,CD =2,点P 在四边形ABCD 的边上,若点P 到BD 的距离为32,则点P 的个数为( )A .1B .2C .3D .4二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有2个空,每空3分.把答案写在题中横线上)17.计算:cos 245°+3tan60°+cos30°+2sin30°-2tan45°= .18.张丽不慎将一道数学题沾上了污渍,变为“如图,在△ABC 中,∠B =60°,AB =63,tanC =,求BC 的长度”.张丽翻看答案后,得知BC =6+33,则部分为 . 19.如图,把n 个边长为1的正方形拼接成一排,求得tan ∠BA 1C =1,tan ∠BA 2C =13,tan∠BA 3C =17,计算tan ∠BA 4C =113,…,按此规律,写出tan ∠BA n C = .(用含n 的代数式表示)三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 20.(本小题满分8分)Rt△ABC中,∠C=90°,c=0.8,b=0.4,解这个直角三角形.解:21.(本小题满分9分)△ABC中,(3·tanA-3)2+|2cosB-3|=0.(1) 判断△ABC的形状;(2) 若AB=10,求BC,AC的长.解:22.(本小题满分9分)如图,在水平地面上有一幢房屋BC与一棵树DE,在地面观测点A处测得屋顶C与树梢D的仰角分别是45°与60°,∠CAD=60°,在屋顶C处测得∠DCA=90°.若房屋的高BC=6 m.求树高DE.解:23.(本小题满分9分)如图,某船由西向东航行,在点A处测得小岛O在北偏东60°方向,船航行了10海里后到达点B,这时测得小岛人教版数学九年级下册第二十八章锐角三角函数单元提优卷人教版数学九年级下册第二十八章锐角三角函数单元提优卷一、选择题1.在Rt△ABC中,∠C=90°,若将各边长度都扩大为原来的5倍,则∠A的正弦值( D ) A.扩大为原来的5倍B .缩小为原来的15C .扩大为原来的10倍D .不变2.小明在某次投篮中刚好把球打到篮板的点D 处后进球.已知小明与篮框底的距离BC=5米,眼睛与地面的距离AB=1.7米,视线AD 与水平线AE 的夹角为a ,如图所示.若tana=310,则点D 到地面的距离CD 是( C )A.2.7米B.3.0米C.3.2米D.3.4米3.如图,已知“人字梯”的5个踩档把梯子等分成6份,从上往下的第二个踩档与第三个踩档的正中间处有一条60 cm 长的绑绳EF ,tan α=,则“人字梯”的顶端离地面的高度AD 是( B )A . 144 cmB . 180 cmC . 240 cmD . 360 cm4.在Rt △ABC 中,∠C =90°,BC =1,AC =,则∠A 的度数是( A )A . 30°B . 45°C . 60°D . 70°5.如图,有两个全等的正方形ABCD 和BEFC ,则tan(∠BAF +∠AFB)=( A )A.1B.56 C. 23D. 6.把Rt △ABC 各边的长度都扩大3倍得到Rt △A ′B ′C ′,那么锐角∠A 、∠A ′的余弦值的关系是( B )A .cosA =cosA ′B .cosA =3cosA ′C .3cosA =cosA ′D .不能确定7.如图,小岛在港口P 的北偏西60°方向,距港口56海里的A 处,货船从港口P 出发,沿北偏东45°方向匀速驶离港口,4小时后货船在小岛的正东方向,则货船的航行速度是( A )海里/时 /时 海里/时 海里/时8.如图,在△ABC 中,AB =2,BC =4,∠ABC =30°,以点B 为圆心,AB 长为半径画弧,交BC 于点D ,则图中阴影部分的面积是( A ) A.B.C.D.9.如图,△ABD 和△BDC 都是直角三角形,且∠ABD=∠BDC=90°,∠BAD=30°,∠DBC=45°,则tan ∠DAC 的值为( C )A.B. C. D. 310.如图,一河坝的横断面为等腰梯形ABCD ,坝顶宽10米,坝高12米,斜坡AB 的坡度i =1∶1.5,则坝底AD 的长度为( D )A .26米B .28米 C.30米 D .46米11.如图,△ABC 内接于⊙0,AD 为⊙0的直径,交BC 于点E ,若DE=2,0E=3,则tan ∠ACB ·tan ∠ABC=( C )A.2B.3C.4D.5二、填空题12.在Rt △ABC 中,∠C =90°,AC ∶BC =1∶2,则sinB =________. [答案] 3413.如图,在半径为3的⊙0中,直径AB 与弦CD 相交于点E ,连接AC ,BD ,若AC=2,则tanD=____.[答案]14.已知对任意锐角α,β均有cos(α+β)=cos α·cos β-sin α·sin β,则cos75°=________.【答案】6-2415.如图,在△ABC 中,AB=AC=10,点D 是边上一动点(不与B ,C 重合),∠ADE=∠B=a ,DE 交AC 于点E ,且cosa=45,则线段CE 的最大值为____.【答案】6.416.一个人由山脚爬到山顶,须先爬倾斜角为30度的山坡300米到达D ,再爬倾斜角为60度的山坡200米,这座山的高度为______________(结果保留根号)【答案】(150+100)米17.如图所示,小明在家里楼顶上的点A处,测量建在与小明家楼房同一水平线上相邻的电梯楼的高,在点A处看电梯楼顶部点B处的仰角为60°,在点A处看这栋电梯楼底部点C 处的俯角为45°,两栋楼之间的距离为20 m,则电梯楼的高BC为____________米(精确到0.1).(参考数据:≈1.414≈1.732)【答案】54.618.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为_____米.【答案】5三、解答题19.在Rt△ABC中,∠C=90°,sin B=,求cos A的值.【答案】解在△ABC中,∵∠C=90°,∴∠A+∠B=90°,∴cos A=sin B=.20.被誉为“中原第一高楼”的郑州会展宾馆(俗称“玉米楼”)坐落在风景如画的如意湖畔,是来郑州观光的游客留影的最佳景点.学完了三角函数知识后,刘明和王华决定用自己学到的知识测量“玉米楼”的高度.如图,刘明在点C处测得楼顶B的仰角为45°,王华在高台上的D处测得楼顶的仰角为40°.若高台DE的高为5米,点D到点C的水平距离EC为47.4米,A,C,E三点共线,求“玉米楼”AB的高度.(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,结果保留整数)【解析】如图,过点D 作DM ⊥AB 于点M ,交BC 于点F ,过点C 作CG ⊥DM 于点G ,设BM=x 米,由题意,得DG=47.4米,CG=5米,∠BFM=45°,∠BDM=40°,则FM=BM=x 米,GF=CG=5米,∴DF=DG +GF=52.4米,∴DM=BM tan BDM ∠=x tan 40︒≈x0.84(米),∵DM -FM=DF ,∴x0.84-x=52.4,解得x≈275.1,∴AB=BM +AM=BM +DE ≈280米. 答:“玉米楼”AB 的高约为280米.21.计算:sin 45°+cos 230°+2sin 60°. 【答案】解 原式=×+2+2×=++=1+. 22.如图,AB 是⊙O 的直径,延长AB 至P ,使BP=OB ,BD 垂直于弦BC ,垂足为点B ,点D 在PC 上,设∠PCB=α,∠P0C=β,求证tan α·tan β=13【解析】如图,连接AC ,则∠A=12∠POC=2β. ∵AB 是⊙O 的直径,∴∠ACB=90°,∴tan 2β=BCAC.∵BD ⊥BC ,tan α=BD BC ,BD ∥AC ,∴△PBD ∽△PAC ,∴BD AC =PBPA.∵PB=OB=OA ,∴PB PA =13.∴BD AC =13.∴tan α·tan 2β=BD BC ·BC AC =BDAC人教版九年级数学下册 第二十八章锐角三角函数检测卷一、选择题(每小题3分,共30分)1.已知在Rt △ABC 中,∠C =90°,AB =8,BC =5,那么下列式子中正确的是( A )A.sin A =58B.cos A =58C.tan A =58 D.以上都不对 2.若cos A =32,则∠A 的大小是( A ) A.30° B.45° C.60° D.90°3.已知在Rt △ABC 中,∠C =90°,sin A =37,BC =4,则AB 的长度为( D ) A.43 B.74 C.8103 D.2834.如图,在△ABC 中,AC ⊥BC ,∠ABC =30°,点D 是CB 延长线上的一点,且BD =BA ,则tan ∠DAC 的值为( A )A.2+ 3B.2 3C.3+ 3D.3 35.△ABC 在网格中的位置如图所示(每个小正方形边长为1),AD ⊥BC 于D ,下列四个选项中,错误的是( C )A.sin α=cos αB.tan C =2C.sin β=cos βD.tan α=16.如图,一艘海轮位于灯塔P 的北偏东55°方向,距离灯塔为2 海里的点A处.如果海轮沿正南方向航行到灯塔的正东方向,海轮航行的距离AB长是( C )A.2 海里B.2sin55°海里C.2cos55°海里D.2tan55°海里7.Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C的对边,那么c 等于( B )A.a cos A+b sin BB.a sin A+b sin BC.asin A+bsin B D.acos A+bsin B8.一座楼梯的示意图如图所示,BC是铅垂线,CA是水平线,BA与CA的夹角为θ.现要在楼梯上铺一条地毯,已知CA=4米,楼梯宽度1米,则地毯的面积至少需要( D )A.4sinθ米2 B.4cosθ米2 C.(4+tanθ4)米2 D.(4+4tanθ)米29.如图,要在宽为22米的九洲大道AB两边安装路灯,路灯的灯臂CD长2米,且与灯柱BC成120°角,路灯采用圆锥形灯罩,灯罩的轴线DO与灯臂CD 垂直.当灯罩的轴线DO通过公路路面的中心时照明效果最佳.此时,路灯的灯柱BC高度应该设计为( D )A.(11-22)米B.(113-22)米C.(11-23)米D.(113-4)米10.如图,小明爬山,在山脚下B处看山顶A的仰角为30°,小明在坡度为i=512的山坡BD上去走1300米到达D处,此时小明看山顶A的仰角为60°,则山高AC为( B )A.600-250 3B.6003-250C.350+350 3D.500 3二、填空题(每小题4分,共24分)11.计算:2sin60°12.如图,▱ABCD中,AE⊥BD于E,∠EAC=30°,AE=3,则AC的长等于13.传送带和地面所成斜坡的坡度为1∶0.75,它把物体从地面送到离地面高8米的地方,物体在传送带上所经过的路程为10米.14.如图所示,小芳在中心广场放风筝,已知风筝拉线长100米(假设拉线是直的),且拉线与水平地面的夹角为60°,若小芳的身高忽略不计,则风筝离水平(结果保留根号).15.如图,直线MN与⊙O相切于点M,ME=EF且EF∥MN,则cos∠E=12 .16.△ABC 中,AB =12,AC =39,∠B =30°,则△ABC 的面积是三、解答题(共66分)17.(6分)计算:2cos 245°-(tan60°-2)2-(sin60°-1)0+(12)-2 解:原式=2×(22)2-|3-2|-1+4=1-(2-3)-1+4=3+2.18.(6分)如图,△ABC 中,AD ⊥BC ,垂足是D ,若BC =14,AD =12,tan ∠BAD =34,求sin C 的值.解:∵在直角△ABD 中,tan ∠BAD =BD AD =34,∴BD =AD ·tan ∠BAD =12×34=9,∴CD =BC -BD =14-9=5,∴AC =AD 2+CD 2=122+52=13,∴sin C =AD AC =1213.19.(6分)如图,某商店营业大厅自动扶梯AB 的倾斜角为31°,AB 的长为12米,求大厅两层之间的距离BC 的长.(结果精确到0.1米)(参考数据:sin31°=0.515,cos31°=0.857,tan31°=0.60)解:过B作地平面的垂线段BC,垂足为C.在Rt△ABC中,∵∠ACB=90°,∴BC=AB·sin∠BAC=12×0.515≈6.2(米).即大厅两层之间的距离BC的长约为6.2米.20.(8分)如图是某小区的一个健身器材,已知BC=0.15 m,AB=2.70 m,∠BOD=70°,求端点A到地面CD的距离(精确到0.1 m).(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)解:作AE⊥CD于E,BF⊥AE于F,则四边形EFBC是矩形,∵OD⊥CD,∠BOD=70°,∴AE∥OD,∴∠A=∠BOD=70°,在Rt△AFB中,∵AB=2.7,∴AF=2.7×cos70°≈2.7×0.34=0.918,∴AE=AF+BC≈0.918+0.15=1.068≈1.1 m,答:端点A到地面CD的距离是1.1 m.21.(8分)王浩同学用木板制作一个带有卡槽的三角形手机架,如图所示.已知AC=20 cm,BC=18 cm,∠ACB=50°,王浩的手机长度为17 cm,宽为8 cm,王浩同学能否将手机放入卡槽AB内?请说明你的理由.(提示:sin50°≈0.8,cos50°≈0.6,tan50°≈1.2)解:王浩同学能将手机放入卡槽AB内.理由:作AD⊥BC于点D,∵∠C=50°,AC=20 cm,∴AD=AC·sin50°=20×0.8=16 cm,CD=AC·cos50°=20×0.6=12 cm,∵BC=18 cm,∴DB=BC-CD=18-12=6 cm,∴AB=AD2+BD2=162+62=292,∵17=289<292,∴王浩同学能将手机放入卡槽AB内.22.(10分)如图,某数学兴趣小组要测量一栋五层居民楼CD的高度.该楼底层为车库,高2.5米;上面五层居住,每层高度相等.测角仪支架离地1.5米,在A处测得五楼顶部点D的仰角为60°,在B处测得四楼顶部点E的仰角为30°,AB=14米.求居民楼的高度(精确到0.1米,参考数据:3≈1.73)人教新版九年级下学期单元测试卷:《锐角三角函数》一.选择题1.如图,延长RT△ABC斜边AB到点D,使BD=AB,连接CD,若tan∠BCD=,则tan A =()A.B.1C.D.2.若0°<∠A<45°,那么sin A﹣cos A的值()A.大于0B.小于0C.等于0D.不能确定3.α为锐角,若sinα+cosα=,则sinα﹣cosα的值为()A.B.±C.D.04.关于三角函数有如下公式:sin(α+β)=sinαcosβ+cosαsinβ,sin(α﹣β)=sinαcosβ﹣cosαsinβcos(α+β)=cosαcosβ﹣sinαsinβ,cos(α﹣β)=cosαcosβ+sinαsinβtan(α+β)=(1﹣tanαtanβ≠0),合理利用这些公式可以将一些角的三角函数值转化为特殊角的三角函数来求值,如sin90°=sin(30°+60°)=sin30°cos60°+cos30°sin60°==1利用上述公式计算下列三角函数①s in105°=,②tan105°=﹣2﹣,③sin15°=,④cos90°=0其中正确的个数有()A.1个B.2个C.3个D.4个5.已知sinα=,求α,若用计算器计算且结果为“30”,最后按键()A.AC10N B.SHIET C.MODE D.SHIFT6.如图,在Rt△ABC中,∠ABC=90°,tan∠BAC=2,A(0,a),B(b,0),点C在第二象限,BC与y轴交于点D(0,c),若y轴平分∠BAC,则点C的坐标不能表示为()A.(b+2a,2b)B.(﹣b﹣2c,2b)C.(﹣b﹣c,﹣2a﹣2c)D.(a﹣c,﹣2a﹣2c)7.如图1是一种雪球夹,通过一个固定夹体和一个活动夹体的配合巧妙完成夹雪、投雪的操作,不需人手直接接触雪,使用方便,深受小朋友的喜爱.图2是其简化结构图,当雪球夹闭合时,测得∠AOB=60°,OA=OB=14cm,则此款雪球夹从O到直径AB的距离为()A.14cm B.14cm C.7cm D.7cm8.如图,一辆小车沿坡度为的斜坡向上行驶13米,则小车上升的高度是()A.5米B.6米C.6.5米D.12米9.如图,数学实践活动小组要测量学校附近楼房CD的高度,在水平底面A处安置侧倾器测得楼房CD顶部点D的仰角为30°,向前走20米到达E处,测得点D的仰角为60°已知侧倾器AB的高度为1.6米,则楼房CD的高度约为(结果精确到0.1米)()A.30米B.18.9米C.32.6米D.30.6米10.如图,禁止捕鱼期间,某海上稽查队在某海域巡逻,上午某一时刻在A处接到指挥部通知,在他们东北方向距离12海里的B处有一艘捕鱼船,正在沿南偏东75°方向以每小时10海里的速度航行,稽查队员立即乘坐巡逻船以每小时14海里的速度沿北偏东某一方向出发,在C处成功拦截捕鱼船,则巡逻船从出发到成功拦截捕鱼船所用的时间是()A.1小时B.2小时C.3小时D.4小时二.填空题11.已知Rt△ABC中,∠C=90°,AC=3,∠B=37°,则BC的长为(注:tan ∠B=0.75,sin∠B=0.6,c os∠B=0.8)12.用不等号“>”或“<”连接:sin50°cos50°.13.若tanα=1(0°<α<90°),则sinα=.14.已知,在Rt△ABC中,∠C=90°,tan B=,则cos A=.15.在△ABC中,若|sin A﹣|+(cos B﹣)2=0,则∠C的度数是.16.请从下列两个小题中任选一个作答,若多选,则按第一题计分.A:一个正多边形的一个外角为36°,则这个多边形的对角线有条.B:在△ABC中AB=AC,若AB=3,BC=4,则∠A的度数约为.(用科学计算器计算,结果精确到0.1°.)17.如图,点A(t,2)在第一象限,OA与x轴所夹的锐角为α,sinα=,则t=18.如图,小明想测量学校教学楼的高度,教学楼AB的后面有一建筑物CD,他测得当光线与地面成22°的夹角时,教学楼在建筑物的墙上留下高2米高的影子CE;而当光线与地面成45°的夹角时,教学楼顶A在地面上的影子F与墙角C有13米的距离(点B,F,C在同一条直线上),则AE之间的长为米.(结果精确到lm,参考数据:sin22°≈0.375,cos22°≈0.9375,tan22°≈0.4)三.解答题19.如图,在正方形ABCD中,M是AD的中点,BE=3AE,试求sin∠ECM的值.20.我们知道:sin30°=,tan30°=,sin45°=,tan45°=1,sin60°=,tan60°=,由此我们可以看到tan30°>sin30°,tan45°>sin45°,tan60°>sin60°,那么对于任意锐角α,是否可以得到tanα>sinα呢?请结合锐角三角函数的定义加以说明.21.在Rt△ABC中,∠C=90°,若sin A=.求cos A,sin B,tan B的值.22.计算:3tan30°+cos245°﹣2sin60°.23.(1)验证下列两组数值的关系:2sin30°•cos30°与sin60°;2sin22.5°•cos22.5°与sin45°.(2)用一句话概括上面的关系.(3)试一试:你自己任选一个锐角,用计算器验证上述结论是否成立.(4)如果结论成立,试用α表示一个锐角,写出这个关系式.24.如图,在平面直角坐标系中,P是第一象限的点,其坐标为(6,y),且OP与x轴正半轴的夹角α的正切值为.求:(1)y的值;(2)角α的正弦值.25.某建筑物的金属支架如图所示,根据要求AB长为4m,C为AB的中点,点B到D的距离比立柱CD的长小0.5m,∠BCD=60°,求立柱CD长.26.如图,一段河坝的断面为梯形ABCD,试根据图中数据,求出坡角α和坝底宽AD(结果果保留根号).参考答案一.选择题1.【解答】解:过B作BE∥AC交CD于E.∵AC⊥BC,∴BE⊥BC,∠CBE=90°.∴BE∥AC.∵AB=BD,∴AC=2BE.又∵tan∠BCD=,设BE=x,则AC=2x,∴tan A===,故选:A.2.【解答】解:∵cos A=sin(90°﹣A),余弦函数随角增大而减小,∴当0°<∠A<45°时,sin A<cos A,即sin A﹣cos A<0.故选:B.3.【解答】解:∵sinα+cosα=,∴(sinα+cosα)2=2,即sin2α+cos2α+2sinαcosα=2.又∵sin2α+cos2α=1,∴2sinαcosα=1.∴(sinα﹣cosα)2=sin2α+cos2α﹣2sinαcosα=1﹣2sinαcosα=1﹣1=0.∴sinα﹣cosα=0.故选:D.4.【解答】解:①sin105°=sin(45°+60°)=sin60°cos45°+cos60°sin45°=×+×=,故此选项正确;②tan105°=tan(60°+45°)====﹣2﹣,故此选项正确;③sin15°=sin(60°﹣45°)=sin60°cos45°﹣cos60°sin45°=×﹣×=,故此选项正确;④cos90°=cos(45°+45°)=cos45°cos45°﹣sin45°sin45°=×﹣×=0,故此选项正确;故正确的有4个.故选:D.5.【解答】解:“SHIET”表示使用该键上方的对应的功能.故选:D.6.【解答】解:作CH⊥x轴于H,AC交OH于F.∵tan∠BAC==2,∵∠CBH+∠ABH=90°,∠ABH+∠OAB=90°,∴∠CBH=∠BAO,∵∠CHB=∠AOB=90°,∴△CBH∽△BAO,∴===2,∴BH=﹣2a,CH=2b,∴C(b+2a,2b),由题意可证△CHF∽△BOD,∴=,∴=,∴FH=2c,∴C(﹣b﹣2c,2b),∵2c+2b=﹣2a,∴2b=﹣2a﹣2c,b=﹣a﹣c,∴C(a﹣c,﹣2a﹣2c),故选:C.7.【解答】解:作OG⊥AB于点G,∵OA=OB=14厘米,∠AOB=60°,∴∠AOG=∠BOG=30°,AG=BG,∴OG=OA•cos30°=7厘米,故选:D.8.【解答】解:作BC⊥AC.在Rt△ABC中,∵AB=13m,BC:AC=5:12,∴可以假设:BC=5k,AC=12k,∵AB2=BC2+AC2,∴132=(5k)2+(12k)2,∴k=1,∴BC=5m,故选:A.9.【解答】解:过B作BF⊥CD,作FG⊥BD,∵∠BDF=∠FDC=30°,∴EF=FH,∵∠BGF=90°,∴EF=FH=10,∴DF=20,∴DC=DH+HC=10+1.6≈18.9.故选:B.10.【解答】解:设巡逻船从出发到成功拦截所用时间为x小时;如图所示,由题意得:∠ABC=45°+75°=120°,AB=12,BC=10x,AC=14x,过点A作AD⊥CB的延长线于点D,在Rt△ABD中,AB=12,∠ABD=45°+(90°﹣75°)=60°,∴BD=AB•cos60°=AB=6,AD=AB•sin60°=6,∴CD=10x+6.在Rt△ACD中,由勾股定理得:,解得:(不合题意舍去).答:巡逻船从出发到成功拦截所用时间为2小时.故选:B.二.填空题(共8小题)11.【解答】解:∵∠C=90°,∴tan B=,∴BC===4.故答案为4.12.【解答】解:∵cos50°=sin40°,sin50°>sin40°,∴sin50°>cos50°.故答案为>.13.【解答】解:∵tanα=1(0°<α<90°),∴∠α=45°,则sinα=,故答案为.14.【解答】解:如图,由tan B=,得AC=4k,BC=3k,由勾股定理,得AB=5k,cos A===,故答案为:.15.【解答】解:∵在△ABC中,|sin A﹣|+(cos B﹣)2=0,∴sin A=,cos B=,∴∠A=30°,∠B=60°,∴∠C=180°﹣30°﹣60°=90°.故答案为:90°.16.【解答】解:A、由一个正多边形的一个外角为36°,得360÷36=10,则这个多边形的对角线有=35,B、由AB=AC,若AB=3,BC=4,得cos A=≈0.667,A=42.5故答案为:35,42.5°.17.【解答】解:过A作AB⊥x轴于B.∴sinα=,∵sinα=,∴=,∵A(t,2),∴AB=2,∴OA=,∴t=,故答案为:.18.【解答】解:过点E作EM⊥AB,垂足为M.设AB为xm,在Rt△ABF中,∠AFB=45°,∴BF=AB=xm,∴BC=BF+FC=(x+13)m,在Rt△AEM中,AM=AB﹣BM=AB﹣CE=(x﹣2)m,又tan∠AEM=,∠AEM=22°,∴=0.4,解得x≈12,则ME=BC=BF+13≈12+13=25(m).在Rt△AEM中,cos∠AEM=,∴AE=≈≈27(m),故AE的长约为27m.故答案为:27.三.解答题(共8小题)19.【解答】解:设AE=x,则BE=3x,BC=4x,AM=2x,CD=4x,∴EC==5x,EM==x,CM==2x,∴EM2+CM2=CE2,∴△CEM是直角三角形,∴sin∠ECM==.20.【解答】解:对于任意锐角α,都有tanα>sinα,理由如下:如图,△ABC中,∠C=90°,∠A、∠B、∠C的对边分别是a、b、c,设∠A=α.则tanα=,sinα=,∵b<c,∴>,∴tanα>sinα.21.【解答】解:∵sin A==,∴设AB=13x,BC=12x,由勾股定理得:AC===5x,∴cos A==,sin B=cos A=,tan B==.22.【解答】解:3tan30°+cos245°﹣2sin60°===.23.【解答】解:(1)∵2sin30°•cos30°=2××=,sin60°=.2sin22.5°•cos22.5≈2×0.38×0.92≈0.7,sin45°=≈0.7,∴2sin30°•cos30°=sin60°,2sin22.5°•cos22.5=sin45°;(2)由(1)可知,一个角正弦与余弦积的2倍,等于该角2倍的正弦值;(3)2sin15°•cos15°≈2×0.26×0.97≈,sin30°=;故结论成立;(4)2sinα•cosα=sin2α.24.【解答】解:(1)作PC⊥x轴于C.∵t anα=,OC=6,∴PC=8,即y=8.(2)∵OP==10.则sinα===.25.【解答】解:连接BD,作OB⊥CD于点O,∵在直角三角形BCO中,∠BCD=60°,AB长为4m,C为AB的中点,∴OC=m,OB=OC=m,在直角三角形BOD中,设CD为x,OD=DC﹣OC=x﹣1,BD=CD﹣0.5=x﹣0.5,OB=,可得:,解得:x=3.75,答:CD的长为3.75m.26.【解答】解:过B作BF⊥AD于F.在Rt △ABF 中,AB =5,BF =CE =4.∴AF =3.在Rt △CDE 中,tan α==i =. ∴∠α=30°且DE ==4,∴AD =AF +FE +ED =3+4.5+4=7.5+4.答:坡角α等于30°,坝底宽AD 为7.5+4.人教版九年级下学期第28章锐角三角函数 单元过关测试卷 含参考答案一、选择题(每小题3分,共18分)1、在Rt △ABC 中,∠C =90º,b=53c ,则sinB 的值是( ) A 、53 B 、54 C 、43 D 、34 2、在△ABC中,若1sin 02A B -=,则△ABC 是( ) A 、等腰三角形 B 、等腰直角三角形 C 、直角三角形 D 、等边三角形3、如图,在菱形ABCD 中,DE ⊥AB ,cosA=53,BE=2,则tan ∠DBE 的值是( ) A 、21 B 、2 C 、25 D 、554、如图,长4m 的楼梯AB 的倾斜角∠ABD 为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD 为45°,则调整后的楼梯AC 的长为( )A .32 m B.62 m C .(32﹣2)m D .(62﹣2)m5、一人乘雪橇沿坡度为i=1:3的斜坡滑下,滑下距离S(米)与时间t (秒)之间的关(第3题) (第4题) (第6题) E D C B A D B C A B D C E A系为S=2210t t +,若滑动时间为4秒,则他下降的垂直高度为( )A 、72米B 、36米C 、336米D 、318米6、某数学兴趣小组同学进行测量大树CD 高度的综合实践活动,如图,在点A 处测得直立 于地面的大树顶端C 的仰角为36°,然后沿在同一剖面的斜坡AB 行走13米至坡顶B 处, 然后再沿水平方向行走6米至大树脚底点D 处,斜面AB 的坡度(或坡比)i=1:2.4,那么 大树CD 的高度约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)( )A .8.1米B .17.2米C .19.7米D .25.5米二、填空题(每小题3分,共21分)7、在△ABC 中,∠C =90°,若sinB =31,则sinA 的值为 8、如图,P 是∠α 的边OA 上一点,且点P 的坐标为(3,4), 则sin α=9、升国旗时,某同学站在离旗杆24m 处行注目礼,当国旗升至旗杆顶端时,该同学视线的仰角恰为30°,若两眼距离地面1.2m ,则旗杆高度约为 . (取3=1.732,结果精确到0.1m )10、如图,线段AB 、DC 分别表示甲、乙两座楼房的高,AB ⊥BC , DC ⊥BC ,两建筑物间距离BC=30米,若甲建筑物高AB=28米,在点A 测得D 点的仰角α=45°,则乙建筑物高DC= 米.11、如图所示,河堤横断面迎水坡AB 的坡比是1:3,堤高BC=5m ,则坡面AB 的长度是 米.12、某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为13、四边形的对角线的长分别为,可以证明当时(如图1),四边形的面积,那么当所夹的锐角为θ时(如图2),四边形的面积 .(用含的式子表示) 三、解答题(共61分)14、计算:(8分)(145sin 60)︒-︒(2)3sin60°﹣2cos30°﹣tan60°•tan45°.(第10题) (第11题) (第13题) D 图1 C 图215、(8分)如图,防洪大堤的横断面是梯形,背水坡AB的坡比i (指坡面的铅直高度与水平宽度的比).且AB=20 m .身高为1.7 m 的小明站在大堤A 点,测得高压电线杆端点D 的仰角为30°.已知地面CB 宽30 m ,求高压电线杆CD 的高度(结果保留0.1m,1.732).16、(8分)如图,在四边形ABCD 中,∠BCD 是钝角,AB=AD ,BD 平分∠ABC ,若CD=3,BD=62,sin ∠DBC=33,求对角线AC 的长.17、(8分)某兴趣小组借助无人飞机航拍校园.如图,无人飞机从A处水平飞行至B处需8秒,在地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果保留根号)18、(8分)如图,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾角由45º降为30º,已知原滑滑板AB的长为5米,点D、B、C 在同一水平地面上.(1)改善后滑滑板会加长多少?(精确到0.01)(2)若滑滑板的正前方能有3米长的空地就能保证安全,原滑滑板的前方有6米长的空地,像这样改造是否可行?说明理由 (≈1.411.73≈2.45, )AB19、(10分)通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化。
九年级数学上册 各单元综合测试题及答案5套

人教版九年级数学上册第二十一章综合测试卷02一、选择题(每小题5分,共40分)1.将方程2324664x x x x +-+=+()化为一元二次方程的一般形式后,其二次项系数和一次项系数分别为()A .3-,6-B .3,6C .3,6-D .3,2-2.方程2353x x x -=-()()的根是()A .52x =B .3x =C .13x =,22x =D .12x =-,23x =-3.(2014·广东)关于x 的一元二次方程230x x m -+=有两个不相等的实数根,则实数m 的取值范围为()A .94m >B .94m <C .94m =D .94m -<4.若一元二次方程()200ax bx c a ++=≠中的0a b c ++=,则该方程必有一根为()A .0B .1C .1-D .1±5.下列方程没有实数根的是()A .2423x x +=()B .2510x x --=()C .2100x x -=D .2924160x x -+=6.若1x ,2x 是一元二次方程210160x x ++=的两根,则12x x +的值是()A .10-B .10C .16-D .167.经计算整式1x +与4x -的积为234x x --,则一元二次方程2340x x --=的根为()A .11x =-,24x =-B .11x =-,24x =C .11x =,24x =D .11x =,24x =-8.近几年,我国经济高速发展,但退休人员待遇持续偏低.为了促进社会公平,国家决定大幅增加退休人员退休金.企业退休职工李师傅2011年月退休金为1500元,2013年达到2160元.设李师傅的月退休金从2011年到2013年年平均增长率为x ,可列方程为()A .22 0161 1 500x -=()B .21 5001 2 160x +=()C .21 50012160x -=()D .21 500 1 5001 1 50012 160x x ++++=()()二、填空题(每小题5分,共15分)9.已知关于x 的方程220x x k ++=的一个根是1-,则k =_________.10.若方程||(2)310m m x mx +++=是关于x 的一元二次方程,则m 的值为_________.11.若|1|0b -=,且关于x 的一元二次方程20kx ax b ++=有实数根,则k 的取值范围是_________.三、解答题(共45分)12.(15分)用适当的方法解下列方程.(1)2270x x --=;(2)22570x x --=;(3)(1)(3)12x x -+=.13.(10分)雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10000元,第三天收到捐款12100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款?14.(10分)已知关于x 的一元二次方程22240x x k ++-=有两个不相等的实数根.(1)求k 的取值范围;(2)若k 为正整数,且该方程的根都是整数,求k 的值.15.(10分)某批发商以每件50元的价格购进800件T 恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件.批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T 恤一次性清仓销售,清仓时单价为40元,设第二个月单价降低x 元.(1)填表:(不需化简)时间第一个月第二个月清仓时单价/元8040销售量/件200(2)如果批发商希望通过销售这批T 恤获利9000元,那么第二个月的单价应是多少元?第二十一章综合测试答案解析1.【答案】D 【解析】化成一般形式为23220x x --=.2.【答案】C 【解析】用因式分解法求解即可。
初三数学二次函数单元测试题及答案
二次函数单元测评姓名分数一、选择题(每题4分,共40分)1.下列关系式中,属于二次函数的是(x为自变量)()A. B. C. D.2. 函数y=x2-2x+3的图象的顶点坐标是()A. (1,-4)B.(-1,2)C. (1,2)D.(0,3)3. 抛物线y=2(x-3)2的顶点在()A. 第一象限B. 第二象限C. x轴上D. y轴上4. 抛物线的对称轴是()A. x=-2B.x=2C. x=-4D. x=45. 已知二次函数y=ax2+bx+c的图象如图所示,则下列结论中,正确的是()A. ab>0,c>0B. ab>0,c<0C. ab<0,c>0D. ab<0,c<06. 二次函数y=ax2+bx+c的图象如图所示,则点在第___象限()A. 一B. 二C. 三D. 四7. 如图所示,已知二次函数y=ax2+bx+c(a≠0)的图象的顶点P的横坐标是4,图象交x轴于点A(m,0)和点B,且m>4,那么AB的长是()A. 4+mB. mC. 2m-8D. 8-2m8. 若一次函数y=ax+b的图象经过第二、三、四象限,则二次函数y=ax2+bx的图象只可能是()9. 已知抛物线和直线在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=-1,P1(x1,y1),P2(x2,y2)是抛物线上的点,P3(x3,y)是直线上的点,且-1<x<x,x<-1,则y,y,y的大小关系是()A. y1<y2<y3B. y2<y3<y1C. y3<y1<y2D. y2<y1<y310.把抛物线的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是()A.B.C. D.二、填空题(每题4分,共20分)11. 若将二次函数y=x2-2x+3配方为y=(x-h)2+k的形式,则y=________.12. 若抛物线y=x2-2x-3与x轴分别交于A、B两点,则AB的长为_________.13.试写出一个开口方向向上,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线的解析式为______________.14.如图,某农场要盖一排三间长方形的羊圈,打算一面利用旧墙,其余各面用木材围成栅栏,该计划用木材围成总长24m的栅栏,设每间羊圈的一边长为x (m),三间羊圈的总面积s (m2),则s关于x的函数关系式是______________,x的取值范围_________,当x=_________时,s最大.三、解答下列各题15 (12)若二次函数的图象的对称轴方程是,并且图象过A(0,-4)和B(4,0)(1)求此二次函数图象上点A 关于对称轴对称的点A′的坐标;(2)求此二次函数的解析式;xBA C16 (12分)直角坐标平面内,点 O 为坐标原点,二次函数 y=x 2+(k-5)x-(k+4) 的图象交 x 轴于点A(x 1,0)、B(x 2,0),且(x 1+1)(x 2+1)=-8. (1)求二次函数解析式;(2)将上述二次函数图象沿x 轴向右平移2个单位,设平移后的图象与y 轴的 交点为C ,顶点为P ,求△POC 的面积.17. (12分)某工厂大门是一抛物线水泥建筑物(如图),大门地面宽AB= 4米,顶部C 离地面高为4.4米,现有一辆载满货物的汽车欲通过大门,货物顶点距地面2.8米,装货宽度为2.4米,请通过计算,判断这辆汽车能否顺利通过大门?18. (14分)某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程,如图的二次函数图象(部分)刻画了该公司年初以来累积利润s (万元)与时间t (月)之间的关系(即前t 个月的利润总和s 与t 之间的关系).根据图象提供的信息,解答下列问题: (1)求累积利润s (万元)与时间t (月)之间的函数关系式; (2)求截止到几月末公司累积利润可达30万元; (3)求第8个月公司所获利润是多少万元?19. (12分)如图(7)一位篮球运动员跳起投篮,球沿抛物线y =-15x 2+3.5运行,然后准确落人篮框内。
【初三数学】成都市九年级数学上(人教版)第21章一元二次方程单元综合练习题(含答案)
人教版九年级数学(上)第21章《一元二次方程》单元检测题(word 版有答案)一、选择题(每小题3分,共30分)1.关于x 的方程(a -1)x 2+x -2=0是一元二次方程,则a 满足( )A .a ≠1B .a ≠-1C .a ≠0D .为任意实数2.用公式法解一元二次方程3x 2-2x +3=0时,首先要确定a 、b 、c 的值,下列叙述正确的是( )A .a =3,b =2,c =3B .a =-3,b =2,c =3C .a =3,b =-2,c =3D .a =3,b =2,c =-3 3.一元二次方程x 2-4=0的根为( )A .x =2B .x =-2C .x 1=2,x 2=-2D .x =44.关于x 的一元二次方程(a -1)x 2+x +a 2-1=0的一个根是0,则a 的值为( )A .-1B .1C .1或-1D .215.某企业2017年的产值是360万元,要使209年的产值达到490万元,设该企业这两年的平均增长率为x ,根据题意列方程,则下列方程正确的是( )A .360x 2=490 B .360(1+x )2=490C .490(1+x )2=360D .360(1-x )2=4906.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则参赛球队的个数是( )A .6个B .7个C .8个D .9个 7.一个面积为120 m 2的矩形苗圃,它的长比宽多2 m ,苗圃的长是( )A .10 mB .12 mC .13 mD .14 m 8.若M =2x 2-12x +15,N =x 2-8x +11,则M 与N 的大小关系为( )A .M ≤NB .M >NC .M ≥ND .M <N9.有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中,平均一个人传染的人数 为( )A .8人B .9人C .10人D .11人10.定义[a ,b ,c ]为方程ax 2+bx +c =0的特征数,下面给出特征数为[2m ,1-m ,-1-m ]的方程的一些结论:①m =1时,方程的根为±1;②若方程的两根互为倒数,则m =31 ;③无论m 为何值,方程总有两个实数根;④无论m 为何值,方程总有一个根等于1,其中正确有( )A .①②③B .①②④C .①③④D .②③④二、填空题(每小题3分,共18分) 11.一元二次方程x 2=9的解是 .12.若方程3x 2-5x -2=0有一根是a ,则6a 2-10a 的值是 .13.已知关于x 的一元二次方程x 2+bx +b -1=0有两个相等的实数根,则b 的值是 . 14.现有一块长80 cm 、宽60 cm 的矩形钢片,将它的四个角各剪去一个边长为x cm 的小正方形,做成一个底面积为1500 cm 2的无盖的长方体盒子,根据题意列方程,化简可得 .15.已知方程x 2-4x -3=0的两根为m ,n ,则m 2+mn +n 2= .16.如图,矩形ABCD 是由三个矩形拼接成的.如果AB =8,阴影部分的面积是24,另外两个小矩形全等,则小矩形的长为 . 三、解答题(共8题,共72分) 17.(本题8分)解方程:x 2+3x =0.18.(本题8分)已知x 1、x 2是方程2x 2+3x -4=0的两个根,不解方程. (1)求x 1+x 2+x 1x 2的值; (2)求2111x x的值.19.(本题8分)已知x 的方程x 2-(k +1)x -6=0的根为2,求另一根及k 的值.20.(本题8分)有两人患了流感,经过两轮传染后共有242人患了流感,每轮传染中平均一个人传染几个人?21.(本题8分)已知m ,n 是方程x 2+2x -5=0的两个实数根,求m 2-mn +3m +n 的值.22.(本题8分)如图,A 、B 、C 、D 为矩形的四个顶点,AB =16 cm ,AD=6cm,动点P、Q分别从点A、C同时出发,点P以3cm/s的速度向点B移动,点Q以2 cm/s的速度向点D移动,当点P运动到点B停止时,点Q也随之停止运动,问P、Q两点从出发经过几秒时,点P、Q间的距离是10cm?23.(本题10分)如图,用同样规格黑白两色的正方形瓷砖铺设长方形地面,请观察下列图形,并解答有关问题:(1)在第n个图中,第一横行共_____块瓷砖,第一竖列共有_____块瓷砖,铺设地面所用瓷砖的总块数为__________________(用含n的代数式表示);(2)上述铺设方案,铺一块这样的长方形地面共用了506块瓷砖,求此时n的值;(3)黑瓷砖每块4元,白瓷砖每块3元,在问题(2)中,共需要花多少钱购买瓷砖?(4)是否存在黑瓷砖与白瓷砖块数相等的情形?请通过计算加以说明.24.(本题12分)在平面直角坐标系中,已知A(a,a2)、B(b,b2)两点,其中a<b,P、A、B三点共线.(1)若点A、B在直线y=5x-6上,求A、B的坐标;(2)若点P的坐标为(-2,2),且P A=AB,求点A的坐标;(3)求证:对于直线y=-2x-2上任意给定的一点P,总能找到点A,使P A=AB成立.1-5ACDAB 6-10BBCAB11.x1=3,x2=-312.-413.2_14.x2-70x+825=015.1916.617.解:x1=0,x2=-3.18.解:(1)x1+x2=-32;x1x2=-2,则x1+x2+x1x2=-3.5;(2)34.19.解:另一根为a,则2a=-6,2+a=k+1,∴a=-3,k=-2.20.解:10.21.解:m2+2m-5=0,m+n=-2,mn=-5,∴原式=5-2m-mn+3m+n=5+m+n-mn=8.22.解:设x秒后,点P和点Q的距离是10cm.(16-2x-3x)2+62=102.(16-5x)2=64,16-5x=±8,x1=1.6,x2=4.8.23.解:(1)n+3,n+2,(n+3)(n+2);(2)(n+3)(n+2)=506,解得n=20或n=-25(舍);(3)420×3+86×4=1604元;n ( n +1)=2(2n +3),解得n人教版九年级数学上册第21章一元二次方程单元检测题(有答案)(8)一、精心选一选!(每题3分,共30分)1.关于x 的一元二次方程(m +1)21m x++4x +2=0的解为( )A.x 1=1,x 2=-1B. x 1=x 2=-1C. x 1=x 2=1D.无解2.用配方法解方程x 2-4x +2=0,下列配方正确的是( )A.(x -2)2=2B. (x +2)2=2C. (x -2)2=-2D. (x -2)2=6 3.一元二次方程3x 2-x =0的解是( ) A .x =0 B .x 1=0,x 2=13 C .x 1=0,x 2=3 D .x =134.已知关于x 的一元二次方程x 2-m =2x 有两个不相等的实数根,则m 的取值范围是( ) A . m >-1 B . m <-2 C .m ≥0 D .m <05. 一元二次方程x 2+x +2=0的根的情况是( ) A .有两个不相等的正根 B .有两个不相等的负根 C .没有实数根 D .有两个相等的实数根 6.已知关于x 的一元二次方程01)12()2(22=+++-x m x m 有两个不相等的实数根,则m 的取值范围是( )A. 43>mB. 43≥mC. 43>m 且2≠mD. 且2≠m 7.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( ) A.240x += B.24410x x -+= C.230x x ++= D.2210x x +-= 8.关于x 的一元二次方程x 2﹣(k ﹣1)x ﹣k +2=0有两个实数根x 1,x 2,若(x 1﹣x 2+2)(x 1﹣x 2﹣2)+2x 1x 2=﹣3,则k 的值( ) A .0或2 B .﹣2或2 C .﹣2 D .2 9.今年“十一”黄金周我市各旅游景点共接待游客约334万人,旅游总收入约9亿元.已知我市前年“五一”黄金周旅游总收入约6.25亿元,那么这两年同期旅游总收入的年平均增长率约为( ) A.12% B.16% C.20% D.25%10.国家实施”精准扶贫“政策以来,很多贫困人口走向了致富的道路.某地区2016年底有贫困人口9万人,通过社会各界的努力,2018年底贫困人口减少至1万人.设2016年底至2018年底该地区贫困人口的年平均下降率为x ,根据题意列方程得( ) A .9(1﹣2x )=1 B .9(1﹣x )2=1 C .9(1+2x )=1 D .9(1+x )2=1二、耐心填一填!(每题3分,共30分) 11. 方程x 2+2x=0的解为 .12.若0x =是方程22(2)3280m x x m m -+++-=的解,则m =______.13.已知2是一元二次方程240x x c -+=的一个根,则方程的另一个根43≥m是 .14. 关于x 的一元二次方程20x bx c ++=的两个实数根分别为1和2,则b = ,c = .15.已知a ,b 是方程x 2+x ﹣3=0的两个实数根,则a 2﹣b +2019的值是( )16. 已知x 是一元二次方程2310x x +-=的实数根,那么代数式2352362x x x x x -⎛⎫÷+- ⎪--⎝⎭的值为 . 17. 阅读材料:设一元二次方程20ax bx c ++=的两根为1x ,2x ,则两根与方程系数之间有如下关系:12b x x a +=-, acx x =21·.根据该材料填空: 已知1x ,2x 是方程2630x x ++=的两实数根,则2112x x x x +的值为______. 18. 请写出一个值k =________,使一元二次方程x 2-7x +k =0有两个不相等的非0实数根.19. 将4个数a b c d ,,,排成2行、2列,两边各加一条竖直线记成a bc d ,定义a bc dad bc =-,上述记号就叫做2阶行列式.若1111x x x x +--+ 6=,则x = . 20.如图,在一块长12m ,宽8m 的矩形空地上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条平行),剩余部分栽种花草,且栽种花草的面积77m 2,设道路的宽为xm ,则根据题意,可列方程为 .三、细心做一做!(每题8分,共40分)21.解方程:(1)2220x x +-=; (2)x 2+3=3(x +1).22. 设23111x A B x x ==+--,,当x 为何值时,A 与B 的值相等。
初三数学单元试题及答案
初三数学单元试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次根式?A. √3B. √(-1)C. √(0)D. √(-2)答案:A2. 一个数的相反数是它本身的是:A. 0B. 1C. -1D. 2答案:A3. 计算下列哪个选项的结果为0?A. 3 + 2B. 3 - 3C. 3 × 0D. 3 ÷ 3答案:C4. 一个角的补角是:A. 90°B. 180°C. 270°D. 360°答案:B5. 一个数的绝对值是它本身或它的相反数,那么这个数:A. 一定是正数B. 一定是非负数C. 一定是负数D. 可以是任何数答案:B6. 一个二次函数的图像开口向上,那么它的二次项系数:A. 大于0B. 小于0C. 等于0D. 可以是任何数答案:A7. 一个三角形的三个内角之和是:A. 90°B. 180°C. 270°D. 360°答案:B8. 一个数的立方根是它本身的是:A. 1B. -1C. 0D. 所有数答案:C9. 一个数的平方根是它本身的是:A. 1B. -1C. 0D. 所有数答案:C10. 一个数的平方是它本身的是:A. 1B. -1C. 0D. 所有数答案:A二、填空题(每题4分,共20分)1. 一个数的绝对值是5,这个数可以是______。
答案:±52. 如果一个角是另一个角的两倍,那么这个角的补角是______。
答案:90°3. 一个二次函数的图像开口向下,它的二次项系数是______。
答案:小于04. 一个三角形的内角和是______。
答案:180°5. 一个数的立方根是它本身的数是______。
答案:0, 1, -1三、解答题(每题10分,共50分)1. 解方程:2x - 3 = 7答案:x = 52. 计算:(3x - 2)(2x + 3)答案:6x² + 5x - 63. 证明:如果一个三角形的两个内角是45°和45°,那么第三个角是90°。
江苏初三初中数学单元试卷带答案解析
江苏初三初中数学单元试卷班级:___________ 姓名:___________ 分数:___________一、选择题1.方程的解是 ( )A .B .C .D .2.若3是关于方程x 2-5x +c =0的一个根,则这个方程的另一个根是 ( ) A .-2 B .2 C .-5D .53.用配方法解一元二次方程x 2-4x =5的过程中,配方正确的是 ( ) A .(x +2)2=1B .(x -2)2=1C .(x +2)2=9D .(x -2)2=94.下列一元二次方程中两实数根之和为2的是 ( ) A .B .C .D .5.下列函数中,(1), (2),(3),(4),其中是二次函数的有 ( )A .4个B .3个C .2个D .1个6.对于抛物线,下列说法正确的是 ( )A .开口向下,顶点坐标(5,3)B .开口向上,顶点坐标(5,3)C .开口向下,顶点坐标(-5,3)D .开口向上,顶点坐标(-5,3)7.二次函数的图象如何移动就得到的图象 ( )A .向右移动1个单位,向上移动4个单位B .向左移动1个单位,向上移动4个单位C .向右移动1个单位,向下移动4个单位D .向左移动1个单位,向下移动4个单位8.若A(-4,y 1),B(-3,y 2),C(1,y 3)为二次函数y =x 2+4x -5的图象上的三点,则y 1,y 2,y 3的大小关系是 ( ) A .y 1< y 2< y 3 B .y 2<y 1<y 3 C .y 3<y 1<y 2 D .y 1<y 3< y 29.根据下列表格的对应值:x3.233.243.253.26ax 2+bx+c-0.06-0.020.030.09判断方程ax 2+bx+c=0(a≠0,a 、b 、c 为常数)一个解的范围是 ( ) A.3<x <3.23 B.3.23<x <3.24 C.3.24<x <3.25 D.3.25<x <3.2610.如图,等腰Rt△ABC(∠ACB=90º)的直角边与正方形DEFG的边长均为2,且AC与DE在同一直线上,开始时点C与点D重合,让△ABC沿这条直线向右平移,直到点A与点E重合为止.设CD的长为,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为,则与之间的函数关系的图象大致是()二、填空题1.以3、-2为两根的一元二次方程是 .2.已知关于的方程有两个不相等的实数根,则k的取值范围是.3.对于抛物线,当x时,函数值y随x的增大而减小4.为解决群众看病难的问题,一种药品连续两次降价,每盒的价格由原来的60元降至48.6元,则平均每次降价的百分率为.5.学校召开的运动会上,同学王刚掷铅球,铅球运动过程中的高y(m)与水平的距离x(m)之间的函数关系式为,则王刚的成绩为 m.6.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为米.第16题7.二次函数的图象如图所示,那么化简的结果是 .8.已知二次函数y=(x-2a)2+(a-1)(a为常数),当a取不同的值时,其图象构成一个“抛物线系”,如图18分别是当a=-1,a=0,a=l,a=2时二次函数的图象.它们的顶点在一条直线上,这条直线的解析式是y=.三、解答题1.(本题3分+2分)先化简,再求值:,其中满足x2-2x-4=02.(本题6分)已知,在△ABC中,∠C=,斜边=5,两直角边的长分别是关于的方程的两个根,求△ABC的周长.3.(本题2分+4分)已知函数(是常数).⑴求证:不论为何值,该函数的图象都经过轴上的一个定点;⑵若该函数的图象与轴只有一个交点,求的值.4.(本题2分+2分+2分)已知二次函数y= -x2-2x+3(1)在给定的直角坐标系中,画出这个函数的图象;(2)根据图象,写出当y< 0时,x的取值范围;(3)将此图象沿x轴向左平移几个单位,可使平移后所得图象经过坐标原点?请写出平移后图象与x轴的另一个交点的坐标.5.(本题3分+3分)如图,△ABC中,∠B=90°,AB=6,BC=8,点P从点A开始沿边AB向点B以的速度移动,与此同时,点Q从点B开始沿边BC向点C以的速度移动.如果P、Q分别从A、B同时出发,当点Q运动到点C时,两点停止运动,问:(1)经过几秒,的面积等于?(2)的面积会等于△ABC的面积的一半吗?若会,请求出此时的运动时间;若不会,请说明理由.6.(本题2分+2分+2分) 下图是数值转换机的示意图,小明按照其对应关系画出了y与x的函数图象(右图):(1)分别写出当0≤x≤4与x>4时,y与x的函数关系式;(2)求出所输出的y的值中最小一个数值;(3)写出当x满足什么范围时,输出的y的值满足3≤y≤6.7.(本题2分+3分+4分)某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件,后来经过市场调查,发现这种商品每降低1元,其销量可增加10件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图 3
O
D
C
B 初三数学单元综合测试题
一、 填空题
1、在半径为2的圆中,弦长等于23的弦的弦心距为
2、已知⊙O 1 和 ⊙O 2相外切,O 1 O 2=7,⊙O 1的半径为4,则⊙O 2的半径为
3、P 是半径为2cm 的⊙O 内的一点,OP=1cm ,那么过P 点的弦与圆弧组成弓形,其中面积最小的弓形面积为 cm 2
4、已知一条弧的长是3πcm ,
弧的半径是6cm ,则这条弧所对的圆心角是 度 5、把一个半径为16cm 的圆片,剪去一个圆心角为900的扇形后,用剩下的部分做成一个圆锥的侧面,那么这个圆锥的高为 6、将两边长分别为4cm 和6cm 的矩形以其一边所在直线为轴旋转一周,所得圆柱体的表面积为 cm 2
7、.如图3,点A 、B 、C 、D 都在⊙O 上,若∠A =65°,则∠D = 8、⊙O 是等边三角形ABC 的外接圆,点D 是⊙O 上一点,则∠BDC = ; 二、 选择题
9、如图,直线PA PB ,是O e 的两条切线,
A B ,分别为切点,120APB =︒∠,10OP = 厘米,
则弦AB 的长为( ) O
D
C
B
A
9cm
10cm
A .53厘米
B .5厘米
C .103厘米
D .
53
2
厘米 10、如图4,圆心角都是90°的扇形
OAB 与扇形OCD 叠放在一起,OA =3,OC =1,分别连结AC 、BD ,则图中阴影部分的面积为( ) A.
1
2
π B.
π
C. 2π
D. 4π
11、小丽要制作一个圆锥模型,要求圆锥的母线长为 9cm ,底面圆的直径为10cm ,那么小丽要制作的这个 圆锥的侧面展开扇形的纸片的圆心角度数是( )
A 、150°
B 、200°
C 、180°
D 、240°
12、如图,⊙O 是△ABC 的内切圆,切点分别是D 、E 、F ,已知∠A = 100°,∠C = 30°,则∠DFE 的度数是( )
A 、55°
B 、60°
C 、65°
D 、70° 13、如图,PA 、PB 是⊙O 的两条切线, 切点分别为A 、B 若直径AC=12cm, ∠P=600,求弦AB 的长.
14、如图7⊙0的半径为1,过点A(2,0) 的直线切⊙0于点B ,交y 轴于点C. (1)求线段AB 的长;
A
B
P
O
_ O
_ B _ C
_ P
_ A。