初三数学(下册)试题:单元练习测试题_题型归纳
最新人教版九年级数学单元测试题全册含答案

最新人教版九年级数学单元测试题全册含
答案
本文档包含了最新人教版九年级数学单元测试题全册以及相关的答案。
这些测试题可以帮助学生复和巩固数学知识,并检验他们在各个单元中的研究情况。
本文档的目的是为教师和学生提供一个方便的资源,以便他们能够更好地准备和应对数学单元测试。
通过解答这些测试题,学生可以了解自己对各个知识点的掌握程度,并及时进行补充研究。
测试题的答案部分会帮助学生核对自己的答案,并了解正确的解题方法。
这有助于他们纠正错误、提高解题能力,并在考试中取得更好的成绩。
本文档中的测试题均按照最新的人教版九年级数学教材编写,并尽量简洁明了。
题目类型多样,涵盖了各个数学知识点,包括代数、几何、概率等。
每个单元的测试题都相对独立,可根据需要选择和使用。
请注意,本文档中的内容均经过审核,并按照最新的教学要求编写。
然而,由于教材更新和不同教育机构之间的差异,建议在使用前先与教师核对,以确保测试题的适用性。
希望这份文档能对教师和学生在九年级数学研究中有所帮助。
祝大家学业进步,取得优异成绩!
*注意:本文档中的测试题和答案仅供参考,请勿用于非法用途。
作者和提供者不承担任何因使用本文档而产生的法律责任。
*。
人教版九年级下册数学各单元测试卷及答案(全套)

第二十六章综合测试一、选择题(30分) 1.已知反比例函数ky x=的图象经过点2,3(),那么下列四个点中,也在这个函数图象上的是( ) A .()6,1-B .()1,6C .()2,3-D .()3,2-2.已知矩形的面积为220 cm ,设该矩形的一边长为 cm y ,另一边的长为 cm x ,则y 与x 之间的函数图象大致是( )ABCD3.已知点(),P a m ,(),Q b n 都在反比例函数2y x=-的图象上,且0a b <<,则下列结论一定正确的是( ) A .0m n +<B .0m n +>C .m n <D .m n >4.如图,ABC △的三个顶点分别为(1,2)A ,(4,2)B ,(4,4)C .若反比例函数ky x=在第一象限内的图象与ABC △有交点,则k 的取值范围是( )A .14k ≤≤B .48k ≤≤C .216k ≤≤D .816k ≤≤5.在同一平面直角坐标系中,若正比例函数1y k x =的图象与反比例函数2k y x=的图象没有公共点,则( ) A .120k k +<B .120k k +>C .120k k <D .120k k >6.如果点()12,A y -,()21,B y -,()32,C y 都在反比例函数(0)ky k x=>的图象上,那么1y ,2y ,3y 的大小关系是( ) A .132y y y <<B .213y y y <<C .123y y y <<D .321y y y <<7.反比例函数3(0)y x x=-<的图象如图所示,则矩形OAPB 的面积是( ) A .3B .3-C .32D .32-8.如图,在同一平面直角坐标系中,一次函数1y kx b =+(k ,b 是常数,且0k ≠)与反比例函数2cy x=(c 是常数,且0c ≠)的图象相交于(3,2)A --,(2,3)B 两点,则不等式12y y >的解集是( ) A .32x -<<B .3x -<或2x >C .30x -<<或2x >D .02x <<9.如图,过y 轴正半轴上的任意一点P ,作x 轴的平行线,分别与反比例函数4y x =-和2y x=的图象交于点A 和点B .若点C 是x 轴上任意一点,连接AC ,BC ,则ABC △的面积为( ) A .3B .4C .5D .610.如图,点A ,B 在反比例函数()10y x x =>的图象上,点C ,D 在反比例函数()0ky k x=>的图象上,AC BD y ∥∥轴,已知点A ,B 的横坐标分别为1,2,OAC △与ABD △的面积之和为32,则k 的值为( ) A .4 B .3 C .2 D .32二、填空题(24分)11.在ABC △的三个顶点(2,3)A -,(4,5)B --,(3,2)C -中,可能在反比例函数(0)ky k x=>的图象上的点是_________.12.若一个反比例函数的图象经过点(,)A m m 和(2,1)B m -,则这个反比例函数的解析式为_________. 13.如图,已知反比例函数ky x=(k 为常数,0k ≠)的图象经过点A ,过A 点作AB x ⊥轴,垂足为B ,若AOB △的面积为1,则k =_________.14.已知一次函数y ax b =+与反比例函数ky x=的图象相交于(4,2)A ,(2,)B m -两点,则一次函数的解析式为_________.15.若点(,2)A m -在反比例函数4y x=的图象上,则当函数值2y -≥时,自变量x 的取值范围是_______.16.如图,直线l x ⊥轴于点P ,且与反比例函数11(0)k y x x=>及22(0)k y x x =>的图象分别交于点A ,B ,连接OA ,OB ,已知OAB △的面积为2.则12k k -=_______. 17.如图,反比例函数ky x=的图象经过ABCD 对角线的交点P ,已知点A ,C ,D 在坐标轴上,BD DC ⊥,ABCD 的面积为6,则k =_______.18.如图,在平面直角坐标系中,反比例函数(0)ky x x=>的图象与边长是6的正方形OABC 的两边AB ,BC 分别相交于M ,N 两点,OMN △的面积为10.若动点P 在x 轴上,则PM PN +的最小值是_______.三、解答题(8+8+10+10+10=46分)19.如图,在平面直角坐标系中有三点(1,2),(3,1),(2,1)--,其中有两点同时在反比例函数ky x=的图象上,将这两点分别记为A ,B ,另一点记为C . (1)求出k 的值.(2)求直线AB 对应的一次函数的解析式.(3)设点C 关于直线AB 的对称点为O ,P 是x 轴上的一个动点,直接写出PC PD +的最小值(不必说明理由).20.如图,一次函数y kx b =+与反比例函数6(0)y x x=>的图象交于(),6A m ,()3,B n 两点。
【初三数学】滁州市九年级数学下(人教版)第二十八章 《锐角三角函数》单元综合练习题(含答案解析)

九年级数学人教版《锐角三角函数》单元测试题(Word 版有答案)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在Rt △ABC 中,∠C =90°,各边都扩大2倍,则锐角A 的正弦值( )A .扩大2倍B .缩小12 C .不变 D .无法确定2.在Rt △ABC 中,∠C =90°,AB =5,BC =3,则∠A 的余弦值是( )A.35B.34C.43D.453.已知在Rt △ABC 中,∠C =90°,∠A =α,BC =2,那么AB 的长等于( )A.2sin α B .2sin α C.2cos αD .2cos α 4.在Rt △ABC 中,∠C =90°,sinA =45,AC =6 cm ,则BC 的长度为( )A .6 cmB .7 cmC .8 cmD .9 cm 5.在Rt △ABC 中,∠B =90°,tanA =512,则cosA =( )A.125 B.1213 C.513 D.5126.三角形的三个内角之比为1∶2∶3,则最小角的正切值是( )A .1 B.22 C.33D. 3 7.(-sin60°,cos60°)关于y 轴对称的点的坐标是( )A .(32,12) B .(-32,12) C .(-32,-12) D .(-12,-32) 8.如图,在网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则∠ABC 的正切值是( )A .2 B.255 C.55 D.129.如图,在△ABC 中,AD ⊥BC ,垂足为D.若AC =62,∠C =45°,tan ∠ABC =3,则BD 等于( )A .2B .3C .3 2D .2 310.如图,在Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D ,则下列结论不正确的是( )A .sinB =AD AB B .sinB =ACBCC .sinB =AD AC D .sinB =CDAC11.将宽为2 cm 的长方形纸条折叠成如图所示的形状,那么折痕PQ 的长是( )A.23 3 cm B.433 cm C. 5 cm D .2 cm12.某数学兴趣小组同学进行测量大树CD 高度的综合实践活动,如图,在点A 处测得直立于地面的大树顶端C 的仰角为36°,然后沿在同一剖面的斜坡AB 行走13 m 至坡顶B 处,再沿水平方向行走6 m 至大树脚底点D 处,斜面AB 的坡度(或坡比)i =1∶2.4,那么大树CD 的高度约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)( )A .8.1 mB .17.2 mC .19.7 mD .25.5 m13.如图,在矩形ABCD 中,点E 是CD 的中点,点F 是BC 上一点,且FC =2BF ,连接AE ,EF.若AB =2,AD =3,则cos ∠AEF 的值是( )A. 3B.32 C.22 D.1214.如图,以坐标原点O 为圆心,半径为1的弧交坐标轴于A ,B 两点,P 是AB ︵上一点(不与A ,B 重合),连接OP ,设∠POB =α,则点P 的坐标是( )A .(sin α,sin α)B .(cos α,cos α)C .(sin α,cos α)D .(cos α,sin α)15.如图,已知点C 与某建筑物底端B 相距306米(点C 与点B 在同一水平面上),某同学从点C 出发,沿同一剖面的斜坡CD 行走195米至坡顶D 处,斜坡CD 的坡度(或坡比)i =1∶2.4,在D 处测得该建筑物顶端A 的俯视角为20°,则建筑物AB 的高度约为(精确到0.1米,参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)( )A .29.1米B .31.9米C .45.9米D .95.9米16.如图,在四边形ABCD 中,∠BAD =∠ADC =90°,AB =AD =22,CD =2,点P 在四边形ABCD 的边上,若点P 到BD 的距离为32,则点P 的个数为( )A .1B .2C .3D .4二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有2个空,每空3分.把答案写在题中横线上)17.计算:cos 245°+3tan60°+cos30°+2sin30°-2tan45°= .18.张丽不慎将一道数学题沾上了污渍,变为“如图,在△ABC 中,∠B =60°,AB =63,tanC =,求BC 的长度”.张丽翻看答案后,得知BC =6+33,则部分为 . 19.如图,把n 个边长为1的正方形拼接成一排,求得tan ∠BA 1C =1,tan ∠BA 2C =13,tan∠BA 3C =17,计算tan ∠BA 4C =113,…,按此规律,写出tan ∠BA n C = .(用含n 的代数式表示)三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 20.(本小题满分8分)Rt△ABC中,∠C=90°,c=0.8,b=0.4,解这个直角三角形.解:21.(本小题满分9分)△ABC中,(3·tanA-3)2+|2cosB-3|=0.(1) 判断△ABC的形状;(2) 若AB=10,求BC,AC的长.解:22.(本小题满分9分)如图,在水平地面上有一幢房屋BC与一棵树DE,在地面观测点A处测得屋顶C与树梢D的仰角分别是45°与60°,∠CAD=60°,在屋顶C处测得∠DCA=90°.若房屋的高BC=6 m.求树高DE.解:23.(本小题满分9分)如图,某船由西向东航行,在点A处测得小岛O在北偏东60°方向,船航行了10海里后到达点B,这时测得小岛人教版数学九年级下册第二十八章锐角三角函数单元提优卷人教版数学九年级下册第二十八章锐角三角函数单元提优卷一、选择题1.在Rt△ABC中,∠C=90°,若将各边长度都扩大为原来的5倍,则∠A的正弦值( D ) A.扩大为原来的5倍B .缩小为原来的15C .扩大为原来的10倍D .不变2.小明在某次投篮中刚好把球打到篮板的点D 处后进球.已知小明与篮框底的距离BC=5米,眼睛与地面的距离AB=1.7米,视线AD 与水平线AE 的夹角为a ,如图所示.若tana=310,则点D 到地面的距离CD 是( C )A.2.7米B.3.0米C.3.2米D.3.4米3.如图,已知“人字梯”的5个踩档把梯子等分成6份,从上往下的第二个踩档与第三个踩档的正中间处有一条60 cm 长的绑绳EF ,tan α=,则“人字梯”的顶端离地面的高度AD 是( B )A . 144 cmB . 180 cmC . 240 cmD . 360 cm4.在Rt △ABC 中,∠C =90°,BC =1,AC =,则∠A 的度数是( A )A . 30°B . 45°C . 60°D . 70°5.如图,有两个全等的正方形ABCD 和BEFC ,则tan(∠BAF +∠AFB)=( A )A.1B.56 C. 23D. 6.把Rt △ABC 各边的长度都扩大3倍得到Rt △A ′B ′C ′,那么锐角∠A 、∠A ′的余弦值的关系是( B )A .cosA =cosA ′B .cosA =3cosA ′C .3cosA =cosA ′D .不能确定7.如图,小岛在港口P 的北偏西60°方向,距港口56海里的A 处,货船从港口P 出发,沿北偏东45°方向匀速驶离港口,4小时后货船在小岛的正东方向,则货船的航行速度是( A )海里/时 /时 海里/时 海里/时8.如图,在△ABC 中,AB =2,BC =4,∠ABC =30°,以点B 为圆心,AB 长为半径画弧,交BC 于点D ,则图中阴影部分的面积是( A ) A.B.C.D.9.如图,△ABD 和△BDC 都是直角三角形,且∠ABD=∠BDC=90°,∠BAD=30°,∠DBC=45°,则tan ∠DAC 的值为( C )A.B. C. D. 310.如图,一河坝的横断面为等腰梯形ABCD ,坝顶宽10米,坝高12米,斜坡AB 的坡度i =1∶1.5,则坝底AD 的长度为( D )A .26米B .28米 C.30米 D .46米11.如图,△ABC 内接于⊙0,AD 为⊙0的直径,交BC 于点E ,若DE=2,0E=3,则tan ∠ACB ·tan ∠ABC=( C )A.2B.3C.4D.5二、填空题12.在Rt △ABC 中,∠C =90°,AC ∶BC =1∶2,则sinB =________. [答案] 3413.如图,在半径为3的⊙0中,直径AB 与弦CD 相交于点E ,连接AC ,BD ,若AC=2,则tanD=____.[答案]14.已知对任意锐角α,β均有cos(α+β)=cos α·cos β-sin α·sin β,则cos75°=________.【答案】6-2415.如图,在△ABC 中,AB=AC=10,点D 是边上一动点(不与B ,C 重合),∠ADE=∠B=a ,DE 交AC 于点E ,且cosa=45,则线段CE 的最大值为____.【答案】6.416.一个人由山脚爬到山顶,须先爬倾斜角为30度的山坡300米到达D ,再爬倾斜角为60度的山坡200米,这座山的高度为______________(结果保留根号)【答案】(150+100)米17.如图所示,小明在家里楼顶上的点A处,测量建在与小明家楼房同一水平线上相邻的电梯楼的高,在点A处看电梯楼顶部点B处的仰角为60°,在点A处看这栋电梯楼底部点C 处的俯角为45°,两栋楼之间的距离为20 m,则电梯楼的高BC为____________米(精确到0.1).(参考数据:≈1.414≈1.732)【答案】54.618.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为_____米.【答案】5三、解答题19.在Rt△ABC中,∠C=90°,sin B=,求cos A的值.【答案】解在△ABC中,∵∠C=90°,∴∠A+∠B=90°,∴cos A=sin B=.20.被誉为“中原第一高楼”的郑州会展宾馆(俗称“玉米楼”)坐落在风景如画的如意湖畔,是来郑州观光的游客留影的最佳景点.学完了三角函数知识后,刘明和王华决定用自己学到的知识测量“玉米楼”的高度.如图,刘明在点C处测得楼顶B的仰角为45°,王华在高台上的D处测得楼顶的仰角为40°.若高台DE的高为5米,点D到点C的水平距离EC为47.4米,A,C,E三点共线,求“玉米楼”AB的高度.(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,结果保留整数)【解析】如图,过点D 作DM ⊥AB 于点M ,交BC 于点F ,过点C 作CG ⊥DM 于点G ,设BM=x 米,由题意,得DG=47.4米,CG=5米,∠BFM=45°,∠BDM=40°,则FM=BM=x 米,GF=CG=5米,∴DF=DG +GF=52.4米,∴DM=BM tan BDM ∠=x tan 40︒≈x0.84(米),∵DM -FM=DF ,∴x0.84-x=52.4,解得x≈275.1,∴AB=BM +AM=BM +DE ≈280米. 答:“玉米楼”AB 的高约为280米.21.计算:sin 45°+cos 230°+2sin 60°. 【答案】解 原式=×+2+2×=++=1+. 22.如图,AB 是⊙O 的直径,延长AB 至P ,使BP=OB ,BD 垂直于弦BC ,垂足为点B ,点D 在PC 上,设∠PCB=α,∠P0C=β,求证tan α·tan β=13【解析】如图,连接AC ,则∠A=12∠POC=2β. ∵AB 是⊙O 的直径,∴∠ACB=90°,∴tan 2β=BCAC.∵BD ⊥BC ,tan α=BD BC ,BD ∥AC ,∴△PBD ∽△PAC ,∴BD AC =PBPA.∵PB=OB=OA ,∴PB PA =13.∴BD AC =13.∴tan α·tan 2β=BD BC ·BC AC =BDAC人教版九年级数学下册 第二十八章锐角三角函数检测卷一、选择题(每小题3分,共30分)1.已知在Rt △ABC 中,∠C =90°,AB =8,BC =5,那么下列式子中正确的是( A )A.sin A =58B.cos A =58C.tan A =58 D.以上都不对 2.若cos A =32,则∠A 的大小是( A ) A.30° B.45° C.60° D.90°3.已知在Rt △ABC 中,∠C =90°,sin A =37,BC =4,则AB 的长度为( D ) A.43 B.74 C.8103 D.2834.如图,在△ABC 中,AC ⊥BC ,∠ABC =30°,点D 是CB 延长线上的一点,且BD =BA ,则tan ∠DAC 的值为( A )A.2+ 3B.2 3C.3+ 3D.3 35.△ABC 在网格中的位置如图所示(每个小正方形边长为1),AD ⊥BC 于D ,下列四个选项中,错误的是( C )A.sin α=cos αB.tan C =2C.sin β=cos βD.tan α=16.如图,一艘海轮位于灯塔P 的北偏东55°方向,距离灯塔为2 海里的点A处.如果海轮沿正南方向航行到灯塔的正东方向,海轮航行的距离AB长是( C )A.2 海里B.2sin55°海里C.2cos55°海里D.2tan55°海里7.Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C的对边,那么c 等于( B )A.a cos A+b sin BB.a sin A+b sin BC.asin A+bsin B D.acos A+bsin B8.一座楼梯的示意图如图所示,BC是铅垂线,CA是水平线,BA与CA的夹角为θ.现要在楼梯上铺一条地毯,已知CA=4米,楼梯宽度1米,则地毯的面积至少需要( D )A.4sinθ米2 B.4cosθ米2 C.(4+tanθ4)米2 D.(4+4tanθ)米29.如图,要在宽为22米的九洲大道AB两边安装路灯,路灯的灯臂CD长2米,且与灯柱BC成120°角,路灯采用圆锥形灯罩,灯罩的轴线DO与灯臂CD 垂直.当灯罩的轴线DO通过公路路面的中心时照明效果最佳.此时,路灯的灯柱BC高度应该设计为( D )A.(11-22)米B.(113-22)米C.(11-23)米D.(113-4)米10.如图,小明爬山,在山脚下B处看山顶A的仰角为30°,小明在坡度为i=512的山坡BD上去走1300米到达D处,此时小明看山顶A的仰角为60°,则山高AC为( B )A.600-250 3B.6003-250C.350+350 3D.500 3二、填空题(每小题4分,共24分)11.计算:2sin60°12.如图,▱ABCD中,AE⊥BD于E,∠EAC=30°,AE=3,则AC的长等于13.传送带和地面所成斜坡的坡度为1∶0.75,它把物体从地面送到离地面高8米的地方,物体在传送带上所经过的路程为10米.14.如图所示,小芳在中心广场放风筝,已知风筝拉线长100米(假设拉线是直的),且拉线与水平地面的夹角为60°,若小芳的身高忽略不计,则风筝离水平(结果保留根号).15.如图,直线MN与⊙O相切于点M,ME=EF且EF∥MN,则cos∠E=12 .16.△ABC 中,AB =12,AC =39,∠B =30°,则△ABC 的面积是三、解答题(共66分)17.(6分)计算:2cos 245°-(tan60°-2)2-(sin60°-1)0+(12)-2 解:原式=2×(22)2-|3-2|-1+4=1-(2-3)-1+4=3+2.18.(6分)如图,△ABC 中,AD ⊥BC ,垂足是D ,若BC =14,AD =12,tan ∠BAD =34,求sin C 的值.解:∵在直角△ABD 中,tan ∠BAD =BD AD =34,∴BD =AD ·tan ∠BAD =12×34=9,∴CD =BC -BD =14-9=5,∴AC =AD 2+CD 2=122+52=13,∴sin C =AD AC =1213.19.(6分)如图,某商店营业大厅自动扶梯AB 的倾斜角为31°,AB 的长为12米,求大厅两层之间的距离BC 的长.(结果精确到0.1米)(参考数据:sin31°=0.515,cos31°=0.857,tan31°=0.60)解:过B作地平面的垂线段BC,垂足为C.在Rt△ABC中,∵∠ACB=90°,∴BC=AB·sin∠BAC=12×0.515≈6.2(米).即大厅两层之间的距离BC的长约为6.2米.20.(8分)如图是某小区的一个健身器材,已知BC=0.15 m,AB=2.70 m,∠BOD=70°,求端点A到地面CD的距离(精确到0.1 m).(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)解:作AE⊥CD于E,BF⊥AE于F,则四边形EFBC是矩形,∵OD⊥CD,∠BOD=70°,∴AE∥OD,∴∠A=∠BOD=70°,在Rt△AFB中,∵AB=2.7,∴AF=2.7×cos70°≈2.7×0.34=0.918,∴AE=AF+BC≈0.918+0.15=1.068≈1.1 m,答:端点A到地面CD的距离是1.1 m.21.(8分)王浩同学用木板制作一个带有卡槽的三角形手机架,如图所示.已知AC=20 cm,BC=18 cm,∠ACB=50°,王浩的手机长度为17 cm,宽为8 cm,王浩同学能否将手机放入卡槽AB内?请说明你的理由.(提示:sin50°≈0.8,cos50°≈0.6,tan50°≈1.2)解:王浩同学能将手机放入卡槽AB内.理由:作AD⊥BC于点D,∵∠C=50°,AC=20 cm,∴AD=AC·sin50°=20×0.8=16 cm,CD=AC·cos50°=20×0.6=12 cm,∵BC=18 cm,∴DB=BC-CD=18-12=6 cm,∴AB=AD2+BD2=162+62=292,∵17=289<292,∴王浩同学能将手机放入卡槽AB内.22.(10分)如图,某数学兴趣小组要测量一栋五层居民楼CD的高度.该楼底层为车库,高2.5米;上面五层居住,每层高度相等.测角仪支架离地1.5米,在A处测得五楼顶部点D的仰角为60°,在B处测得四楼顶部点E的仰角为30°,AB=14米.求居民楼的高度(精确到0.1米,参考数据:3≈1.73)人教新版九年级下学期单元测试卷:《锐角三角函数》一.选择题1.如图,延长RT△ABC斜边AB到点D,使BD=AB,连接CD,若tan∠BCD=,则tan A =()A.B.1C.D.2.若0°<∠A<45°,那么sin A﹣cos A的值()A.大于0B.小于0C.等于0D.不能确定3.α为锐角,若sinα+cosα=,则sinα﹣cosα的值为()A.B.±C.D.04.关于三角函数有如下公式:sin(α+β)=sinαcosβ+cosαsinβ,sin(α﹣β)=sinαcosβ﹣cosαsinβcos(α+β)=cosαcosβ﹣sinαsinβ,cos(α﹣β)=cosαcosβ+sinαsinβtan(α+β)=(1﹣tanαtanβ≠0),合理利用这些公式可以将一些角的三角函数值转化为特殊角的三角函数来求值,如sin90°=sin(30°+60°)=sin30°cos60°+cos30°sin60°==1利用上述公式计算下列三角函数①s in105°=,②tan105°=﹣2﹣,③sin15°=,④cos90°=0其中正确的个数有()A.1个B.2个C.3个D.4个5.已知sinα=,求α,若用计算器计算且结果为“30”,最后按键()A.AC10N B.SHIET C.MODE D.SHIFT6.如图,在Rt△ABC中,∠ABC=90°,tan∠BAC=2,A(0,a),B(b,0),点C在第二象限,BC与y轴交于点D(0,c),若y轴平分∠BAC,则点C的坐标不能表示为()A.(b+2a,2b)B.(﹣b﹣2c,2b)C.(﹣b﹣c,﹣2a﹣2c)D.(a﹣c,﹣2a﹣2c)7.如图1是一种雪球夹,通过一个固定夹体和一个活动夹体的配合巧妙完成夹雪、投雪的操作,不需人手直接接触雪,使用方便,深受小朋友的喜爱.图2是其简化结构图,当雪球夹闭合时,测得∠AOB=60°,OA=OB=14cm,则此款雪球夹从O到直径AB的距离为()A.14cm B.14cm C.7cm D.7cm8.如图,一辆小车沿坡度为的斜坡向上行驶13米,则小车上升的高度是()A.5米B.6米C.6.5米D.12米9.如图,数学实践活动小组要测量学校附近楼房CD的高度,在水平底面A处安置侧倾器测得楼房CD顶部点D的仰角为30°,向前走20米到达E处,测得点D的仰角为60°已知侧倾器AB的高度为1.6米,则楼房CD的高度约为(结果精确到0.1米)()A.30米B.18.9米C.32.6米D.30.6米10.如图,禁止捕鱼期间,某海上稽查队在某海域巡逻,上午某一时刻在A处接到指挥部通知,在他们东北方向距离12海里的B处有一艘捕鱼船,正在沿南偏东75°方向以每小时10海里的速度航行,稽查队员立即乘坐巡逻船以每小时14海里的速度沿北偏东某一方向出发,在C处成功拦截捕鱼船,则巡逻船从出发到成功拦截捕鱼船所用的时间是()A.1小时B.2小时C.3小时D.4小时二.填空题11.已知Rt△ABC中,∠C=90°,AC=3,∠B=37°,则BC的长为(注:tan ∠B=0.75,sin∠B=0.6,c os∠B=0.8)12.用不等号“>”或“<”连接:sin50°cos50°.13.若tanα=1(0°<α<90°),则sinα=.14.已知,在Rt△ABC中,∠C=90°,tan B=,则cos A=.15.在△ABC中,若|sin A﹣|+(cos B﹣)2=0,则∠C的度数是.16.请从下列两个小题中任选一个作答,若多选,则按第一题计分.A:一个正多边形的一个外角为36°,则这个多边形的对角线有条.B:在△ABC中AB=AC,若AB=3,BC=4,则∠A的度数约为.(用科学计算器计算,结果精确到0.1°.)17.如图,点A(t,2)在第一象限,OA与x轴所夹的锐角为α,sinα=,则t=18.如图,小明想测量学校教学楼的高度,教学楼AB的后面有一建筑物CD,他测得当光线与地面成22°的夹角时,教学楼在建筑物的墙上留下高2米高的影子CE;而当光线与地面成45°的夹角时,教学楼顶A在地面上的影子F与墙角C有13米的距离(点B,F,C在同一条直线上),则AE之间的长为米.(结果精确到lm,参考数据:sin22°≈0.375,cos22°≈0.9375,tan22°≈0.4)三.解答题19.如图,在正方形ABCD中,M是AD的中点,BE=3AE,试求sin∠ECM的值.20.我们知道:sin30°=,tan30°=,sin45°=,tan45°=1,sin60°=,tan60°=,由此我们可以看到tan30°>sin30°,tan45°>sin45°,tan60°>sin60°,那么对于任意锐角α,是否可以得到tanα>sinα呢?请结合锐角三角函数的定义加以说明.21.在Rt△ABC中,∠C=90°,若sin A=.求cos A,sin B,tan B的值.22.计算:3tan30°+cos245°﹣2sin60°.23.(1)验证下列两组数值的关系:2sin30°•cos30°与sin60°;2sin22.5°•cos22.5°与sin45°.(2)用一句话概括上面的关系.(3)试一试:你自己任选一个锐角,用计算器验证上述结论是否成立.(4)如果结论成立,试用α表示一个锐角,写出这个关系式.24.如图,在平面直角坐标系中,P是第一象限的点,其坐标为(6,y),且OP与x轴正半轴的夹角α的正切值为.求:(1)y的值;(2)角α的正弦值.25.某建筑物的金属支架如图所示,根据要求AB长为4m,C为AB的中点,点B到D的距离比立柱CD的长小0.5m,∠BCD=60°,求立柱CD长.26.如图,一段河坝的断面为梯形ABCD,试根据图中数据,求出坡角α和坝底宽AD(结果果保留根号).参考答案一.选择题1.【解答】解:过B作BE∥AC交CD于E.∵AC⊥BC,∴BE⊥BC,∠CBE=90°.∴BE∥AC.∵AB=BD,∴AC=2BE.又∵tan∠BCD=,设BE=x,则AC=2x,∴tan A===,故选:A.2.【解答】解:∵cos A=sin(90°﹣A),余弦函数随角增大而减小,∴当0°<∠A<45°时,sin A<cos A,即sin A﹣cos A<0.故选:B.3.【解答】解:∵sinα+cosα=,∴(sinα+cosα)2=2,即sin2α+cos2α+2sinαcosα=2.又∵sin2α+cos2α=1,∴2sinαcosα=1.∴(sinα﹣cosα)2=sin2α+cos2α﹣2sinαcosα=1﹣2sinαcosα=1﹣1=0.∴sinα﹣cosα=0.故选:D.4.【解答】解:①sin105°=sin(45°+60°)=sin60°cos45°+cos60°sin45°=×+×=,故此选项正确;②tan105°=tan(60°+45°)====﹣2﹣,故此选项正确;③sin15°=sin(60°﹣45°)=sin60°cos45°﹣cos60°sin45°=×﹣×=,故此选项正确;④cos90°=cos(45°+45°)=cos45°cos45°﹣sin45°sin45°=×﹣×=0,故此选项正确;故正确的有4个.故选:D.5.【解答】解:“SHIET”表示使用该键上方的对应的功能.故选:D.6.【解答】解:作CH⊥x轴于H,AC交OH于F.∵tan∠BAC==2,∵∠CBH+∠ABH=90°,∠ABH+∠OAB=90°,∴∠CBH=∠BAO,∵∠CHB=∠AOB=90°,∴△CBH∽△BAO,∴===2,∴BH=﹣2a,CH=2b,∴C(b+2a,2b),由题意可证△CHF∽△BOD,∴=,∴=,∴FH=2c,∴C(﹣b﹣2c,2b),∵2c+2b=﹣2a,∴2b=﹣2a﹣2c,b=﹣a﹣c,∴C(a﹣c,﹣2a﹣2c),故选:C.7.【解答】解:作OG⊥AB于点G,∵OA=OB=14厘米,∠AOB=60°,∴∠AOG=∠BOG=30°,AG=BG,∴OG=OA•cos30°=7厘米,故选:D.8.【解答】解:作BC⊥AC.在Rt△ABC中,∵AB=13m,BC:AC=5:12,∴可以假设:BC=5k,AC=12k,∵AB2=BC2+AC2,∴132=(5k)2+(12k)2,∴k=1,∴BC=5m,故选:A.9.【解答】解:过B作BF⊥CD,作FG⊥BD,∵∠BDF=∠FDC=30°,∴EF=FH,∵∠BGF=90°,∴EF=FH=10,∴DF=20,∴DC=DH+HC=10+1.6≈18.9.故选:B.10.【解答】解:设巡逻船从出发到成功拦截所用时间为x小时;如图所示,由题意得:∠ABC=45°+75°=120°,AB=12,BC=10x,AC=14x,过点A作AD⊥CB的延长线于点D,在Rt△ABD中,AB=12,∠ABD=45°+(90°﹣75°)=60°,∴BD=AB•cos60°=AB=6,AD=AB•sin60°=6,∴CD=10x+6.在Rt△ACD中,由勾股定理得:,解得:(不合题意舍去).答:巡逻船从出发到成功拦截所用时间为2小时.故选:B.二.填空题(共8小题)11.【解答】解:∵∠C=90°,∴tan B=,∴BC===4.故答案为4.12.【解答】解:∵cos50°=sin40°,sin50°>sin40°,∴sin50°>cos50°.故答案为>.13.【解答】解:∵tanα=1(0°<α<90°),∴∠α=45°,则sinα=,故答案为.14.【解答】解:如图,由tan B=,得AC=4k,BC=3k,由勾股定理,得AB=5k,cos A===,故答案为:.15.【解答】解:∵在△ABC中,|sin A﹣|+(cos B﹣)2=0,∴sin A=,cos B=,∴∠A=30°,∠B=60°,∴∠C=180°﹣30°﹣60°=90°.故答案为:90°.16.【解答】解:A、由一个正多边形的一个外角为36°,得360÷36=10,则这个多边形的对角线有=35,B、由AB=AC,若AB=3,BC=4,得cos A=≈0.667,A=42.5故答案为:35,42.5°.17.【解答】解:过A作AB⊥x轴于B.∴sinα=,∵sinα=,∴=,∵A(t,2),∴AB=2,∴OA=,∴t=,故答案为:.18.【解答】解:过点E作EM⊥AB,垂足为M.设AB为xm,在Rt△ABF中,∠AFB=45°,∴BF=AB=xm,∴BC=BF+FC=(x+13)m,在Rt△AEM中,AM=AB﹣BM=AB﹣CE=(x﹣2)m,又tan∠AEM=,∠AEM=22°,∴=0.4,解得x≈12,则ME=BC=BF+13≈12+13=25(m).在Rt△AEM中,cos∠AEM=,∴AE=≈≈27(m),故AE的长约为27m.故答案为:27.三.解答题(共8小题)19.【解答】解:设AE=x,则BE=3x,BC=4x,AM=2x,CD=4x,∴EC==5x,EM==x,CM==2x,∴EM2+CM2=CE2,∴△CEM是直角三角形,∴sin∠ECM==.20.【解答】解:对于任意锐角α,都有tanα>sinα,理由如下:如图,△ABC中,∠C=90°,∠A、∠B、∠C的对边分别是a、b、c,设∠A=α.则tanα=,sinα=,∵b<c,∴>,∴tanα>sinα.21.【解答】解:∵sin A==,∴设AB=13x,BC=12x,由勾股定理得:AC===5x,∴cos A==,sin B=cos A=,tan B==.22.【解答】解:3tan30°+cos245°﹣2sin60°===.23.【解答】解:(1)∵2sin30°•cos30°=2××=,sin60°=.2sin22.5°•cos22.5≈2×0.38×0.92≈0.7,sin45°=≈0.7,∴2sin30°•cos30°=sin60°,2sin22.5°•cos22.5=sin45°;(2)由(1)可知,一个角正弦与余弦积的2倍,等于该角2倍的正弦值;(3)2sin15°•cos15°≈2×0.26×0.97≈,sin30°=;故结论成立;(4)2sinα•cosα=sin2α.24.【解答】解:(1)作PC⊥x轴于C.∵t anα=,OC=6,∴PC=8,即y=8.(2)∵OP==10.则sinα===.25.【解答】解:连接BD,作OB⊥CD于点O,∵在直角三角形BCO中,∠BCD=60°,AB长为4m,C为AB的中点,∴OC=m,OB=OC=m,在直角三角形BOD中,设CD为x,OD=DC﹣OC=x﹣1,BD=CD﹣0.5=x﹣0.5,OB=,可得:,解得:x=3.75,答:CD的长为3.75m.26.【解答】解:过B作BF⊥AD于F.在Rt △ABF 中,AB =5,BF =CE =4.∴AF =3.在Rt △CDE 中,tan α==i =. ∴∠α=30°且DE ==4,∴AD =AF +FE +ED =3+4.5+4=7.5+4.答:坡角α等于30°,坝底宽AD 为7.5+4.人教版九年级下学期第28章锐角三角函数 单元过关测试卷 含参考答案一、选择题(每小题3分,共18分)1、在Rt △ABC 中,∠C =90º,b=53c ,则sinB 的值是( ) A 、53 B 、54 C 、43 D 、34 2、在△ABC中,若1sin 02A B -=,则△ABC 是( ) A 、等腰三角形 B 、等腰直角三角形 C 、直角三角形 D 、等边三角形3、如图,在菱形ABCD 中,DE ⊥AB ,cosA=53,BE=2,则tan ∠DBE 的值是( ) A 、21 B 、2 C 、25 D 、554、如图,长4m 的楼梯AB 的倾斜角∠ABD 为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD 为45°,则调整后的楼梯AC 的长为( )A .32 m B.62 m C .(32﹣2)m D .(62﹣2)m5、一人乘雪橇沿坡度为i=1:3的斜坡滑下,滑下距离S(米)与时间t (秒)之间的关(第3题) (第4题) (第6题) E D C B A D B C A B D C E A系为S=2210t t +,若滑动时间为4秒,则他下降的垂直高度为( )A 、72米B 、36米C 、336米D 、318米6、某数学兴趣小组同学进行测量大树CD 高度的综合实践活动,如图,在点A 处测得直立 于地面的大树顶端C 的仰角为36°,然后沿在同一剖面的斜坡AB 行走13米至坡顶B 处, 然后再沿水平方向行走6米至大树脚底点D 处,斜面AB 的坡度(或坡比)i=1:2.4,那么 大树CD 的高度约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)( )A .8.1米B .17.2米C .19.7米D .25.5米二、填空题(每小题3分,共21分)7、在△ABC 中,∠C =90°,若sinB =31,则sinA 的值为 8、如图,P 是∠α 的边OA 上一点,且点P 的坐标为(3,4), 则sin α=9、升国旗时,某同学站在离旗杆24m 处行注目礼,当国旗升至旗杆顶端时,该同学视线的仰角恰为30°,若两眼距离地面1.2m ,则旗杆高度约为 . (取3=1.732,结果精确到0.1m )10、如图,线段AB 、DC 分别表示甲、乙两座楼房的高,AB ⊥BC , DC ⊥BC ,两建筑物间距离BC=30米,若甲建筑物高AB=28米,在点A 测得D 点的仰角α=45°,则乙建筑物高DC= 米.11、如图所示,河堤横断面迎水坡AB 的坡比是1:3,堤高BC=5m ,则坡面AB 的长度是 米.12、某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为13、四边形的对角线的长分别为,可以证明当时(如图1),四边形的面积,那么当所夹的锐角为θ时(如图2),四边形的面积 .(用含的式子表示) 三、解答题(共61分)14、计算:(8分)(145sin 60)︒-︒(2)3sin60°﹣2cos30°﹣tan60°•tan45°.(第10题) (第11题) (第13题) D 图1 C 图215、(8分)如图,防洪大堤的横断面是梯形,背水坡AB的坡比i (指坡面的铅直高度与水平宽度的比).且AB=20 m .身高为1.7 m 的小明站在大堤A 点,测得高压电线杆端点D 的仰角为30°.已知地面CB 宽30 m ,求高压电线杆CD 的高度(结果保留0.1m,1.732).16、(8分)如图,在四边形ABCD 中,∠BCD 是钝角,AB=AD ,BD 平分∠ABC ,若CD=3,BD=62,sin ∠DBC=33,求对角线AC 的长.17、(8分)某兴趣小组借助无人飞机航拍校园.如图,无人飞机从A处水平飞行至B处需8秒,在地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果保留根号)18、(8分)如图,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾角由45º降为30º,已知原滑滑板AB的长为5米,点D、B、C 在同一水平地面上.(1)改善后滑滑板会加长多少?(精确到0.01)(2)若滑滑板的正前方能有3米长的空地就能保证安全,原滑滑板的前方有6米长的空地,像这样改造是否可行?说明理由 (≈1.411.73≈2.45, )AB19、(10分)通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化。
北师大版九年级下册数学单元测试题全套及答案

北师大版九年级下册数学单元测试题全套及答案(含期中期末试题)第一章检测题(BSD)(考试时间:120分钟 满分:120分)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.如图,在Rt △ABC 中,CD 是斜边AB 上的高线,∠ACD 的正弦值是23,则ACAB 的值是( B )A.255B.23C.355D.522.在Rt △ABC 中,∠C =90°,sin A =45,AC =6 cm ,则BC 的长度为( C )A .6 cmB .7 cmC .8 cmD .9 cm3.在△ABC 中,sin B =cos(90°-∠C )=12,那么△ABC 是( A )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形4.如图,过点C (-2,5)的直线AB 分别交坐标轴于A (0,2),B 两点,则tan ∠OAB =( B ) A.25B.23C.52D.325.为了测量被池塘隔开的A ,B 两点之间的距离,根据实际情况,作出如图所示的图形,其中AB ⊥BE ,EF ⊥BE ,AF 交BE 于点D ,点C 在BD 上,有四位同学分别测量出以下四组数据:①BC ,∠ACB ;②CD ,∠ACB ,∠ADB ;③EF ,DE ,BD ;④DE ,DC ,BC .能根据所测数据,求出A ,B 间距离的有( C )A .1组B .2组C .3组D .4组6.如图,在Rt △ABC 中,∠C =90°,∠A =30°,E 为线段AB 上一点,且AE ∶EB =4∶1,EF ⊥AC 于F ,连接FB ,则tan ∠CFB 的值等于( C )A.33B.233C.533D .53二、填空题(本大题共6小题,每小题3分,共18分) 7.在Rt △ABC 中 ,∠C =90°,BC =5,AB =12,则tan A =512. 8.(2019·赤峰)如图,一根竖直的木杆在离地面3.1 m 处折断,木杆顶端落在地面上,且与地面成38°角,则木杆折断之前高度约为__8.1__m __.(参考数据:sin 38°≈0.62,cos 38°≈0.79,tan 38°≈0.78)9.(2019·咸宁) 如图,某校九(1)班数学课外活动小组在河边测量河宽AB (这段河流的两岸平行),他们在点C 测得∠ACB =30°,点D 处测得∠ADB =60°,CD =80 m ,则河宽AB 约为 __69__ m .(结果保留整数,3≈1.73)10.(2019·柳州)在△ABC 中,sin B =13,tan C =22,AB =3,则AC 的长为 3 .11.如图,小明将一张矩形纸片ABCD 沿CE 折叠,B 点恰好落在AD 边上,设此点为F ,若AB ∶BC =4∶5,则sin ∠DCF 的值为 35.12.如图,在边长为1的小正方形网格中,点A ,B ,C ,D 都在这些小正方形的顶点上,AB ,CD 相交于点O ,则tan ∠AOD = 2 .三、(本大题共5小题,每小题6分,共30分)13.计算:sin 30°-(cos 45°-1)0+32tan 2 30°.解:原式=12-1+32×⎝⎛⎭⎫332=12-1+12=0.14.已知Rt △ABC 中,∠C =90°,∠B =60°,a =4,解这个直角三角形.解:∠A =90°-∠B =90°-60°=30°.由tan B =ba,得b =a tan B =4tan 60°=4 3.由cos B=a c ,得c =a cos B =4cos 60°=8.所以∠A =30°,b =43,c =8. 15.已知α为锐角,且tan α是方程x 2+2x -3=0的一个根,求2sin 2α+cos 2α- 3 tan (α+15°)的值.解:解方程x 2+2x -3=0, 得x 1=1,x 2=-3.∵tan α>0,∴tan α=1,∴α=45°,∴2sin 2α+cos 2α-3tan (α+15°)=2sin 245°+cos 245°-3tan 60°=2×⎝⎛⎭⎫222+⎝⎛⎭⎫222-3×3=1+12-3=-32.16.数学拓展课程《玩转学具》课堂中,小陆同学发现:一副三角板中,含45°角的三角板的斜边与含30°角的三角板的长直角边相等.于是,小路同学提出一个问题:如图,将一副三角板直角顶点重合后拼放在一起,点B ,C ,E 在同一直线上.若BC =2,求AF 的长.(请你运用所学的数学知识解决这个问题)解:在Rt △ABC 中,BC =2,∠A =30°, ∴AC =BC tan A =2tan 30°=2 3. 由题意,得EF =AC =2 3. 在Rt △EFC 中,∠E =45°, ∴CF =EF·sin 45°=23×22=6, ∴AF =AC -CF =23- 6.17.(2019·通辽)两栋居民楼之间的距离CD =30 m ,楼AC 和BD 均为10层,每层楼高为3 m .上午某时刻,太阳光线GB 与水平面的夹角为30°,此刻楼BD 的影子会遮挡到AC 的第几层?(参考数据:3≈1.7,2≈1.4)解:设太阳光线GB 交AC 于点F ,过F 作FH ⊥BD 于H ,AC =BD =3×10=30 m ,FH =CD =30 m ,∠BFH =∠α=30°,在RtBFH 中,tan ∠BFH =BH FH =BH 30=33,∴BH =30×33=103≈10×1.7=17,∴FC =HD =BD -BH ≈30-17=13,∵133≈4.3,所以在四层的上面,即第五层.答:此刻楼BD 的影子会遮挡到楼AC 的5层.四、(本大题共3小题,每小题8分,共24分)18.(2019·深圳)如图所示,某施工队要测量隧道长度BC ,AD =600米,AD ⊥BC ,施工队站在点D 处看向B ,测得仰角为45°,再由D 走到E 处测量,DE ∥AC ,ED =500米,测得仰角为53°,求隧道BC 的长.(sin 53°≈45,cos 53°≈ 35,tan 53°≈43)解:在RtABD 中,AB =AD =600(米),作EM ⊥AC 于M ,则AM =DE =500(米),∴BM =100米,在Rt △CEM 中,tan 53°=CM EM =CM 600=43,∴CM =800(米),∴BC =CM -BM =800-100=700(米).答:隧道BC 长为700米.19.(2019·广元)如图,某海监船以60海里/小时的速度从A 处出发沿正西方向巡逻,一可疑船只在A 的西北方向的C 处,海监船航行1.5小时到达B 处时接到报警,需巡查此可疑船只,此时可疑船只仍在B 的北偏西30°方向的C 处,然后,可疑船只以一定速度向正西方向逃离,海监船立刻加速以90海里/小时的速度追击,在D 处海监船追到可疑船只,D 在B 的北偏西60°方向.(以下结果保留根号)(1)求B ,C 两处之间的距离;(2)求海监船追到可疑船只所用的时间.解:(1)过点C 作CE ⊥AB 于点E ,在Rt △BCE 中,∵∠BCE =30°,∴BE =BC ×sin ∠BCE =12BC ,CE =BC ×cos ∠BCE =32BC ,在Rt △ACE 中, ∵∠A =45°.∴AE =CE =32BC ,∵AB =60×1.5=90,∴AE -BE =32BC -12BC =90,解得BC =90(3+1).故B ,C 相距(903+90)海里.(2)过点D 作DF ⊥AB 于F ,由(1),得DF =CE =32BC ,∴DF =135+453,在Rt △BDF 中,∠DBF =30°,∴BD =2DF =270+903,∴海监船追到可疑船只所用的时间为(270+903)÷90=(3+3)h.20.已知:如图,在四边形ABCD 中,∠ABC =∠ADC =90°,DE ⊥BC 于E ,连接BD.若tan C =2,BE =3,CE =2,求点B 到CD 的距离.解:过点B 作BF ⊥CD ,垂足为F ,则∠BFC =90°.∵DE ⊥BC ,∴∠DEC =∠DEB =90°,在Rt △DEC 中,∵tan C =2,EC =2,∴DE =4.在Rt △BFC 中,∵tan C =2,∴BF =2FC ,设BF =x ,则FC =12x ,∵BF 2+FC 2=BC 2,∴x 2+(12x)2=(3+2)2,解得x =25,即BF =2 5.答:点B 到CD 的距离是2 5.五、(本大题共2小题,每小题9分,共18分)21.如图,点E 是矩形ABCD 中CD 边上一点,△BCE 沿BE 折叠为△BFE ,点F 落在AD 上. (1)求证:△ABF ∽△DFE ;(2)若sin ∠DFE =13,求tan ∠EBC 的值.(1)证明:∵∠A =∠D =90°,∠ABF 与∠DFE 都与∠AFB 互余,∴∠ABF =∠DFE ,∴△ABF ∽△DFE ;(2)解:∵sin ∠DFE =DE EF =13,∴设DE =k .则EF =CE =3k ,AB =CD =4k ,∴DF =EF 2-DE 2=22k ,由△ABF ∽△DFE ,得AF DE =AB DF ,即AF k =4k22k ,∴AF =2k ,∴BC =AD =2k +22k =32k ,∴tan ∠EBC =CE BC =3k 32k =22. 22.小明坐于堤边垂钓,如图,河堤AC 的坡角为30°,AC 长332米,钓竿AO 的倾斜角是60°,其长为3米,若AO 与钓鱼线OB 的夹角为60°,求浮漂B 与河堤下端C 之间的距离.解:如图,延长OA 交直线BC 于点D ,∵AO 的倾斜角是60°,∴∠ODB =60°.∵∠ACD =30°,∴∠CAD =180°-∠ODB -∠ACD =90°.在Rt △ACD 中,AD =AC·tan ∠ACD =332·33=32(米).∴CD =2AD =3(米). 又∵∠O =60°,∴△BOD 为等边三角形.∴BD=OD=OA+AD=3+32=4.5(米).∴BC=BD-CD=4.5-3=1.5米.答:浮漂B与河堤下端C之间的距离为1.5米.六、(本大题共12分)23.在一次科技活动中,小明进行了模拟雷达扫描实验.表盘是△ABC,其中AB=AC,∠BAC =120°,在点A处有一束红外光线AP,从AB开始,绕点A逆时针匀速旋转,每秒钟旋转15°,到达AC后立即以相同旋转速度返回AB,到达后立即重复上述旋转过程.小明通过实验发现,光线从AB 处旋转开始计时,旋转1秒,此时光线AP交BC边于点M,BM的长为(203-20) cm.(1)求AB的长;(2)从AB处旋转开始计时,若旋转6秒,此时光线AP与BC边的交点在什么位置?若旋转2 030秒,交点又在什么位置?请说明理由.解:(1)如图①,过A点作AD⊥BC,垂足为D.∵∠BAC=120°,AB=AC,∴∠ABC=∠C=30°.令AB=2t cm.在Rt△ABD中,AD=12AB=t,BD=32AB=3t.在Rt AMD中,∵∠AMD=∠ABC+∠BAM=45°,∴MD=AD=t.∵BM=BD-MD.即3t-t=203-20.解得t=20.∴AB=2×20=40 cm.答:AB的长为40 cm.(2)如图②,当光线旋转6秒,设AP交BC于点N,此时∠BAN=15°×6=90°.在Rt△ABN中,BN=ABcos 30°=4032=8033cm.∴光线AP旋转6秒,与BC的交点N距点B8033cm处.如图③,设光线AP旋转2 030秒后光线与BC的交点为Q.由题意可知,光线从边AB开始到第一次回到AB处需8×2=16秒,而2 030=126×16+14,即AP旋转2 030秒与旋转14秒时和BC的交点是同一个点Q.旋转14s的过程是B→C:8s,C→Q:6s,因此CQ=BN=8033cm,∵AB=AC,∠BAC=120°,∴BC=2ABcos 30°=2×40×32=40 3 cm,∴BQ=BC-CQ=403-8033=4033cm.答:光线AP旋转2 030秒后,与BC的交点Q在距点B的4033cm处.第二章检测题(BSD)(考试时间:120分钟满分:120分)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.已知抛物线y=x2+ax+b与x轴的交点坐标为(-1,0)和(-3,0),则方程x2+ax+b=0的解是( B )A.x1=1,x2=-3 B.x1=-1,x2=-3C.x=-3 D.x=32.如图,在Rt△ABC中,∠C=90°,AC=4 cm,BC=6 cm,动点P从点C开始沿CA以1 cm/s 的速度向A点运动,同时动点Q从点C开始沿CB以2 cm/s的速度向B点运动,其中一个动点到达终点时,另一个动点也停止运动,则运动过程中所构成的△CPQ的面积y(cm2)与运动时间x(s)之间的函数图象大致是( C )3.已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=-t2+24t +1.则下列说法中正确的是( D )A.点火后9 s和点火后13 s的升空高度相同B.点火后24 s火箭落于地面C.点火后10 s的升空高度为139 mD.火箭升空的最大高度为145 m4.若二次函数y=ax2+bx+c(a≠0)经过原点和第一、二、三象限,则(A)A.a>0,b>0,c=0 B.a>0,b<0,c=0C.a<0,b>0,c=0 D.a<0,b<0,c=05.(2019·烟台)已知二次函数y=ax2+bx+c(a≠0)的y与x的部分对应值如下表,下列结论:①抛物线的开口向上;②抛物线的对称轴为直线x=2; ③当0<x<4时,y>0;④抛物线与x轴的两个交点间的距离是4;⑤若A(x1,2),B(B)A.2 B.36.(2019·巴中)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论①b2>4ac,②abc<0,③2a+b -c >0,④a +b +c <0.其中正确的是( A )A .①④B .②④C .②③D .①②③④二、填空题(本大题共6小题,每小题3分,共18分)7.已知一条抛物线的开口大小与y =x 2相同但方向相反,且顶点坐标是(2,3),则该抛物线的表达式是 y =-x 2+4x -1 .8.飞机着陆后滑行的距离y (单位:m)关于滑行时间t (单位:s)的函数表达式是y =60t -32t 2,在飞机着陆滑行中,最后4 s 滑行的距离是 24 m.9.若二次函数y =2x 2-4x -1的图象与x 轴交于A (x 1,0),B (x 2,0)两点,则1x 1+1x 2的值为 -4 .10.如图,已知△OBC 是等腰直角三角形,∠OCB =90°,若点B 的坐标为(4,0),点C 在第一象限,则经过O ,B ,C 三点的抛物线的表达式是 y =-12x 2+2x .11.已知二次函数y =ax 2+2ax +3a 2+3(a ≠0)(其中x 是自变量),当x ≥2时,y 随x 的增大而增大,且-2≤x ≤1时,y 的最大值为9,则a 的值是__1__.12.如图,在平面直角坐标系xOy 中,已知抛物线y =ax 2+bx(a>0)的顶点为C ,与x 轴的正半轴交于点A ,它的对称轴与抛物线y =ax 2(a>0)交于点B.若四边形ABOC 是正方形,则b 的值是 -2 .三、(本大题共5小题,每小题6分,共30分)13.已知当x =2时,抛物线y =a(x -h)2有最大值,此抛物线过点(1,-3),求抛物线的表达式,并指出当x 为何值时,y 随x 的增大而减小.解:当x =2时,有最大值,所以h =2.此抛物线过(1,-3),所以-3=a(1-2)2,解得a =-3.此抛物线的表达式为y =-3(x -2)2.当x >2时,y 随x 的增大而减小.14.已知抛物线y =-3x 2经过平移经过点(0,0)和(1,9),求出平移后抛物线的表达式,并写出它的对称轴和顶点坐标.解:设平移后抛物线的表达式为y =-3x 2+bx +c ,将点(0,0)和(1,9)的坐标代入,得⎩⎨⎧c =0,-3+b +c =9,解得⎩⎪⎨⎪⎧b =12,c =0.∴平移后抛物线的表达式为y =-3x 2+12x.∵y =-3x 2+12x =-3(x -2)2+12,∴对称轴为直线x=2,顶点坐标为(2,12).15.已知抛物线y =-a(x -2)2+3经过点(1,2).(1)求a 的值;(2)若点A(m ,y 1),B(n ,y 2)(m >n >2)都在该抛物线上,试比较y 1与y 2的大小. 解:(1)把(1,2)代入y =-a(x -2)2+3,得2=-a(1-2)2+3,解得a =1;(2)由(1)知原抛物线的表达式为y =-(x -2)2+3,其开口向下,对称轴为直线x =2, ∴当x >2时,y 随x 的增大而减小. ∵m >n >2,∴y 1<y 2.16.如图,在平面直角坐标系xOy 中,边长为2的正方形OABC 的顶点A ,C 分别在x 轴、y 轴的正半轴上,二次函数y =-23x 2+bx +c 的图象经过B ,C 两点.(1)求该二次函数的表达式;(2)结合函数的图象探索,当y >0时,x 的取值范围.解:(1)由题意可得B(2,2),C(0,2),将B ,C 坐标代入y =-23x 2+bx +c ,解得c =2,b =43,所以二次函数的表达式是y =-23x 2+43x +2.(2)令y =0,解-23x 2+43x +2=0,得x 1=3,x 2=-1,由图象可知:y >0时,x 的取值范围是-1<x <3.17.如图,抛物线y =ax 2+bx -5(a ≠0)与x 轴交于点A(-5,0)和点B(3,0),与y 轴交于点C.(1)求该抛物线的表达式;(2)若点E 为x 轴下方抛物线上的一动点,当S △ABE =S △ABC 时,求点E 的坐标.解:(1)∵抛物线经过A ,B 两点,∴把A(-5,0),B(3,0)代入y =ax 2+bx -5,得⎩⎨⎧25a -5b -5=0,9a +3b -5=0,解得⎩⎨⎧a =13,b =23,∴该抛物线的表达式为y =13x 2+23x -5.(2)∵y =13x 2+23x -5,∴令x =0,则y =-5.∴C 点的坐标为(0,-5),∵S △ABE =S △ABC ,∴点E的纵坐标与点C 的纵坐标相等,即点E 的纵坐标为-5,令13x 2+23x -5=-5,解得x 1=-2,x 2=0(舍去),∴点E 的坐标为(-2,-5).四、(本大题共3小题,每小题8分,共24分) 18.已知二次函数y =x 2-(2m -1)x +m 2-m.(1)求证:此二次函数图象与x 轴必有两个不同的交点;(2)若此二次函数图象与直线y =x -3m +4的一个交点在y 轴上,求m 的值.(1)证明:令y =0,有x 2-(2m -1)x +m 2-m =0,Δ=b 2-4ac =(2m -1)2-4(m 2-m)=1>0,∴结论成立;(2)解:令x =0,代入y =x 2-(2m -1)x +m 2-m 与y =x -3m +4,得m 2-m =-3m +4,∴m =-1+5或-1- 5.19.杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看作一点)的路线是抛物线y =-35x 2+3x +1的一部分,如图.(1)求演员弹跳离地面的最大高度;(2)已知人梯高BC =3.4 m ,在一次表演中人梯到起点A 的水平距离为4 m ,问这次表演是否成功?请说明理由.解:(1)∵y =-35x 2+3x +1=-35⎝⎛⎭⎫x -522+194,∴该演员弹跳高度的最大值为194m ; (2)当x =4时,y =-35×42+3×4+1=3.4,∴这次表演是成功的.20.如图,已知抛物线y =ax 2-4x +c 经过点A(0,-6)和B(3,-9).(1)求出抛物线的表达式;(2)写出抛物线的对称轴及顶点坐标;(3)点P(m ,m)(其中m >0)与点Q 均在抛物线上,且这两点关于抛物线的对称轴对称,求m 的值及点Q 的坐标.解:(1)依题意有⎩⎨⎧a ×02-4×0+c =-6,a ×32-4×3+c =-9,即⎩⎨⎧c =-6,9a -12+c =-3,∴⎩⎪⎨⎪⎧a =1,c =-6.∴抛物线的表达式为y =x 2-4x -6.(2)把y =x 2-4x -6配方得y =(x -2)2-10,∴对称轴为直线x =2,顶点坐标(2,-10).(3)由点P(m ,m)在抛物线上,有m =m 2-4m -6,即m 2-5m -6=0.∴m 1=6或m 2=-1(舍去),∴m =6,∴P 点的坐标为(6,6).∵点P ,Q 均在抛物线上,且关于对称轴x =2对称,∴Q 点的坐标为(-2,6). 五、(本大题共2小题,每小题9分,共18分)21.把抛物线y =12x 2平移得到抛物线m ,抛物线m 经过点A(-6,0)和原点O(0,0),它的顶点为P ,它的对称轴与抛物线y =12x 2交于点Q.(1)求顶点P 的坐标; (2)写出平移过程;(3)求图中阴影部分的面积.解:(1)设抛物线m 的表达式为y =12x 2+bx +c ,把点A(-6,0),原点O(0,0)代入,得b =3,c=0,∴抛物线m 的表达式为y =12x 2+3x =12(x +3)2-92,所以顶点P 的坐标为⎝⎛⎭⎫-3,-92. (2)把抛物线y =12x 2先向左平移3个单位长度,再向下平移92个单位长度即可得到抛物线y =12(x +3)2-92.(3)Q 点横坐标为-3,代入y =12x 2,可得Q ⎝⎛⎭⎫-3,92,图中阴影部分的面积=S △OPQ =12×3×9=272. 22.(2019·南充)在“我为祖国点赞”征文活动中,学校计划对获得一、二等奖的学生分别奖励一支钢笔、一本笔记本.已知购买2支钢笔和3个笔记本共38元,购买4支钢笔和5个笔记本共70元. (1)钢笔、笔记本的单价分别为多少元?(2)经与商家协商,购买钢笔超过30支时,每增加1支,单价降低0.1元;超过50支,均按购买50支的单价售,笔记本一律按原价销售.学校计划奖励一、二等奖学生共计100人,其中一等奖的人数不少于30人,且不超过60人,这次奖励一等奖学生多少人时,购买奖品总金额最少,最少为多少元?解:(1)设钢笔、笔记本的单价分别为x ,y 元,根据题意得,⎩⎨⎧2x +3y =38,4x +5y =70,解得:⎩⎪⎨⎪⎧x =10,y =6.答:钢笔、笔记本的单价分别为10元,6元;(2)设钢笔的单价为a 元,购买数量为b 支,支付钢笔和笔记本的总金额为w 元, ①当30≤b ≤50时,a =10-0.1(b -30)=-0.1b +13,w =b(-0.1b +13)+6(100-b)=-0.1b 2+7b +600=-0.1(b -35)2+722.5,∵当b =30时,w =720,当b =50时,w =700, ∴当30≤b ≤50时,700≤w ≤722.5;②当50<b ≤60时,a =8,w =8b +6(100-b)=2b +600,700<w ≤720,∴当30≤b ≤60时,w 的最小值为700元.答:这次奖励一等奖学生50人时,购买的奖品总金额最少,最少为700元.六、(本大题共12分)23.(2019·新疆)如图,抛物线y =ax 2+bx +c 经过A (-1,0),B (4,0),C (0,4)三点. (1)求抛物线的表达式及顶点D 的坐标; (2)将(1)中的抛物线向下平移154个单位长度,再向左平移h (h >0)个单位长度,得到新抛物线.若新抛物线的顶点D ′在△ABC 内,求h 的取值范围;(3)点P 为线段BC 上一动点(点P 不与点B ,C 重合),过点P 作x 轴的垂线交(1)中的抛物线于点Q ,当△PQC 与△ABC 相似时,求△PQC 的面积.题图 答图解:(1)函数表达式为y =a(x +1)(x -4)=a(x 2-3x -4),即-4a =4,解得a =-1,故抛物线的表达式为y =-x 2+3x +4,顶点D(32,254);(2)抛物线向下平移154个单位长度,再向左平移h(h>0)个单位长度,得到新抛物线的顶点D' (32-h ,52),将点A ,C 的坐标代入一次函数表达式并解得直线AC 的表达式为y =4x +4,将点D' 坐标代入直线AC 的表达式得:52=4(32-h)+4,解得h =158,故0<h<158;(3)过点P 作y 轴的平行线交抛物线和x 轴于点Q ,H ,∵OB =OC =4,∴∠PBA =∠OCB =45°=∠QPC ,直线BC 的表达式为y =-x +4,则AB =5,BC =42,AC =17,S ABC =12×5×4=10,设点Q(m ,-m 2+3m +4),点P(m ,-m +4),CP =2m ,PQ =-m 2+3m +4+m -4=-m 2+4m ,①当△CPQ ∽△CBA ,PC BC =PQ AB ,即2m42=-m 2+4m 5,解得m =114,相似比为PC BC =1116,②当△CPQ ∽△ACB ,同理可得相似比为PC AB =12225,利用面积比等于相似比的平方可得S PQC=10×(1116)2=605128或SPQC =10×(12225)2=576125. 第三章检测题(BSD)(考试时间:120分钟 满分:120分)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.已知⊙P 的半径为4,圆心P 的坐标为(1,2),点Q 的坐标为(0,5),则点Q 与⊙P 位置关系是( C )A .点Q 在⊙P 外B .点Q 在⊙P 上C .点Q 在⊙P 内D .不能确定2.如图,在⊙O 中,弦AB ∥CD ,若∠ABC =40°,则∠BOD 等于( D ) A .20° B .40° C .50° D.80°3.如图,⊙O 的半径为3,四边形ABCD 内接于⊙O ,连接OB ,OD ,若∠BOD =∠BCD ,则BD ︵的长为( C )A .πB.32πC .2πD .3π4.同一个圆的内接正六边形和外切正六边形的周长之比为( B )A .3∶4B .3∶2C .2∶ 3D .1∶25.如图,AC 是⊙O 的直径,弦BD ⊥AO 于点E ,连接BC ,过点O 作OF ⊥BC 于点F ,若BD =8 cm ,AE =2 cm ,则OF 的长度是( D )A .3 cmB . 6 cmC .2.5 cmD . 5 cm 6.如图,将正方形ABCD 绕点A 按逆时针方向旋转30°,得正方形AB 1C 1D 1,B 1C 1交CD 于点E ,AB =3,则四边形AB 1ED 的内切圆半径为( B )A .3+12B .3-32C .3+13D .3-33二、填空题(本大题共6小题,每小题3分,共18分)7.如图,四边形ABCD 内接于⊙O ,若∠BOD =138°,则它的一个外角∠DCE 等于69° . 8.如图,量角器的0度刻度线为AB ,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C ,直尺另一边交量角器于点A ,D ,量得AD =10 cm ,点D 在量角器上的读数为60°,则该直尺的宽度为533 cm . 9.如图,AB 是⊙O 的直径,点C 在⊙O 上,过点C 的切线与BA 的延长线交于点D ,点E 在BC ︵上(不与点B ,C 重合),连接BE ,CE.若∠D =40°,则∠BEC =115度.10.(2019·内江)如图,在平行四边形ABCD 中,AB<AD ,∠A =150°,CD =4,以CD 为直径的⊙O 交AD 于点E ,则图中阴影部分的面积为2π3+ 3 . 11.如图,P 是反比例函数y =4x (x >0)的图象上一点,以点P 为圆心、1个单位长度为半径作⊙P ,当⊙P 与直线y =3相切时,点P 的坐标为 (1,4)或(2,2) .12.(2019·包头)如图,BD 是⊙O 的直径,A 是⊙O 外一点,点C 在⊙O 上,AC 与⊙O 相切于点C ,∠CAB =90°,若BD =6,AB =4,∠ABC =∠CBD ,则弦BC 的长为.三、(本大题共5小题,每小题6分,共30分)13.如图,⊙O 是△ABC 的外接圆,∠A =45°,BD 是直径,BD =2,连接CD ,求BC 的长.解:在⊙O 中,∵∠A =45°,∴∠D =45°. ∵BD 为⊙O 的直径, ∴∠BCD =90°, ∴BC =BD·sin 45°=2×22= 2. 14.如图,已知CD 平分∠ACB ,DE ∥AC.求证:DE =BC.证明:∵CD 平分∠ACB ,∴∠ACD =∠BCD ,∴BD ︵=AD ︵,∵DE ∥AC ,∴∠ACD =∠CDE ,∴AD ︵=CE ︵,∴BD ︵=CE ︵,∴DE ︵=BC ︵,∴DE =BC.15.如图,两个同心圆中,大圆的弦AB ,AC 分别切小圆于点D ,E ,△ABC 的周长为12 cm ,求△ADE 的周长.解:连接OD ,OE.∵AB ,AC 分别切小圆于点D ,E , ∴OD ⊥AB ,OE ⊥AC , ∴AD =DB ,AE =EC , ∴DE 是△ABC 的中位线,∴DE =12BC ,∴C △ADE =12C △ABC =12×12=6 cm .16.如图所示,⊙O 的直径AB 长为6,弦AC 的长为2,∠ACB 的平分线交⊙O 于点D ,求四边形ADBC 的面积.解:∵AB 是⊙O 的直径, ∴∠ACB =∠ADB =90°.在Rt △ABC 中,由勾股定理,得 BC =AB 2-AC 2=62-22=4 2. 又∵CD 平分∠ACB , ∴AD ︵=BD ︵,∴AD =BD.在Rt △ABD 中,由勾股定理,得AD =BD =22AB =22×6=3 2. ∴S 四边形ADBC =S △ABC +S △ABD =42+9,∴四边形ADBC 的面积为42+9.17.如图,点I 是△ABC 的内心,AI 的延长线交BC 于点D ,交△ABC 的外接圆于点E.求证:IE 2=AE·DE.证明:连接BE ,BI.∵I 为△ABC 的内心,∴∠1=∠2,∠3=∠4. 又∵∠6=∠1+∠3,∠IBE =∠4+∠5, ∠5=∠2=∠1,∴∠IBE =∠6,∴IE =BE. ∵∠5=∠1,∠E =∠E ,∴△BED∽△AEB,∴BEDE=AEBE,∴BE2=AE·DE,∴IE2=AE·DE.四、(本大题共3小题,每小题8分,共24分)18.如图,在直角坐标系中,点O′的坐标为(-2,0),⊙O′与x轴相交于原点O和点A,B,C 两点的坐标分别为(0,b),(1,0).(1)当b=3时,求经过B,C两点的直线的表达式;(2)当B点在y轴上运动时,直线BC与⊙O′有哪几种位置关系?并求出每种位置关系时b的取值范围.解:(1)直线BC表达式为y=-3x+3.(2)当BC切⊙O′于第二象限时,记切点为点D.易得DC= 5.∵BO=BD=b,∴BC=5-b.12+b2=(5-b)2,得b=25 5.同理当BC切⊙O′于第三象限D1点时,可求得b=-25 5.故当b>255或b<-255时,直线BC与⊙O′相离;当b=255或-255时,直线BC与⊙O′相切;当-255<b<255时,直线BC与⊙O′相交.19.(2018·南充)如图,C是⊙O上一点,点P在直径AB的延长线上,⊙O的半径为3,PB=2,PC=4.(1)求证:PC是⊙O的切线.(2)求tan∠CAB的值.(1)证明:连接OC,BC,∵⊙O的半径为3,PB=2,∴OC=OB=3,OP=OB+PB=5.∵PC=4,∴OC2+PC2=OP2,∴△OCP是直角三角形,∴OC⊥PC,∴PC是⊙O的切线.(2)解:∵AB是直径,∴∠ACB=90° ,∴∠ACO+∠OCB=90°,∵OC⊥PC,∴∠BCP+∠OCB =90°,∴∠BCP=∠ACO.∵OA=OC,∴∠A=∠ACO,∴∠A=∠BCP,在△PBC和△PCA中,∠BCP=∠A,∠P=∠P,∴△PBC∽△PCA,∴BCAC=PBPC=24=12,∴tan∠CAB=BC AC=12.20.(齐齐哈尔中考)如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE∥BD,连接BE,DE,BD,设BE交AC于点F,若∠DEB=∠DBC.(1)求证:BC是⊙O的切线;(2)若BF=BC=2,求图中阴影部分的面积.(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.又∵∠A=∠DEB,∠DEB=∠DBC,∴∠A=∠DBC,∴∠DBC+∠ABD=90°,即∠ABC=90°∴BC是⊙O的切线.(2)解:∵BF=BC=2且∠ADB=90°,∴∠CBD=∠FBD,又∵OE∥BD,∴∠FBD=∠OEB.∵OE=OB,∴∠OEB=∠OBE,∴∠CBD=∠DBE=∠OBE=13∠ABC=13×90°=30°,∴∠C=60°,∴AB=3BC=23,∴⊙O的半径为3,连接OD,∴阴影部分面积为S扇形OBD-S△OBD=16π×3-34×3=π2-334.五、(本大题共2小题,每小题9分,共18分)21.(2019·安顺)如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC,AC分别交于D,E 两点,过点D作DH⊥AC于点H.(1)判断DH与⊙O的位置关系,并说明理由;(2)求证:点H为CE的中点;(3)若BC=10,cos C=55,求AE的长.(1)解:DH与⊙O相切.理由:连接OD,AD,∵AB为直径,∴∠ADB=90°,∵AB=AC,∴BD=CD,∵OA=OB,∴OD∥AC,∵DH⊥AC,∴DH⊥OD,∴DH为⊙O的切线.(2)证明:连接DE,∵A,B,D,E四点共圆,∴∠DEC=∠B,∵AB=AC,∴∠B=∠C,∴∠DEC=∠C,∴CD=ED,∵DH⊥CE,∴点H为CE的中点.(3)解:CD=12BC=5,∵cos C=CDAC=55,∴AC=55,∵cos C=CHCD=55,∴CH=5,∴CE=2CH =25,∴AE =AC -CE =3 5.22.如图,在Rt △ABC 与Rt △OCD 中,∠ACB =∠DCO =90°,点O 为AB 的中点.(1)求证:∠B =∠ACD ;(2)已知点E 在AB 上,且BC 2=AB ·BE . ①若tan ∠ACD =34,BC =10,求CE 的长;②试判断CD 与以A 为圆心,AE 为半径的⊙A 的位置关系,并请说明理由.(1)证明:∵∠ACB =∠DCO =90°,∴∠ACB -∠ACO =∠DCO -∠ACO ,即∠ACD =∠OCB ; 又∵点O 是AB 的中点,∴OC =OB , ∴∠OCB =∠B , ∴∠B =∠ACD .(2)解:①∵BC 2=AB ·BE ,∴BC AB =BEBC.∵∠B =∠B ,∴△ABC ∽△CBE ,∴∠ACB =∠CEB =90°. ∵∠ACD =∠B ,∴tan ∠ACD =tan B =34,设BE =4x ,则CE =3x .由勾股定理,可知BE 2+CE 2=BC 2, ∴(4x )2+(3x )2=100,∴解得x =2,∴CE =6.②CD 与⊙A 相切.理由如下: 过点A 作AF ⊥CD 于点F .∵∠CEB =90°,∴∠B +∠ECB =90°. ∵∠ACE +∠ECB =90°,∴∠B =∠ACE .∵∠ACD =∠B ,∴∠ACD =∠ACE ,∴CA 平分∠DCE .∵AF ⊥CD ,AE ⊥CE ,∴AF =AE ,∴直线CD 与⊙A 相切.六、(本大题共12分)23.(2019·荆州)如图AB 是⊙O 的直径,点C 为⊙O 上一点,点P 是半径OB 上一动点(不与O ,B 重合),过点P 作射线l ⊥AB ,分别交弦BC ,BC ︵于D ,E 两点,在射线l 上取点F ,使FC =FD .(1)求证:FC 是⊙O 的切线; (2)当点E 是BC ︵的中点时,①若∠BAC =60°,判断O ,B ,E ,C 为顶点的四边形是什么特殊四边形,并说明理由; ②若tan ∠ABC =34,且AB =20,求DE 的长.(1)证明:连接OC ,∵OB =OC ,∴∠OBC =∠OCB ,∵PF ⊥AB ,∴∠BPD =90°,∴∠OBC +∠BDP =90°,∵FC =FD, ∴∠FCD =∠FDC ,∵∠FDC =∠BDP ,∴∠FCD =∠BDP ,∴∠OCB +∠FCD =90°,∴OC ⊥FC ,FC 是⊙O 的切线.(2)解:连接OC ,OE ,BE ,CE ,OE 与BC 交于H. ①以O ,B ,E ,C 为顶点的四边形是菱形.理由:∵AB 是直径,∴∠ACB =90°,∵∠BAC =60°,∴∠BOC =120°,∵点E 是BC ︵的中点,∴∠BOE =∠COE =60°,∵OB =OE =OC ,∴△BOE ,△COE 均为等边三角形,∴OB =BE =CE =OC ,∴四边形BOCE 是菱形.②∵AC BC =tan ∠ABC =34,设AC =3k ,BC =4k ,k>0.由AC 2+BC 2=AB 2,即(3k)2+(4k)2=202,解得k =4,∴AC =12,BC =16,∵点E 是BC ︵的中心,∴OE ⊥BC ,BH =CH =8,∵S △BOE =12OE·BH =12OB·PE ,即12×10×8=12×10×PE ,∴PE =8,又OP =OE 2-PE 2=6,∴BP =OB -OP =4,∵DP BP =tan ∠ABC =34,∴DP =34BP =3,∴DE =PE -DP =8-3=5.期中检测题(BSD)(考试时间:120分钟 满分:120分)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.对于函数y =-2(x -m)2的图象,下列说法不正确的是( D ) A .开口向下 B .对称轴是x =m C .最大值为0 D .与y 轴不相交 2.在Rt △ABC 中,∠C =90°,AB =6,tan B =33,则Rt △ABC 的面积为( B ) A .9 3B .923C .9D .183.如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A 处时,测得岛屿P 恰好在其正北方向,继续向东航行1小时到达B 处,测得岛屿P 在其北偏西30°方向,保持航向不变又航行2小时到达C 处,此时海监船与岛屿P 之间的距离(即PC 的长)为( D )A .40海里B .60海里C .203海里D .403海里4.若抛物线y =x 2+ax +b 与x 轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线x =1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点 ( B )A .(-3,-6)B .(-3,0)C .(-3,-5)D .(-3,-1)5.如图,在Rt △ABC 中,∠ACB =90°,∠A <∠B ,沿△ABC 的中线CM 将△CMA 折叠,使点A 落在点D 处,若CD 恰好与MB 垂直,则tan A 的值为( A )A .33B . 3C .12D .136.已知抛物线y =ax 2+bx +c 的图象如图所示,则|a -b +c|+|2a +b|等于( D ) A .a +b B .a -2b C .a -b D .3a 二、填空题(本大题共6小题,每小题3分,共18分)7.某种型号的迫击炮发射炮弹时的飞行高度h(m )与飞行时间t(s )的关系满足h =-13t 2+10t ,则经过 30 s ,发射的炮弹落地爆炸.8.在△ABC 中,∠A ,∠B 都是锐角,若⎪⎪⎪⎪sin A -12+⎝⎛⎭⎫cos B -122=0,则∠C = 90° . 9.若函数y =mx 2+(m +2)x +12m +1的图象与x 轴只有一个交点,那么m 的值为 0,2或-2 .10.(2019·盐城)在△ABC 中,BC =6+2,∠C =45°,AB =2AC ,则AC 的长为__2__. 11.(2019·宿迁)若∠MAN =60°,△ABC 的顶点B 在射线AM 上,且AB =2,点C 在射线AN 上运动,当△ABC 是锐角三角形时,BC12.已知抛物线y =23x 2+43x -2与x 轴交于A ,B 两点,与y 轴交于点C .点P 在对称轴上,当△PBC的周长最小时,点P 的坐标是⎝⎛⎭⎫-1,-43. 三、(本大题共5小题,每小题6分,共30分)13.计算:cos 60°-sin 45°+14tan 230°+cos 30°-sin 30°.解:原式=12-22+14×⎝⎛⎭⎫332+32-12=32-22+112. 14.由于保管不慎,小明把一道数学题染上了污渍,变成了“如图,在△ABC 中,∠A =30°,tan B =,AC =43,求AB 的长”.这时小明去翻看了标准答案,显示AB =10.你能否帮助小明通过计算说明污渍部分的内容是什么?解:过点C 作CH ⊥AB 于点H ,在Rt △ACH 中,CH =AC ·sin A =43×sin 30°=23,AH =AC ·cos A =43×cos 30°=6, ∴BH =AB -AH =4, ∴tan B =CH BH =32,∴污渍部分的内容是32. 15.(2019·凉山州)已知二次函数y =x 2+x +a 的图象与x 轴交于A (x 1,0),B (x 2,0)两点,且1x 21+1x 22=1,求a 的值.解:函数y =x 2+x +a 的图象与x 轴交于A(x 1,0),B(x 2,0)两点,∴x 1+x 2=-1,x 1·x 2 =a ,∵1x 21+1x 22=x 21+x 22x 21x 22=(x 1+x 2)2-2x 1x 2(x 1x 2)2=1-2a a 2=1,∴a =-1+ 2 或a =-1- 2. 16.在同一平面直角坐标系中,一次函数y =x -4与二次函数y =-x 2+2x +c 图象交于点A (-1,m ).(1)求m ,c 的值;(2)求二次函数图象的对称轴和顶点坐标. 解:(1)∵A 点在一次函数的图象上,∴m =-1-4=-5.∴点A 的坐标为(-1,-5),∵A 点在二次函数图象上,∴-5=-1-2+c ,解得c =-2. (2)由①可知二次函数表达式为y =-x 2+2x -2=-(x -1)2-1,∴二次函数的图象的对称轴为直线x =1,顶点坐标为(1,-1).17.如图,某消防队在一居民楼前进行演习,消防员利用云梯成功救出点B 处的求救者后,又发现点B 正上方点C 处还有一名求救者,在消防车上点A 处测得点B 和点C 的仰角分别为45°和65°,点A 距地面2.5米,点B 距地面10.5米,为救出点C 处的求救者,云梯需要继续上升的高度BC 约为多少米?(结果保留整数,参考数据:tan 65°≈2.1,sin 65°≈0.9,cos 65°≈0.4,2≈1.4)解:作AH ⊥CN 于点H .在Rt △ABH 中,∵∠BAH =45°,BH =10.5-2.5=8(m), ∴AH =BH =8(m), 在Rt △AHC 中,tan 65°=CH AH, ∴CH =8×2.1≈17(m),∴BC =CH -BH =17-8=9(m).四、(本大题共3小题,每小题8分,共24分)18.如图,直线y =x +2与x 轴交于点A ,与y 轴交于点B ,AB ⊥BC ,且点C 在x 轴上,若抛物线y =ax 2+bx +c 以C 为顶点,且经过点B ,求这条抛物线对应的函数表达式.解:∵直线y =x +2与x 轴交于点A ,与y 轴交于点B , ∴A (-2,0),B (0,2),∴△ABO 为等腰直角三角形.又∵AB ⊥BC ,∴△BCO 也为等腰直角三角形, ∴OC =OB =OA .∴C (2,0),设抛物线对应的函数表达式为y =a (x -2)2, 将点B (0,2)的坐标代入得2=a (0-2)2,解得a =12,∴此抛物线对应的函数表达式为y =12(x -2)2,即y =12x 2-2x +2.19.如图,一座钢结构桥梁的框架是△ABC ,水平横梁BC 长18米,中柱AD 高6米,其中D 是BC 的中点,且AD ⊥BC.(1)求sin B 的值;(2)现需要加装支架DE ,EF ,其中点E 在AB 上,BE =2AE ,且EF ⊥BC ,垂足为点F ,求支架DE 的长.解:(1)∵BD =DC =9,AD =6, ∴AB =92+62=313.∴sin B =AD AB =6313=21313.(2)∵EF ∥AD ,BE =2AE ,∴△BEF ∽△BAD. ∴EF AD =BF BD =BE BA =23,∴EF 6=BF 9=23, ∴EF =4,BF =6,∴DF =3,∴在Rt △DEF 中,DE =42+32=5米.20.为美化校园,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28 m 长的篱笆围成一个矩形花园ABCD(只围AB ,BC 两边),设AB =x m .(1)若花园的面积为192 m 2,求x 的值;(2)若在P 处有一棵树与墙CD ,AD 的距离分别是15 m 和6 m ,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S 的最大值.解:(1)∵AB =x m ,则BC =(28-x)m ,∴x(28-x)=192,解得x 1=12,x 2=16,∴当花园的面积为192 m 2时,x 的值为12 m 或16 m .(2)由题意可得S=x(28-x)=-x2+28x=-(x-14)2+196,∵在P处有一棵树与墙CD,AD的距离分别是15 m和6 m,28-15=13,∴6≤x≤13,∴当x=13时,S最大=-(13-14)2+196=195,∴花园面积S的最大值为195 m2.五、(本大题共2小题,每小题9分,共18分)21.如图,小河上有一拱桥,拱桥及河道的截面轮廓由抛物线的一部分ACB和矩形的三边AE,ED,DB组成,已知河底ED是水平的,ED=16米,AE=8米,抛物线的顶点C到ED距离是11米,以ED所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系.(1)求抛物线的表达式;(2)已知从某时刻开始的40小时内,水面与河底ED的距离h(单位:米)随时间t(单位:时)的变化满足函数关系h=-1128(t-19)2+8(0≤t≤40),且当水面到顶点C的距离不大于5米时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?解:(1)抛物线的表达式为y=-364x2+11(-8≤x≤8).(2)令-1128(t-19)2+8=11-5.解得t1=35,t2=3.∴当3≤t≤35时,水面到顶点C的距离不大于5米,需禁止船只通行,禁止船只通行时间为35-3=32小时.答:禁止船只通行时间为32小时.22.(2019·岳阳)慈氏塔位于岳阳市城西洞庭湖边,是湖南省保存最好的古塔建筑之一.如图,小亮的目高CD为1.7米,他站在D处测得塔顶的仰角∠ACG为45°,小琴的目高EF为1.5米,她站在距离塔底中心B点a米远的F处,测得塔顶的仰角∠AEH为62.3°.(点D,B,F在同一水平线上,参考数据:sin 62.3°≈0.89,cos 62.3°≈0.46,tan 62.3°≈1.9)(1)求小亮与塔底中心的距离BD;(用含a的式子表示)(2)若小亮与小琴相距52米,求慈氏塔的高度AB.解:(1)四边形CDBG,HBFE为矩形,∴GB=CD=1.7,HB=EF=1.5,∴GH=0.2,在Rt AHE中,tan∠AEH=AHHE,则AH=HE·tan∠AEH≈1.9a,∴AG=AH-GH=1.9a-0.2,在Rt ACG中,∠ACG=45°,∴CG=AG=1.9a-0.2,∴BD=1.9a-0.2,答:小亮与塔底中心。
人教版九年级下册数学各单元知识大全+测试卷(附答案)

一、二次函数1、一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数。
x 是自变量。
其中,a 是二次项系数;b 一次项系数;c 是常数项。
2、二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2。
3、二次函数的图象:c b a c bx ax y ,,(2++=是常数,)0≠a ,的图像是抛物线。
抛物线与它的对称轴的交点叫抛物线的顶点。
顶点是抛物线的最高点或最低点。
4、求抛物线顶点(最大或最小值)和对称轴的方法(1)配方法:运用配方的方法,将抛物线c bx ax y ++=2的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =。
(2)公式:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线a b x 2-=。
5、二次函数的图象的特点:(1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴;(2)抛物线()k h x a y +-=2的顶点是(h,k),对称轴是x=h ; (3)抛物线c bx ax y ++=2的顶点是(a b ac a b 4422--,),对称轴是ab x 2-=;①当0>a 时⇔抛物线开口向上⇔顶点为其最低点;②当0<a 时⇔抛物线开口向下⇔顶点为其最高点。
|a |越大,开口越小。
|a |越小,开口越大。
(4)几种特殊的二次函数的图像特征如下表:二、二次函数与二元一次方程的关系第二十七章 相似三角形一、图形的相似1.图形的相似:如果两个图形形状相同,但大小不一定相等,那么这两个图形相似。
(相似的符号:∽)性质:相似多边形的对应角相等,对应边的比相等。
九年级数学下册 各单元综合测试题含答案4套

所以撤离的最长时间为 7 5 2 (h). 所以撤离的最小速度为 3 2 1.5 (km/h). (3)当 y 4 时,由 y 322 得, x 80.5, 80.57 73.5 (h).
x 所以矿工至少在爆炸后 73.5h 才能下井. 19.【答案】(1)因为 OA OB OD 1,
18.(9 分)近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主要成分是 CO .在一次矿 难事件的调查中发现:从零时起,井内空气中 CO 的浓度达到 4 mg/L ,此后浓度呈直线型增加,在第 7 小 时达到最高值 46 mg/L ,发生爆炸;爆炸后,空气中的 CO 浓度成反比例下降.如图所示,根据题中相关信 息回答下列问题: (1)求爆炸前后空气中 CO 浓度 y 与时间 x 的函数解析式,并写出相应的自变量的取值范围. (2)当空气中的 CO 浓度达到 34 mg/L 时,井下 3km 的矿工接到自动报警信号,这时他们至少要以多少千 米每小时的速度撤离才能在爆炸前逃生? (3)矿工只有在空气中的 CO 浓度降到 4 mg/L 及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸 后多少小时才能下井?
,由反比例函数
y
k x
k<0
的性质可得 y1<y2 ,所以 y1 y2<0 ,即 y1 y 2 的值是负数.
所以 y1 y 2 的值不确定.
4.【答案】B
【解析】因为二次函数 y ax2 bxc a 0 的图象开口向下,所以 a<0.
因为对称轴经过 x 轴的负半轴,所以 a , b同号,所以 b<0 .
交于 2,0 点即可;若是反比例函数 y k ,需 k>0,且 x>0 .另外,还可以写其他函数解析式,只要满足 x
最新人教版九年级数学下册单元测试题全套及答案

九年级数学下册单元测试题全套及答案检测内容:第二十六章得分________ 卷后分________ 评价________一、选择题(每小题3分,共30分)1.下列函数中,图象经过点(1,-1)的反比例函数解析式是( B ) A .y =1x B .y =-1x C .y =2x D .y =-2x2.当三角形的面积S 为常数时,底边a 与底边上的高h 的函数关系的图象大致是( B )3.在反比例函数y =k -3x 图象的任一支曲线上,y 都随x 的增大而减小,则k 的取值范围是( A )A .k >3B .k >0C .k <3D .k <04.点A 为双曲线y =kx (k ≠0)上一点,B 为x 轴上一点,且△AOB 为等边三角形,△AOB 的边长为2,则k的值为( D )A .2 3B .±2 3 C. 3 D .± 35.在同一直角坐标系中,一次函数y =kx -k 与反比例函数y =kx(k ≠0)的图象大致是( A )6.某汽车行驶时的速度v (米/秒)与它所受的牵引力F (牛)之间的函数关系如图所示.当它所受牵引力为1 200牛时,汽车的速度为( A )A .180千米/时B .144千米/时C .50千米/时D .40千米/时7.如图,函数y 1=x -1和函数y 2=2x 的图象相交于点M (2,m ),N (-1,n ),若y 1>y 2,则x 的取值范围是( D )A .x <-1或0<x <2B .x <-1或x >2C .-1<x <0或0<x <2D .-1<x <0或x >28.已知反比例函数y =kx (k <0)图象上有两点A (x 1,y 1),B (x 2,y 2),且x 1<x 2,则y 1-y 2的值是( D )A .正数B .负数C .非负数D .不能确定9.如图,函数y =-x 与函数y =-4x 的图象相交于A ,B 两点,过A ,B 两点分别作y 轴的垂线,垂足分别为点C ,D .则四边形ACBD 的面积为( D ) A .2 B .4 C .6 D .8第6题图) ,第7题图) ,第9题图),第10题图)10.如图,正方形ABCD 的顶点B ,C 在x 轴的正半轴上,反比例函数y =kx (k ≠0)在第一象限的图象经过顶点A (m ,2)和CD 边上的点E (n ,23),过点E 的直线l 交x 轴于点F ,交y 轴于点G (0,-2),则点F 的坐标是( C )A .(54,0)B .(74,0)C .(94,0)D .(114,0)点拨:由题意可知AB =2,n =m +2,所以2m =(m +2)×23=k ,解得m =1,所以E (3,23),设EG 的解析式为y =kx +b ,把E (3,23),G (0,-2)代入y =kx +b ,解得⎩⎪⎨⎪⎧k =89b =-2,∴y =89x -2,令y =0,解得x=94,∴F (94,0) 二、填空题(每小题3分,共24分)11.写出一个图象在第二、四象限的反比例函数解析式:__y =-1x(答案不唯一)__.12.已知反比例函数y =kx 的图象在第二、第四象限内,函数图象上有两点A (2,y 1),B (5,y 2),则y 1与y 2的大小关系为y 1__<__y 2.13.双曲线y =kx 和一次函数y =ax +b 的图象的两个交点分别为A (-1,-4),B (2,m ),则a +2b =__-2__.14.若点A (m ,2)在反比例函数y =4x 的图象上,则当函数值y ≥-2时,自变量x 的取值范围是__x ≤-2或x >0__.15.直线y =ax (a >0)与双曲线y =3x交于A (x 1,y 1),B (x 2,y 2)两点.则4x 1y 2-3x 2y 1=__-3__.16.点A 在函数y =6x (x >0)的图象上,如果AH ⊥x 轴于点H ,且AH ∶OH =1∶2,那么点A 的坐标为__(23,3)__.17.在平面直角坐标系xOy 中,直线y =x 向上平移1个单位长度得到直线l ,直线l 与反比例函数y =kx的图象的一个交点为A (a ,2),则k 的值等于__2__.18.如图,OABC 是平行四边形,对角线OB 在y 轴正半轴上,位于第一象限的点A 和第二象限的点C 分别在双曲线y =k 1x 和y =k 2x 的一支上,分别过点A ,C 作x 轴的垂线,垂足分别为M 和N ,则有以下的结论:①AM CN =|k 1||k 2|;②阴影部分面积是12(k 1+k 2);③当∠AOC =90°时,|k 1|=|k 2|;④若OABC 是菱形,则两双曲线既关于x 轴对称,也关于y 轴对称.其中正确的结论是__①④__.(把所有正确的结论的序号都填上) 三、解答题(共66分)19.(6分)已知y =y 1+y 2,其中y 1与3x 成反比例,y 2与-x 2成正比例,且当x =1时,y =5;当x =-1时,y =-2.求当x =3时,y 的值.解:设y =k 13x +k 2(-x 2),求得y =72x +32x 2,当x =3时,y =44320.(8分)已知点P (2,2)在反比例函数y =kx (k ≠0)的图象上.(1)当x =-3时,求y 的值;(2)当1<x <3时,求y 的取值范围. 解:(1)-43 (2)43<y <421.(10分)超超家利用银行贷款购买了某山庄的一套100万元的住房,在交了首期付款后,每年需向银行付款y 万元.预计x 年后结清余款,y 与x 之间的函数关系如图,试根据图象所提供的信息回答下列问题: (1)确定y 与x 之间的函数表达式,并说明超超家交了多少万元首付款; (2)超超家若计划用10年时间结清余款,每年应向银行交付多少万元? (3)若打算每年付款不超过2万元,超超家至少要多少年才能结清余款?解:(1)12×5=60(万元),100-60=40(万元),∴y =60x ,超超家交了40万元的首付款 (2)把x =10代入y =60x 得y =6,∴每年应向银行交付6万元 (3)∵y ≤2,∴60x ≤2,∴2x ≥60,∴x ≥30,∴至少要30年才能结清余款22.(10分)如图是反比例函数y =kx的图象,当-4≤x ≤-1时,-4≤y ≤-1.(1)求该反比例函数的表达式;(2)若点M ,N 分别在该反比例函数的两支图象上,请指出什么情况下线段MN 最短(不需要证明),并注出线段MN 长度的取值范围.解:(1)反比例函数图象的两支曲线分别位于第一、三象限,∴当-4≤x ≤-1时,y 随着x 的增大而减小,又∵当-4≤x ≤-1时,-4≤y ≤-1,∴当x =-4时,y =-1,由y =kx 得k =4,∴该反比例函数的表达式为y =4x (2)当点M ,N 都在直线y =x 上时,线段MN 的长度最短,当MN 的长度最短时,点M ,N的坐标分别为(2,2),(-2,-2),利用勾股定理可得MN 的最短长度为42,故线段MN 长度的取值范围为MN ≥4223.(10分)(2015·东营)如图是函数y =3x 与函数y =6x 在第一象限内的图象,点P 是y =6x 的图象上一动点,PA ⊥x 轴于点A ,交y =3x 的图象于点C ,PB ⊥y 轴于点B ,交y =3x的图象于点D.(1)求证:D 是BP 的中点;(2)求四边形ODPC 的面积.解:(1)∵点P 在函数y =6x 上,∴设P 点坐标为(6m ,m ),∵点D 在函数y =3x 上,BP ∥x 轴,∴设点D 坐标为(3m ,m ),由题意,得BD =3m ,BP =6m =2BD ,∴D 是BP 的中点 (2)S 四边形OAPB =6m ·m =6,设C 坐标为(x ,3x ),D 点坐标为(3y ,y ),S △OBD =12·y ·3y =32,S △OAC =12·x·3x =32,S四边形OCPD=S四边形PBOA-S △OBD-S △OAC =6-32-32=324.(10分)如图,已知反比例函数y =k 1x 的图象与一次函数y =k 2x +b 的图象交于A ,B 两点,A 点横坐标为1,B (-12,-2).(1)求反比例函数和一次函数的解析式;(2)在x 轴上是否存在点P ,使△AOP 为等腰直角三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.解:(1)反比例函数为y =1x,一次函数为y =2x -1 (2)存在,点P 的坐标是(1,0)或(2,0)25.(12分)如图,已知正方形OABC 的面积为9,点O 为坐标原点,点A 在x 轴上,点C 在y 轴上,点B 在函数y =k x (k >0,x >0)的图象上,点P (m ,n )是函数y =kx (k >0,x >0)的图象上任一点,过点P 分别作x轴、y 轴的垂线,垂足分别为E ,F ,并设矩形OEPF 和正方形OABC 不重合部分的面积为S .(1)求点B 的坐标和k 的值; (2)当S =92时,求点P 的坐标;(3)写出S 关于m 的函数表达式.解:(1)依题意,设B 点的坐标为(x B ,y B ),∴S正方形OABC=x B ·y B =9.∴x B =y B =3,即点B 的坐标为(3,3).又∵x B y B =k ,∴k =9 (2)①∵P (m ,n )在y =9x 上,当P 点位于B 点下方时,如图(1),∴S 矩形OEPF =mn =9,S矩形OAGF=3n.由已知,得S =9-3n =92,∴n =32,m =6,即此时P 点的坐标为P 1(6,32). ②当P 点位于B 点上方时,如图(2),同理可求得P 2(32,6)(3)①如图(1),当m ≥3时,S 矩形OAGF =3n ,∵mn =9,∴n =9m ,∴S =S 矩形OEP 1F -S 矩形OAGF =9-3n=9-27m . ②如图(2),当0<m <3时,S 矩形OEGC =3m ,∴S =S 矩形OEP 2F -S 矩形OEGC =9-3m检测内容:第二十七章得分________ 卷后分________ 评价________一、选择题(每小题3分,共30分)1.下面不是相似图形的是( A )2.如图,点P 在△ABC 的边AC 上,要判断△ABP ∽△ACB ,添加一个条件,不正确的是( D ) A .∠ABP =∠C B .∠APB =∠ABC C.AP AB =AB AC D.AB BP =ACCB3.如图,身高为1.6米的某学生想测量学校旗杆的高度,当她在C 处时,她头顶端的影子正好与旗杆顶端的影子重合,并测得AC =2米,BC =8米,则旗杆的高度是( C ) A .6.4米 B .7米 C .8米 D .9米,第2题图) ,第3题图) ,第4题图),第5题图)4.如图,E (-4,2),F (-1,-1),以O 为位似中心,按比例尺1∶2,把△EFO 缩小,则点E 的对应点E ′的坐标为( A )A .(2,-1)或(-2,1)B .(8,-4)或(-8,4)C .(2,-1)D .(8,-4)5.如图,E 是平行四边形ABCD 的边BC 的延长线上的一点,连接AE 交CD 于点F ,则图中共有相似三角形( C )A .1对B .2对C .3对D .4对6.如图,在△ABC 中,DE ∥BC ,AD AB =35,则S △ADE S 梯形DBCE 的值是( B )A.35B.916C.53D.16257.如图,在Rt △ABC 中,∠ACB =90°,AC =4,BC =6,以斜边AB 上的一点O 为圆心所作的半圆分别与AC ,BC 相切于点D ,E ,则AD 为( B ) A .2.5 B .1.6 C .1.5 D .1点拨:连接OD ,OE ,易知四边形CDOE 为正方形,设OD =OE =r ,则BE =6-r.∵OE ∥AC ,∴OEAC =EB BC ,即r 4=6-r 6,解得r =2.4,∴AD =1.6. 8.如图,AB =4,射线BM 和AB 互相垂直,点D 是AB 上的一个动点,点E 在射线BM 上,BE =12DB ,作EF ⊥DE 并截取EF =DE ,连接AF 并延长交射线BM 于点C .设BE =x ,BC =y ,则y 关于x 的函数解析式为( A )A .-12x x -4B .-2x x -1C .-3x x -1D .-8x x -4点拨:过F 点作FH ⊥BC 于H ,易证△DBE ≌△EHF ,则BE =FH =x ,EH =2x ,又∵FH ∥AD ,∴FH AB =CH BC ,即x 4=y -3x y ,∴y =-12x x -4,第6题图) ,第7题图) ,第8题图),第9题图)9.如图,在已建立直角坐标系的4×4的正方形方格中,△ABC 是格点三角形(三角形的三个顶点是小正方形的顶点),若以格点P ,A ,B 为顶点的三角形与△ABC 相似(全等除外),则格点P 的坐标是( D ) A .(1,4) B .(3,4) C .(3,1) D .(1,4)或(3,4)10.如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且CF =14CD ,下列结论:①∠BAE =30°;②△ABE ∽△AEF ;③AE ⊥EF ;④△ADF ∽△ECF ,其中正确的个数为( B ) A .1个 B .2个 C .3个 D .4个点拨:设CF =a ,则DF =3a ,BE =EC =2a ,AB =AD =DC =4a ,∴AB BE =FC BC =12,∴△ABE ∽△ECF ,易知∠AEF =90°,勾股定理知AE =25a ,EF =5a ,∴AB BE =AE EF =12,∴△ABE ∽△AEF ,而AD DF ≠ECFC ,∴△ADF ∽△ECF 不成立,AE ≠2BE ,∴∠BAE ≠30° 二、填空题(每小题3分,共24分)11.如果x 2=y 3=z4≠0,那么x +2y +3z 3x +2y -2z的值是__5__.12.在△ABC 中,AB =8,AC =6,在△DEF 中,DE =4,DF =3,要使△ABC 与△DEF 相似,则需要添加一个条件是__∠A =∠D (或BC ∶EF =2∶1)__.(写出一种情况即可)13.如图,AB ∥CD ,AD 与BC 相交于点O ,OA =4,OD =6,则△AOB 与△DOC 的周长比是__2∶3__.,第10题图) ,第13题图) ,第14题图),第15题图)14.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上.已知纸板的两条直角边DE =40 cm ,EF =20 cm ,测得边DF 离地面的高度AC =1.5 m ,CD =8 m ,则树高AB =__5.5__m.15.如图,点D ,E 分别在△ABC 的边AB ,AC 上,且∠AED =∠ABC ,若DE =3,BC =6,AB =8,则AE 的长为__4__.16.如图,在平行四边形ABCD 中,E ,F 分别是边AD ,BC 的中点,AC 分别交BE ,DF 于点M ,N ,给出下列结论:①△ABM ≌△CDN ;②AM =13AC ;③DN =2NF ;④S △AMB =12S △ABC .其中正确的结论是__①②③__.(填序号),第16题图) ,第17题图) ,第18题图)17.如图,点M 是Rt △ABC 的斜边BC 上异于B ,C 的一点,过M 点作直线截△ABC ,使截得的三角形与△ABC 相似,这样的直线共有__3__条.18.如图,矩形AOCB 的两边OC ,OA 分别位于x 轴、y 轴上,点B 的坐标为B (-203,5),D 是AB 边上的一点,将△ADO 沿直线OD 翻折,使A 点恰好落在对角线OB 上的点E 处,若点E 在一反比例函数的图象上,那么该函数的解析式是y =-12x____.点拨:过点E 作EF ⊥CO 于点F ,由折叠知EO =AO =5,BC =5,CO =203,由勾股定理知BO =253,∵EF ∥BC ,∴EF 5=5253=FO 203,解得EF =3,FO =4,∴E (-4,3),∴反比例函数解析式为y =-12x三、解答题(共66分)19.(8分)如图所示,已知AB ∥CD ,AD ,BC 相交于点E ,F 为BC 上一点,且∠EAF =∠C . 求证:(1)∠EAF =∠B ;(2)AF 2=FE ·FB .解:(1)∵AB ∥CD ,∴∠B =∠C ,又∠C =∠EAF ,∴∠EAF =∠B (2)∵∠EAF =∠B ,∠AFE =∠BFA ,∴△AFE ∽△BFA ,则AF BF =FEFA,∴AF 2=FE ·FB20.(8分)如图所示,已知正方形ABCD 中,BE 平分∠DBC 且交CD 边于点E ,将△BCE 绕点C 顺时针旋转到△DCF 的位置,并延长BE 交DF 于点G .(1)求证:△BDG ∽△DEG ; (2)若EG ·BG =4,求BE 的长.解:(1)证明:∵BE 平分∠DBC ,∴∠CBE =∠DBG ,∵∠CBE =∠CDF ,∴∠DBG =∠CDF ,∵∠BGD =∠DGE ,∴△BDG ∽△DEG . (2)∵△BDG ∽△DEG ,DG BG =EGDG,∴DG 2=BG·EG =4,∴DG =2,∵∠EBC +∠BEC =90°,∠BEC =∠DEG ,∠EBC =∠EDG ,∴∠BGD =90°,∵∠DBG =∠FBG ,BG =BG ,∴△BDG ≌△BFG ,∴FG =DG =2,∴DF =4,∵BE =DF ,∴BE =DF =4.21.(8分)如图,图中的小方格都是边长为1的正方形,△ABC 与△A ′B ′C ′是关于点O 为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点O ;(2)求出△ABC 与△A ′B ′C ′的位似比;(3)以点O 为位似中心,再画一个△A 1B 1C 1,使它与△ABC 的位似比等于1.5.解:(1)连接A′A ,C ′C ,并分别延长相交于点O ,即为位似中心 (2)相似比为1∶2 (3)略22.(10分)王亮同学利用课余时间对学校旗杆的高度进行测量,他是这样测量的:把长为3 m 的标杆垂直放置于旗杆一侧的地面上,测得标杆底端距旗杆底端的距离为15 m ,然后往后退,直到视线通过标杆顶端正好看不到旗杆顶端时为止,测得此时人与标杆的水平距离为2 m ,已知王亮的身高为1.6 m ,请帮他计算旗杆的高度(王亮眼睛距地面的高度视为他的身高).解:根据题意知,AB ⊥BF ,CD ⊥BF ,EF ⊥BF ,EF =1.6 m ,CD =3 m ,FD =2 m ,BD =15 m ,过E 点作EH ⊥AB ,交AB 于点H ,交CD 于点G ,则EG ⊥CD ,EH ∥FB ,EF =DG =BH ,EG =FD ,CG =CD -EF.因为△ECG ∽△EAH ,所以EG EH =CG AH ,即22+15=3-1.6AH ,所以AH =11.9(m ),所以AB =AH +HB =AH +EF =11.9+1.6=13.5(m ),即旗杆的高度为13.5 m23.(10分)如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE =∠B .(1)求证:∠DF A =∠ECD ;(2)△ADF 与△DEC 相似吗?为什么?(3)若AB =4,AD =33,AE =3,求AF 的长.解:(1)证明:∵∠AFE =∠DAF +∠FDA ,又∵四边形ABCD 为平行四边形,∴∠B =∠ADC =∠ADF +∠CDE ,又∵∠B =∠AFE ,∴∠DAF =∠CDE (2)证明:△ADF ∽△DEC ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB ∥CD ,∴∠ADF =∠CED ,∠B +∠C =180°,∵∠AFE +∠AFD =180°,∠AFE =∠B ,∴∠AFD =∠C ,∴△ADF ∽△DEC (3)∵四边形ABCD 是平行四边形,∴AD ∥BC ,CD =AB =4,又∵AE ⊥BC ,∴AE ⊥AD ,在Rt △ADE 中,DE =AD 2+AE 2=(33)2+32=6,∵△ADF ∽△DEC ,∴AD DE =AF CD ,∴336=AF4,AF =2324.(10分)如图,已知在⊙O 中,直径AB =4,点E 是OA 上任意一点,过E 作弦CD ⊥AB ,点F 是BC ︵上一点,连接AF 交CE 于点H ,连接AC ,CF ,BD ,OD .(1)求证:△ACH ∽△AFC ; (2)猜想:AH ·AF 与AE ·AB 的数量关系,并证明你的猜想;(3)探究:当点E 位于何处时,S △AEC ∶S △BOD =1∶4?并加以说明.解:(1)证明:∵直径AB ⊥CD ,∴AC ︵=AD ︵,∴∠F =∠ACH ,又∵∠CAF =∠HAC ,∴△ACH ∽△AFC (2)AH·AF =AE·AB ,连接FB ,∵AB 是直径,∴∠AFB =∠AEH =90°,又∠EAH =∠FAB ,∴Rt △AEH ∽Rt △AFB ,∴AE AF =AH AB ,∴AH ·AF =AE·AB (3)当OE =32(或AE =12)时,S △AEC ∶S △BOD =1∶4,∵直线AB ⊥CD ,∴CE =ED ,又∵S △AEC =12AE·CE ,S △BOD =12OB·ED ,∴S △AEC S △BOD =AE OB =14,∵⊙O 的半径为2,∴2-OE 2=14,∴OE =3225.(12分)如图,直角梯形ABCD 中,AB ∥DC ,∠DAB =90°,AD =2DC =4,AB =6.动点M 以每秒1个单位长的速度,从点A 沿线段AB 向点B 运动;同时点P 以相同的速度,从点C 沿折线C —D —A 向点A 运动.当点M 到达点B 时,两点同时停止运动.过点M 作直线l ∥AD ,与线段CD 的交点为E ,与折线A —C —B 的交点为Q .点M 运动的时间为t (秒).(1)当t =0.5时,求线段QM 的长;(2)当0<t <2时,如果以C ,P ,Q 为顶点的三角形为直角三角形,求t 的值;(3)当t >2时,连接PQ 交线段AC 于点R .请探究CQRQ 是否为定值,若是,试求出这个定值;若不是,请说明理由. 解:(1)如图(1),过点C 作CF ⊥AB 于F ,则四边形AFCD 为矩形,∴CF =4,AF =2,此时,Rt △AQM ∽Rt △ACF ,∴QM AM =CF AF ,即QM 0.5=42,∴QM =1 (2)∵∠DCA 为锐角,故有两种情况:①当∠CPQ =90°时,点P 与点E 重合,此时DE +CP =CD ,即t +t =2,∴t =1. ②当∠PQC =90°时,如图(2),此时Rt △PEQ ∽Rt △QMA ,∴EQ PE =MAQM ,由题知,EQ =EM -QM =4-2t ,而PE =PC -CE =PC -(DC -DE )=t -(2-t )=2t -2.∴4-2t 2t -2=12,∴t =53,综上所述,t =1或53(3)CQRQ 为定值,当t >2时,如图(3),过C 作CF ⊥AB 于F ,PA =DA -DP =4-(t -2)=6-t ,由题得BF =AB -AF =4,∴CF =BF ,∴∠CBF =45°,∴QM =MB =6-t ,∴QM =PA ,∴四边形AMQP 为矩形,∴PQ ∥AB ,∴△CRQ ∽△CAB ,∴CQ RQ =BCAB =CF 2+BF 2AB =426=223检测内容:期中检测得分________ 卷后分________ 评价________一、选择题(每小题3分,共30分)1.若反比例函数y =kx 的图象经过点(2,-1),则该反比例函数的图象在( D )A .第一、二象限B .第一、三象限C .第二、三象限D .第二、四象限2.已知函数y =mx的图象如图,以下结论:①m <0;②在每个分支上y 随x 的增大而增大;③若点A (-1,a )、点B (2,b )在图象上,则a <b ;④若点P (x ,y )在图象上,则点P 1(-x ,-y )也在图象上.其中正确的个数是( B ) A .4个 B .3个 C .2个 D .1个 3.如图所示,在△ABC 中,AB =3AD ,DE ∥BC ,EF ∥AB ,若AB =9,DE =2,则线段FC 的长度是( C ) A .6 B .5 C .4 D .34.函数的自变量x 满足12≤x ≤2时,函数值y 满足14≤y ≤1,则这个函数可以是( A )A .y =12xB .y =2xC .y =18xD .y =8x5.下列条件中,不能判定△ABC 和△A ′B ′C ′相似的是( D ) A.AB B ′C ′=BC A ′C ′=ACA ′B ′B .∠A =∠A ′,∠B =∠C ′ C.AB A ′B ′=BC A ′C ′,且∠B =∠A ′ D.AB A ′B ′=AC A ′C ′,且∠B =∠C ′ 6.反比例函数y =kx与一次函数y =kx -k +2在同一直角坐标系中的图象可能是( D )7.△ABC 的三边之比为3∶4∶5,若△ABC ∽△A ′B ′C ′,且△A ′B ′C ′的最短边长为6,则△A ′B ′C ′的周长为( B )A .36B .24C .17D .128.如图, 已知四边形ABCD 是⊙O 的内接四边形,且AB =CD =5,AC =7,BE =3,下列命题错误的是( D )A .△AED ∽△BECB .∠AEB =90°C .∠BDA =45°D .图中全等的三角形共2对9.如图,过点O 作直线与双曲线y =kx (k ≠0)交于A ,B 两点,过点B 作BC ⊥x 轴于点C ,作BD ⊥y 轴于点D .在x 轴、y 轴上分别取点E ,F ,使点A ,E ,F 在同一条直线上,且AE =AF .设图中矩形ODBC 的面积为S 1,△EOF 的面积为S 2,则S 1,S 2的数量关系是( B ) A .S 1=S 2 B .2S 1=S 2 C .3S 1=S 2 D .4S 1=S 2,第3题图) ,第8题图) ,第9题图),第10题图)10.如图,边长为2的正方形中,P 是CD 的中点,连接AP 并延长,交BC 的延长线于点F ,作△CPF 的外接圆⊙O ,连接BP 并延长交⊙O 于点E ,连接EF ,则EF 的长为( D ) A.32 B.53 C.355 D.455 二、填空题(每小题3分,共24分)11.若点P 1(-1,m ),P 2(-2,n )在反比例函数y =k x (k >0)的图象上,则m __<__n (填“>”“<”或“=”号).12.如图,锐角三角形ABC 的边AB ,AC 上的高线CE 和BF 相交于点D ,请写出图中的两对相似三角形:__△BDE ∽△CDF ,△ABF ∽△ACE __(用相似符号连接).13.已知一次函数y =ax +b 与反比例函数y =kx 的图象相交于A (4,2),B (-2,m )两点,则一次函数的表达式为__y =x -2__.14.如图,直立在点B 处的标杆AB =2.5 m ,立在点F 处的观测者从点E 看到标杆顶A ,树顶C 在同一直线上(点F ,B ,D 也在同一直线上).已知BD =10 m ,FB =3 m ,人高EF =1.7 m ,则树高DC 是__5.2_m __.(精确到0.1 m)15.如图,已知A (3,0),B (2,3),将△OAB 以点O 为位似中心,相似比为2∶1,放大得到△OA ′B ′,则顶点B 的对应点B ′的坐标为__(4,6)或(-4,-6)__.,第12题图) ,第14题图) ,第15题图),第17题图)16.已知P 1(x 1,y 1),P 2(x 2,y 2)是同一个反比例函数图象上的两点,若x 2=x 1+2,且1y 2=1y 1+12,则这个反比例函数的表达式为__y =4x__.17.如图,在矩形ABCD 中,E ,F 分别是边AD ,BC 的中点,点G ,H 在DC 边上,且GH =12DC ,若AB =10,BC =12,则图中阴影部分的面积为__35__.18.如图,点E ,F 在函数y =kx(x >0)的图象上,直线EF 分别与x 轴、y 轴交于点A ,B ,且BE ∶BF =1∶m .过点E 作EP ⊥y 轴于点P ,已知△OEP 的面积为1,则k 的值是__2__,△OEF 的面积是__m 2-1m __.(用含m 的式子表示) 三、解答题(共66分)19.(8分)如图,在一个3×5的正方形网格中,△ABC 的顶点A ,B ,C 在单位正方形顶点上,请你在图中画一个△A 1B 1C 1,使点A 1,B 1,C 1都在单位正方形的顶点上,且使△A 1B 1C 1∽△ABC .解:由图可知∠ABC =135°,不妨设单位正方形的边长为1个单位,则AB ∶BC =1∶2,由此推断,所画三角形必有一角为135°,且该夹角的两边之比为1∶2,也可以把这一比值看作2∶2,2∶22等,以此为突破口,在图中连出2和2,2和22等线段,即得△EDF ∽△GDH ∽△FMN ∽△ABC ,如图所示,即图中的△EDF ,△GDH ,△FMN 均可视为△A 1B 1C 1,且使△A 1B 1C 1∽△ABC. 20.(8分)在平面直角坐标系中,已知反比例函数y =kx的图象经过点A (1,3).(1)试确定此反比例函数的解析式;(2)点O 是坐标原点,将线OA 绕O 点顺时针旋转30°得到线段OB ,判断点B 是否在此反比例函数的图象上,并说明理由.解:(1)把A (1,3)代入y =k x ,得k =1×3=3,∴反比例函数的解析式为y =3x(2)过点A 作x 轴的垂线交x 轴于点C.在Rt △AOC 中,OC =1,AC = 3.由勾股定理,得OA =OC 2+AC 2=2,∠AOC =60°.过点B 作x 轴的垂线交x 轴于点D.由题意,∠AOB =30°,OB =OA =2,∴∠BOD =30°,在Rt △BOD 中,得BD =1,OD =3,∴B 点坐标为(3,1).将x =3代入y =3x中,得y =1,∴点B (3,1)在反比例函数y=3x的图象上 21.(8分)如图,正比例函数y 1=x 的图象与反比例函数y 2=kx (k ≠0)的图象相交于A ,B 两点,点A 的纵坐标为2.(1)求反比例函数的解析式;(2)求出点B 的坐标,并根据函数图象,写出当y 1>y 2时,自变量x 的取值范围.解:(1)设A 点的坐标为(m ,2),代入y 1=x 得:m =2,所以点A 的坐标为(2,2),∴k =2×2=4,∴反比例函数的解析式为:y 2=4x (2)当y 1=y 2时,x =4x .解得x =±2,∴点B 的坐标为(-2,-2).或者由反比例函数、正比例函数图象的对称性得点B 的坐标为(-2,-2).由图象可知,当y 1>y 2时,自变量x 的取值范围是:-2<x <0或x >222.(10分)如图,在四边形ABCD 中,AC 平分∠DAB ,∠ADC =∠ACB =90°,E 为AB 的中点.(1)求证:AC 2=AB ·AD ; (2)求证:CE ∥AD ;(3)若AD =4,AB =6,求ACAF的值.解:(1)∵AC 平分∠DAB ,∴∠DAC =∠CAB.又∵∠ADC =∠ACB =90°,∴△ADC ∽△ACB.∴ADAC =AC AB ,即AC 2=AB·AD (2)∵∠ACB =90°,E 为AB 的中点,∴CE =12AB =AE.∴∠EAC =∠ECA.又∵∠CAD =∠CAB ,∴∠DAC =∠ECA ,∴CE ∥AD (3)∵CE ∥AD ,∴△AFD ∽△CFE ,∴AD CE =AF CF ,∵CE =12AB =12×6=3,AD =4,∴43=AF CF ,∴AF AC =47,即AC AF =7423.(10分)心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知, 学生的注意力指标数y 随时间x (分钟)的变化规律如下图所示(其中AB ,BC 分别为线段,CD 为双曲线的一部分):(1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?(2)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?解:(1)设线段AB 所在的直线的解析式为y 1=k 1x +20,把B (10,40)代入得,k 1=2,∴y 1=2x +20.设C ,D 所在双曲线的解析式为y 2=k 2x ,把C (25,40)代入得,k 2=1 000,∴y 2=1 000x ,当x 1=5时,y 1=2×5+20=30,当x 1=30时,y 2=1 00030=1003,∴y 1<y 2,∴第30分钟注意力更集中 (2)令y 1=36,∴36=2x +20,∴x 1=8,令y 2=36,∴36=1 000x ,∴x 2=1 00036≈27.8,∵27.8-8=19.8>19,∴老师能在学生注意力达到所需的状态下完成这道题目24.(10分)如图,双曲线y =kx (x >0)经过△OAB 的顶点A 和OB 的中点C ,AB ∥x 轴,点A 的坐标为(2,3).(1)确定k 的值;(2)若点D (3,m )在双曲线上,求直线AD 的解析式; (3)计算△OAB 的面积.解:(1)将点A (2,3)代入解析式y =k x ,得:k =6 (2)将D (3,m )代入反比例解析式y =6x ,得:m =63=2,∴点D 坐标为(3,2),设直线AD 解析式为y =kx +b ,将A (2,3)与D (3,2)代入得:⎩⎨⎧2k +b =33k +b =2,解得:k =-1,b =5,则直线AD 解析式为y =-x +5 (3)过点C 作CN ⊥y 轴,垂足为N ,延长BA ,交y 轴于点M ,∵AB ∥x 轴,∴BM ⊥y 轴,∴MB ∥CN ,∴△OCN ∽△OBM ,∵C 为OB 的中点,即OC OB =12,∴S △OCN S △OBM =(12)2,∵A ,C 都在双曲线y =6x 上,∴S △OCN =S △AOM =3,由33+S △AOB =14,得到S △AOB =9,则△AOB 面积为925.(12分)如图,抛物线经过A (4,0),B (1,0),C (0,-2)三点.(1)求出抛物线的解析式;(2)P 是抛物线上一动点,过P 作PM ⊥x 轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与△OAC 相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由.解:(1)∵该抛物线过点C (0,-2),∴可设该抛物线的解析式为y =ax 2+bx -2.将A (4,0),B (1,0)代入,得⎩⎨⎧16a +4b -2=0a +b -2=0,解得⎩⎨⎧a =-12b =52,∴此抛物线的解析式为y =-12x 2+52x -2 (2)存在,设P 点的横坐标为m ,则P 点的纵坐标为-12m 2+52m -2,当1<m <4时,AM =4-m ,PM =-12m 2+52m -2.又∵∠COA=∠PMA =90°,∴①当AM PM =AO OC =21时,△APM ∽△ACO ,即4-m =2(-12m 2+52m -2).解得m 1=2,m 2=4(舍去),∴P (2,1). ②当AM PM =OC OA =12时,△APM ∽△CAO ,即2(4-m )=-12m 2+52m -2.解得m 1=4,m 2=5(均不合题意,舍去),∴当1<m <4时,P (2,1).类似地可求出当m >4时,P (5,-2).当m <1时,P (-3,-14)或P (0,-2),综上所述,符合条件的点P 为(2,1)或(5,-2)或(-3,-14)或(0,-2)检测内容:第二十八章得分________ 卷后分________ 评价________一、选择题(每小题3分,共30分) 1.将Rt △ABC 各边的长度都扩大3倍得到Rt △A ′B ′C ′,那么锐角∠A ,∠A ′的余弦值的关系为( A ) A .cos A =cos A ′ B .cos A =3cos A ′ C .3cos A =cos A ′ D .不能确定 2.在Rt △ABC 中,∠C =90°,cos A =15,则tan A 等于( A )A .2 6 B.62 C.265D .24 3.在平面直角坐标系xOy 中,已知点A (2,1)和点B (3,0),则sin ∠AOB 的值等于( A ) A.55 B.52 C.32 D.124.如图,在8×4的矩形网格中,每格小正方形的边长都是1,若△ABC 的三个顶点在图中相应的格点上,则tan ∠ACB 的值为( A ) A.13 B.12 C.22D .35.如图,在▱ABCD 中,点E 是AD 的中点,延长BC 到点F ,使CF ∶BC =1∶2,连接DF ,EC .若AB =5,AD =8,sin B =45,则DF 的长等于( C )A.10B.15C.17 D .2 56.等腰三角形底边与底边上的高的比是2∶3,则顶角为( A ) A .60° B .90° C .120° D .150°7.在Rt △ABC 中,∠C =90°,把∠A 的邻边与对边的比叫做∠A 的余切,记作cot A =ba .则下列关系式中不成立的是( D )A .tan A ·cot A =1B .sin A =tan A ·cos AC .cos A =cot A ·sin AD .tan 2A +cot 2A =18.已知α为锐角,且3tan 2α-(1+3)tan α+1=0,则α的度数为( C ) A .30° B .45° C .30°或45° D .45°或60°9.在△ABC 中,AB =AC =5,sin B =45,⊙O 过点B ,C 两点,且⊙O 半径r =10,则OA 的长为( A )A .3或5B .5C .4或5D .410.如图,四边形ABCD 是梯形,AD ∥BC ,CA 是∠BCD 的平分线,且AB ⊥AC ,AB =4,AD =6,则tan B =( B )A .2 3B .2 2 C.114 D.554二、填空题(每小题3分,共24分)11.计算:20160+(12)-1-2sin60°-|3-2|=__1__.,第12题图) ,第13题图) ,第14题图),第15题图)12.如图,直径为10的⊙A 经过点C (0,6)和点O (0,0),与x 轴的正半轴交于点D ,B 是y 轴右侧圆弧上一点,则cos ∠OBC 的值为__45__.13.如图,一束光线照在坡度1∶3的斜坡上,被斜坡上的平面镜反射成与地面平行的光线,则这束光线与坡面的夹角α是__30__度.14.如图所示,在菱形ABCD 中,AE ⊥BC 于点E ,EC =1,cos B =513,则这个菱形的面积是__3916__.15.如图,在△ABC 中,AD 是BC 边上的高,∠C =30°,BC =2+3,tan B =12,那么AD 等于__1__.16.如图,在Rt △ABC 中,∠ACB =90°,D 是AB 的中点,过D 点作AB 的垂线交AC 于点E ,BC =6,sin A =35,则DE =__154__.17.如图,一船以每小时20海里的速度沿正东方向航行,上午八时位于A 处,这时灯塔S 位于船的北偏东45°的方向,上午九时三十分位于B 处,这时灯塔S 位于船的北偏东30°处,若继续航行,则灯塔和船之间的最短距离为__15(3+3)__海里.,第16题图),第17题图) ,第18题图)18.如图,四边形ABCD 的对角线AC ,BD 相交于点O ,且BD 平分AC .若BD =8,AC =6,∠BOC =120°,则四边形ABCD 的面积为__123__.(结果保留根号) 三、解答题(共66分)19.(6分)如图,在△ABC 中,∠C =90°,sin A =25,D 为AC 上的一点,∠BDC =45°,DC =6,求AB的长.解:∵∠BCA =90°,∠BDC =45°,∴∠DBC =45°,∴CD =CB =6,又∵sin α=25,∴BC AB =25,∴AB =1520.(8分)如图,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾斜度由45°降为30°,已知原滑滑板AB 的长为5米,点D ,B ,C 在同一水平地面上.求:改善后滑滑板会加长多少?(精确到0.01米)(参考数据:2≈1.414,3≈1.732,6≈2.449)解:在Rt △ABC 中,∵AB =5,∠ABC =45°,∴AC =ABsin45°=5×22=522.在Rt △ADC 中,∠ADC =30°,∴AD =ACsin30°=52≈5×1.414=7.07,AD -AB =7.07-5=2.07(米).答:改善后滑滑板会加长2.07米21.(8分)如图,某水库大坝横断面是等腰梯形,坝高10米,坝顶宽6米,斜坡AB 的坡度为1∶2,现要加高2米,在坝顶宽和斜坡坡度不变的情况下,加固一条长为50米的大坝,需要多少土方?解:i =1∶2,过A 作AH ⊥BC 于H 点,∴12=10BH,∴BH =20,∴BC =20×2+6=46,∵S梯形ABCD=(6+46)×102=260,过E 作EM ⊥PC 于M 点,则有:12=12PM ,∴PM =24,∴PC =24×2+6=54,∴S 梯形PEFC =(54+6)×122=360,∴所需土方数为(360-260)×50=5 000米3.22.(10分)北京时间2015年04月25日14时11分,尼泊尔发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作.如图,某探测队在地面A ,B 两处均探测出建筑物下方C 处有生命迹象,已知探测线与地面的夹角分别是25°和60°,且AB =4米,求该生命迹象所在位置C 的深度.(结果精确到1米.参考数据:sin 25°≈0.4,cos 25°≈0.9,tan 25°≈0.5,3≈1.7)解:作CD ⊥AB 交BA 延长线于D ,设CD =x 米,Rt △ADC 中,∠DAC =25°,所以tan25°=CDAD =0.5,所以AD =CD 0.5=2x ,Rt △BDC 中,∠DBC =60°,由tan60°=x2x -4=3,解得x ≈3米.所以生命迹象所在位置C 的深度约为3米23.(10分)某海域有A ,B ,C 三艘船正在捕鱼作业,C 船突然出现故障,向A ,B 两船发出紧急求救信号,此时B 船位于A 船的北偏西72°方向,距A 船24海里的海域,C 船位于A 船的北偏东33°方向,同时又位于B 船的北偏东78°方向. (1)求∠ABC 的度数;(2)A 船以每小时30海里的速度前去救援,问多长时间能到出事地点.(结果精确到0.01小时).(参考数据:2≈1.414,3≈1.732)解:(1)由题意可知DB ∥AE ,∠DBA +∠BAE =180°,∴∠DBA =108°,∠CBA =108°-78°=30°,∠C =180°-30°-72°-33°=45° (2)过点A 作AF ⊥BC 于点F ,AF AB =sin ∠CBA =12,∴AF =12AB=12,在Rt △CFA 中,FA CA =sin ∠C =22,∴CA =2AF ,∴AC =122,设A 船经过t 小时到出事地点,则30t =122,t =12230≈0.57(小时),所以A 船经过0.57小时能到出事地点24.(12分)如图,已知等边△ABC ,AB =12,以AB 为直径的半圆与BC 边交于点D ,过点D 作DF ⊥AC ,垂足为F ,过点F 作FG ⊥AB ,垂足为G ,连接GD.(1)求证:DF 是⊙O 的切线; (2)求FG 的长;(3)求tan ∠FGD 的值.解:(1)证明:连接OD ,∵△ABC 为等边三角形,∴∠C =∠A =∠B =60°,而OD =OB ,∴△ODB 是等边三角形,∠ODB =60°,∴∠ODB =∠C ,∴OD ∥AC ,∵DF ⊥AC ,∴OD ⊥DF ,∴DF 是⊙O 的切线 (2)∵OD ∥AC ,点O 为AB 的中点,∴OD 为△ABC 的中位线,∴BD =CD =6,在Rt △CDF 中,∠C =60°,∴∠CDF =30°,∴CF =12CD =3,∴AF =AC -CF =12-3=9,在Rt △AFG 中,∵∠A =60°,∴FG =AF ×sinA =9×32=932(3)过D 作DH ⊥AB 于H ,∵FG ⊥AB ,DH ⊥AB ,∴FG ∥DH ,∴∠FGD =∠GDH.在Rt △BDH 中,∠B =60°,∴∠BDH =30°,∴BH =12BD =3,DH =3BH =33,在Rt △AFG 中,∵∠AFG =30°,∴AG =12AF =92,∵GH =AB -AG -BH =12-92-3=92,∴tan ∠GDH=GH DH =9233=32,∴tan ∠FGD =tan ∠GDH =3225.(12分)如图所示(图①为实景侧视图,图②为安装示意图),在屋顶的斜坡面上安装太阳能热水器:先安装支架AB 和CD (均与水平面垂直),再将集热板安装在AD 上.为使集热板吸热率更高,公司规定:AD 与水平面夹角为θ1,且在水平面上的射影AF 为1.4 m ,现已测量出屋顶斜坡面与水平面夹角为θ2,并已知tan θ1=1.082,tan θ2=0.412.如果安装工人已确定安装支架AB 高为25 cm ,求支架CD 的高.(结果精确到1 cm)解:过A 作AE ∥BC ,交DC 于点E ,则∠EAF =∠CBG =θ2,且EC =AB =25 cm ,在Rt △DAF 中,∠DAF =θ1,∴DF =AFtan θ1.在Rt △EAF 中,∠EAF =θ2,∴EF =AFtan θ2,∴DE =DF -EF =AF (tan θ1-tan θ2).又∵AF =140 cm ,tan θ1=1.082,tan θ2=0.412,∴DE =140×(1.082-0.412)=93.8(cm ),∴DC =DE +EC =93.8+25=118.8≈119(cm ).答:支架DC 的高为119 cm检测内容:第二十九章得分________ 卷后分________ 评价________一、选择题(每小题3分,共30分)1.将一个圆形纸板放在太阳光下,它在地面上所形成的影子的形状不可能是(B)A.圆B.三角形C.线段D.椭圆2.如图,几何体上半部为正三棱柱,下半部为圆柱,其俯视图是(C)3.下列几何体中,主视图和左视图都为矩形的是(B)4.由若干个相同的小正方体搭成的一个几何体的俯视图如图,小正方形中的数字表示该位置的小正方体的个数,则这个几何体的主视图是(A)5.如图是某物体的三视图,则这个物体的形状是(B)A.四面体B.直三棱柱C.直四棱柱D.直五棱柱,第5题图),第6题图),第8题图)6.如图是一个几何体的三视图,则这个几何体的侧面积是(A)A.18 cm2B.20 cm2C.(18+23) cm2D.(18+43) cm27.如果一个圆锥的主视图是正三角形,则其侧面展开图的圆心角为(C)A.120°B.约156°C.180°D.约208°8.如图(1),(2),(3),(4)是一天中四个不同时刻的木杆在地面上的影子,将它们按时间先后顺序排列正确的一项是(A)A.(4),(3),(1),(2) B.(1),(2),(3),(4)C.(2),(3),(1),(4) D.(3),(1),(4),(2)9.如图是一束平行的光线从教室窗户射入教室的平面示意图,测得光线与地面所成的角∠AMC=30°,窗户的高在教室地面上的影长MN=23米,窗户的下檐到教室地面的距离BC=1米(点M,N,C在同一直线上),则窗户的高AB为(C)A.3米B.3米C.2米D.1.5米。
人教版九年级数学下册全册单元测试题及答案

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】第二十六章 反比例函数全章测试一、填空题 1.反比例函数xm y 1+=的图象经过点(2,1),则m 的值是______. 2.若反比例函数xk y 1+=与正比例函数y =2x 的图象没有交点,则k 的取值范围是____ __;若反比例函数xky =与一次函数y =kx +2的图象有交点,则k 的取值范围是______. 3.如图,过原点的直线l 与反比例函数xy 1-=的图象交于M ,N 两点,根据图象猜想线段MN 的长的最小值是____________.4.一个函数具有下列性质:①它的图象经过点(-1,1); ②它的图象在第二、四象限内; ③在每个象限内,函数值y 随自变量x 的增大而增大. 则这个函数的解析式可以为____________.5.如图,已知点A 在反比例函数的图象上,AB ⊥x 轴于点B ,点C (0,1),若△ABC 的面积是3,则反比例函数的解析式为____________.6.已知反比例函数xky =(k 为常数,k ≠0)的图象经过P (3,3),过点P 作PM ⊥x 轴于M ,若点Q 在反比例函数图象上,并且S △QOM =6,则Q 点坐标为______. 二、选择题7.下列函数中,是反比例函数的是( ).(A)32x y =(B 32x y =(C)xy 32=(D)x y -=32 8.如图,在直角坐标中,点A 是x 轴正半轴上的一个定点,点B 是双曲线xy 3=(x >0)上的一个动点,当点B 的横坐标逐渐增大时,△OAB 的面积将会( ).(A)逐渐增大 (B)不变(C)逐渐减小(D)先增大后减小9.如图,直线y =mx 与双曲线xky =交于A ,B 两点,过点A 作AM ⊥x 轴,垂足为M ,连结BM ,若S △ABM =2,则k 的值是( ).(A)2(B)m -2(C)m(D)410.若反比例函数xky =(k <0)的图象经过点(-2,a ),(-1,b ),(3,c ),则a ,b ,c 的大小关系为( ). (A)c >a >b (B)c >b >a (C)a >b >c(D)b >a >c11.已知k 1<0<k 2,则函数y =k 1x 和x ky 2=的图象大致是( ).12.当x <0时,函数y =(k -1)x 与xky 32-=的y 都随x 的增大而增大,则k 满足( ). (A)k >1 (B)1<k <2 (C)k >2 (D)k <113.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p (kPa)是气体体积V (m 3)的反比例函数,其图象如图所示.当气球内的气压大于140kPa 时,气球将爆炸.为了安全起见,气体体积应( ).(A)不大于3m 3524(B)不小于3m 3524(C)不大于3m 3724 (D)不小于3m 3724 14.一次函数y =kx +b 和反比例函数axky =的图象如图所示,则有( ).(A)k >0,b >0,a >0 (B)k <0,b >0,a <0 (C)k <0,b >0,a >0 (D)k <0,b <0,a >015.如图,双曲线xky =(k >0)经过矩形OABC 的边BC 的中点E ,交AB 于点D 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学(下册)试题:单元练习测试题_题型归纳
今天小编为大家精心准备了一篇有关初三数学(下册)试题:单元练习测试题的相关内容,以供大家阅读!
一、选择题(本题有10小题,每小题3分,共30分)
1.已知反比例函数的图象经过点(1,-2),则这个函数的图象一定经过点()A.(2,1)B.(2,-1)C.(2,4)D.(-1,-2)
2.抛物线y=3(x-1)2 2的顶点坐标是()
A.(-1,-2)
B.(-1,2)
C.(1,2)
D.(1,-2)
3.点A、B、C在⊙O上,若C=35,则的度数为()
A.70
B.55
C.60
D.35
4.在直角⊙ABC中,C=90,若AB=5,AC=4,则tanB=()
(A)35(B)45(C)34(D)43
5.在⊙O中,AB是弦,OCAB于C,若AB=16,OC=6,则⊙O的半径OA等于()
A.16
B.12
C.10
D.8
6.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒。
当你抬头看信号灯时,看到黄灯的概率是()
A、B、C、D、
7.在⊙ABC中,C=900,D是AC上一点,DEAB于点E,
若AC=8,BC=6,DE=3,则AD的长为()
A.3
B.4
C.5
D.6
8.小正方形的边长为1,三角形(阴影部分)与⊙ABC相似的是()
9.四个阴影三角形中,面积相等的是()
10.函数y1=x(x0),y2=4x(x0)的图象所示,下列四个结论:
①两个函数图象的交点坐标为A(2,2);②当x2时,y1③当0﹤x﹤2时,y1④直线x=1分别与两函数图象交于B、C两点,则线段BC的长为3;
则其中正确的结论是()
A.①②④
B.①③④
C.②③④
D.③④
二、填空题(本题有6小题,每小题4分,共24分)
11.扇形半径为30,圆心角为120,用它做成一个圆锥的侧面,则圆锥底面半径为。
12.D是⊙ABC中边AB上一点;请添加一个条件:,使⊙ACD⊙⊙ABC。
13.⊙ABC的顶点都是正方形网格中的格点,则sinABC等于。
14.若点在反比例函数的图象上,轴于点,的面积为3,则。
15.点P的坐标为(3,0),⊙P的半径为5,且⊙P与x轴交于点A,B,与y轴交于点C、D,则D 的坐标是。
16.直线l1x轴于点(1,0),直线l2x轴于点(2,0),直线l3x轴于点(3,0)…直线lnx轴于点(n,0);函数y=x的图象与直线l1,l2,l3,…ln分别交于点A1,A2,A3,…An,函数y=2x的图象与直线l1,l2,l3,…ln分别交于点B1,B2,B3,…Bn.如果⊙OA1B1的面积记为S1,四边形A1A2B2B1的面积记作S2,四边形A2A3B3B2的面积记作S 3,…四边形An﹣1AnBnBn﹣1的面积记作Sn,那么S2012=。
三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)
17.(本题6分)求下列各式的值:
(1)-
(2)已知,求的值.
18.(本题6分),AB和CD是同一地面上的两座相距36米的楼房,
在楼AB的楼顶A点测得楼CD的楼顶C的仰角为45,楼底D的俯角
为30求楼CD的高。
(结果保留根号)
19.(本题6分)李明和张强两位同学为得到一张星期六观看足球比赛的入场券,设计了一种游戏方案:将三个完全相同的小球分别标上数字1、2、3后,放入一个不透明的袋子中.从中随机取出一个小球,记下数字后放回袋子;混合均匀后,再随机取出一个小球.若两次取出的小球上的数字之和为奇数,张强得到入场券;否则,李明得到入场券.
(1)请你用树状图(或列表法)分析这个游戏方案所有可能出现的结果;
(2)这个方案对双方是否公平?为什么?
20.(本本题8分),AB是⊙O的直径,BC是⊙O的弦,半径ODBC,垂足为E,若BC=,OE=3;求:
(1)⊙O的半径;
(2)阴影部分的面积。
21.(本题8分),E是正方形ABCD的边AB上的动点,EFDE交BC于点F.
(1)求证:⊙ADE⊙⊙BEF;
(2)若正方形的边长为4,设AE=x,BF=y,求y与x
的函数关系式;并求当x取何值时,BF的长为1.
22.(本题10分),在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米。
(1)求S与x的函数关系式及自变量的取值范围;
(2)当x取何值时所围成的花圃面积最大,最大值是多少?
(3)若墙的最大可用长度为8米,求围成花圃的最大面积。
23.(本题10分)已知,⊙ABC为等边三角形,点D为直线BC上一动点(点D不与B、C重合).以AD为边作菱形ADEF,使DAF=60,连接CF.
⊙1,当点D在边BC上时,
①求证:ADB=②请直接判断结论AFC=ACBDAC是否成立;
⊙2,当点D在边BC的延长线上时,其他条件不变,请写出AFC、ACB、DAC之间存在的数量关系,并说明理由;
⊙3,当点D在边CB的延长线上时,且点A、F分别在直线BC的异侧,其他条件不变,请直接写出AFC、ACB、DAC之间存在的等量关系.
24.(本题12分),抛物线与x轴交A、B两点(A点在B点左侧),直线与抛物线交于A、C两点,其中C点的横坐标为2;
(1)求A、B两点的坐标及直线AC的函数表达式;
(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值;
(3)点G是抛物线上的动点,在x轴上是否存在点F,使以A、C、F、G四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.
18.(本题6分)(36﹢12)米;
19.(本题6分)(1)略;(2)⊙P(奇数)=4∕9,P(偶数)=5∕9;
这个方案对双方不公平;(注:每小题3分)
20.(本题8分)(1)半径为6;(2)S阴影=6(注:每小题4分)
21.(本题8分)(1)略;(2)y=-x2 x;当x=2时,BF=1;
(注:第①小题3分,第②小题关系式3分,X值2分)
22.(本题1 0分)(1)y﹦-4x2 24x(0
(3)⊙24-4x8,x又⊙当x3时,S随x增大而减小;
当x﹦4时,S最大值﹦32(平方米);
(注:第①小题4分,第②小题3分,第③小题3分)
23.(本题10分)(1)①由⊙ADB⊙⊙AFC可得;②结论AFC=ACBDAC成立;
(2)⊙同理可证⊙ADB⊙⊙AFC,AFC=ACB-
(3)AFCACBDAC=180(或AFC=2ACB-DAC等);
(注:第①小题4分,第②小题3分,第③小题3分) 24.(本题10分)(1)A(-1,0)、B(3,0);直线AC解析式为y﹦-X-1;
(2)设P点坐标(m,-m-1),则E点坐标(m,m2-2m-3);
PE=-m2 m 2,当m﹦时,PE最大值=;
(3)F1(-3,0)、F2(1,0)、F3(4,0)、F4(4-,0);
(注:每小题4分)
今天的内容就介绍这里了。