高二数学空间几何体的表面积与体积试题答案及解析
高二数学立体几何的体积和表面积(经典含答案)

12.如图,棱长为1的正方体 中,点 为线段 上的动点,点 分别为线段 的中点,则下列说法错误的是()
A. B.三棱锥 的体积为定值
C. D. 的最小值为
二、填空题
13.已知圆锥展开图的侧面积为 ,且为半圆,则底面半径为_______________.
14.如图,已知正方体 ,截去三个角 , , 后形成的几何体的体积与原正方体的体积之比为______.
15.如图,在棱长为4的正方体 中, , 分别为棱 , 的中点,过 , , 三点作正方体的截面,则以 点为顶点,以该截面为底面的棱锥的体积为______.
三、解答题
16.如图,多面体 中, , , , , 平面 , , 分别为 , 的中点.
(1)证明: 平面 ;
(2)证明: 平面 ;
(3)求平面 将多面体 分成上、下两部分的体积比.
【分析】
将三棱锥放入一个长方体中,求出长方体的体对角线,则得到长方体外接球的直径,利用球的表面积公式求解即可.
【详解】
解:因为三棱锥P﹣ABC中,PA⊥平面ABC,AB⊥BC,
不妨将三棱锥放入一个长方体中,则长方体的外接球即为三棱锥的外接球,
因为长方体的体对角线即为其外接球的直径,因为PA=AB=2, ,
所以 ,且 平面 ,所以 平面 .
又 平面 ,平面 ,
所以 ,又 平面 ,
所以 平面 .
(2)解:依题意, ,所以 ,
因为 , ,
体积和表面积
一、单选题
1.下列说法中正确的是()
A.棱锥的侧面不一定是三角形
B.棱锥的各侧棱长一定相等
C.棱台的各侧棱的延长线交于一点
D.用一平面去截棱锥,得到两个几何体,一个是棱锥,一个是棱台
高考数学专题《空间几何体的表面积和体积》习题含答案解析

专题8.2 空间几何体的表面积和体积1.(2021·湖南高一期末)已知圆柱1OO 及其展开图如图所示,则其体积为( )A .πB .2πC .3πD .4π【答案】D【解析】结合展开图求出圆柱的底面半径与高,进而结合体积公式即可求出结果.【详解】设底面半径为r ,高为h ,根据展开图得422h r ππ=⎧⎨=⎩,则41h r =⎧⎨=⎩,所以圆柱的体积为22144r h πππ=⨯⨯=,故选:D.2.(2021·宁夏大学附属中学高一月考)已知圆柱的上、下底面的中心分别为,O O ',过直线OO '的平面截该圆柱所得的面是面积为8的正方形,则该圆柱的表面积为()A.B .12πC.D .10π【答案】B【解析】根据圆柱的轴截面面积求出圆柱的底面半径和母线长,利用圆柱的表面积公式,即可求解.【详解】设圆柱的轴截面的边长为x ,因为过直线OO '的平面截该圆柱所得的面是面积为8的正方形,所以28x =,解得x =即圆柱的底面半径为r =l =,所以圆柱的表面积为222222212S S S r rl πππππ=+=+=⨯+=侧底.故选:B.练基础3.(2021·浙江高二期末)某几何体的三视图如图所示,则该几何体的体积是()A.13B.16C.12D.14【答案】D【解析】首先把三视图转换为几何体的直观图,进一步求出几何体的体积.【详解】解:根据几何体的三视图转换为直观图为:该几何体为底面为直角梯形,高为1的四棱锥体;如图所示:所以:1111(1113224V=⨯⨯+⨯⨯=.故选:D.4.(2021·辽宁高一期末)已知一平面截一球得到直径为,则该球的体积为()3cmA.12πB.36πC.D.108π【答案】B【解析】由球的截面性质求得球半径后可得体积.【详解】由题意截面圆半径为r =,所以球半径为3R ==,体积为334433633V R πππ==⨯=.故选:B .5.(2020·浙江省高考真题)某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:cm 3)是( )A .73B .143C .3D .6【答案】A【解析】由三视图可知,该几何体是上半部分是三棱锥,下半部分是三棱柱,且三棱锥的一个侧面垂直于底面,且棱锥的高为1,棱柱的底面为等腰直角三角形,棱柱的高为2,所以几何体的体积为:11117211212232233⎛⎫⎛⎫⨯⨯⨯⨯+⨯⨯⨯=+= ⎪ ⎪⎝⎭⎝⎭.故选:A6.(2018·全国高考真题(文))已知圆柱的上、下底面的中心分别为,,过直线的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A .B .C .D .【答案】B【解析】根据题意,可得截面是边长为的正方形,的圆,且高为所以其表面积为,故选B.7.(2020·江苏省高考真题)如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半轻为0.5 cm ,则此六角螺帽毛坯的体积是____cm.【答案】2π【解析】正六棱柱体积为262⨯1O 2O 12O O 12π10π22212S πππ=+=圆柱体积为21()222ππ⋅=所求几何体体积为2π故答案为:2π-9.(2019·北京高考真题(文))某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.【答案】40.【解析】如图所示,在棱长为4的正方体中,三视图对应的几何体为正方体去掉棱柱之后余下的几何体,几何体的体积.10.(2019·全国高考真题(理))中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为1111MPD A NQC B-()3142424402V =-+⨯⨯=长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.【答案】共26个面..【解析】由图可知第一层与第三层各有9个面,计18个面,第二层共有8个面,所以该半正多面体共有个面.如图,设该半正多面体的棱长为,则,延长与交于点,延长交正方体棱于,由半正多面体对称性可知,为等腰直角三角形,,.1.(2021·浙江高一期末)我国古代数学名著《九章算术》中记载“今有羡除,下广六尺,上广一丈,深三尺,1-18826+=x AB BE x ==BC FE G BC H BGE ∆,21)1BG GE CH x GH x x x ∴===∴=+=+=1x ∴==1-练提升末广八尺,无深,袤七尺.问积几何?”这里的“羡除”,是指由三个等腰梯形和两个全等的三角形围成的五面体.在图1所示羡除中,////AB CD EF ,10AB =,8CD =,6EF =,等腰梯形ABCD 和等腰梯形ABFE 的高分别为7和3,且这两个等腰梯形所在的平面互相垂直.按如图2的分割方式进行体积计算,得该“羡除”的体积为( )A .84B .66C .126D .105【答案】A【解析】由图可知,中间部分为棱柱,两侧为两个全等的四棱锥,再由柱体和锥体的体积公式可求得结果.【详解】按照图2中的分割方式,中间为直三棱柱,直三棱柱的底面为直角三角形,两条直角边长分别为7、3,直三棱柱的高为6,所以,直三棱柱的体积为11736632V =⨯⨯⨯=.两侧为两个全等的四棱锥,四棱锥的底面为直角梯形,直角梯形的面积为()1272122S +⨯==,四棱锥的高为3h =,所以,两个四棱锥的体积之和为2121232132V =⨯⨯⨯=,因此,该“羡除”的体积为1284V V V =+=.故选:A.2.(2021·河北巨鹿中学高一月考)蹴鞠(如图所示),又名蹴球、蹴圆、筑球、踢圆等,蹴有用脚蹴、踢的含义,鞠最早系外包皮革、内实米糠的球.因而蹴鞠就是指古人以脚蹴、塌、踢皮球的活动,类似今日的足球.2006年5月20日,蹴鞠已作为非物质文化遗产经国务院批准列入第一批国家非物质文化遗传名录.已知某蹴鞠(近似看作球体)的表面上有四个点S 、A 、B 、C ,满足S ABC -为正三棱锥,M 是SC 的中点,且AM SB ⊥,侧棱1SA =,则该蹴鞠的表面积为( )A .3πB .6πC .12πD .16π【答案】A【解析】若ASB θ∠=,N 为BC 中点易得AM MN ⊥,再应用余弦定理、勾股定理求得2πθ=,即S ABC -为直三棱锥,即可求外接球半径,进而求表面积.【详解】如下图,若N 为BC 中点,则//MN SB ,又AM SB ⊥,∴AM MN ⊥,又S ABC -为正三棱锥且侧棱1SA =,∴1,2MN AN AB ==,若ASB θ∠=,则25cos 4AM θ=-,222cos AB θ=-,在Rt AMN △中,222AM MN AN +=,即()33cos 22cos 24θθ-=-,可得cos 0θ=,0θπ<<,∴2πθ=,即S ABC -为直三棱锥,易得外接球半径R ∴该蹴鞠的表面积为243R ππ=.故选:A3.【多选题】(2021·江苏高一期末)已知圆台上、下底面的圆心分别为1O ,2O ,半径为2,4,圆台的母线与下地面所成角的正切值为3,P 为12O O 上一点,则()A .圆台的母线长为6B .当圆锥的1PO 圆锥2PO 的体积相等时,124PO PO =C .圆台的体积为56πD .当圆台上、下底面的圆周都在同一球面上,该球的表面积为80π【答案】BCD【解析】转化求解圆台的母线长判断Q ;利用比例关系判断B ;求解体积判断C ;取得球的表面积判断D .【详解】解:圆台上、下底面的圆心分别为1O ,2O ,半径为2,4,圆台的母线与下底面所成角的正切值为3,P 为12O O 上一点,3(42)6h =⨯-=,母线l =6矛盾,所以A 错误;1212r r =,124PO PO =,B正确;16(416)563V πππ=⨯⨯++=,C 正确;设球心到上底面的距离为x ,则22222(6)4x x +=-+,解得4x =,r =,80S π=,D 正确;故选:BCD .4.(2020·全国高考真题(文))已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【解析】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中2,3BC AB AC ===,且点M 为BC 边上的中点,设内切圆的圆心为O ,由于AM ==,故122S =⨯⨯=△A B C ,设内切圆半径为r,则:ABC AOB BOC AOC S S S S =++△△△△111222AB r BC r AC r =⨯⨯+⨯⨯+⨯⨯()13322r =⨯++⨯=解得:r,其体积:343V r π==..5.(2020届浙江省杭州市高三3月模拟)在《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称为“阳马”.现有一“阳马”P ABCD -,PA ⊥底面ABCD ,2PA AB ==,1AD =,则该“阳马”的最长棱长等于______;外接球表面积等于______.【答案】3 9π【解析】如图,PA ⊥底面ABCD ,底面ABCD 为长方形,且2PA AB ==,1AD =,所以PB PD ==3PC ===.最长棱为:3.该几何体可以通过补体得长方体,所以其外接球的半径为1322PC =.则其外接球的表面积为23492ππ⎛⎫⨯= ⎪⎝⎭,故答案为:3;9π.6.(2020·山东省仿真联考3)在三棱锥中,平面,,,,是上的一动点,且直线与平面所成角的最大值为,则________,三棱锥的外接球的表面积为________.【答案】6 P ABC -PA ⊥ABC 23BAC π∠=3AP =AB =Q BC PQ ABC 3πBC =P ABC -57π【解析】设直线与平面所成的角为,三棱锥外接球的球心为,半径为,如图所示,则,所以,则的最小值为,,即点到,所以.因为,所以,所以所以,所以.取的外接圆的圆心为,则圆的半径连接,作于点,则点为的中点,所以,故三棱锥的外接球的表面积.故答案为:6;.7.(广东省汕尾市2020-2021学年高一下学期期末数学试题)已知某圆柱的轴截面是一个正方形,且该圆柱PQ ABC θPABC -O R 30sin PA PQ PQ θ<==≤PQ ≥PQAQ A BC 3BAQ π∠=23BAC π∠=3CAQ π∠=AB AC ==2222222cos23BC AB AC AB AC π=+-⋅⋅=+-⨯1362⎛⎫⨯-= ⎪⎝⎭6BC =ABC V O 'O '1622sin 3r π=⨯=OO 'OM PA ⊥M M PA 2222235724R OA OP ⎛⎫===+= ⎪⎝⎭P ABC -O 2457S R ππ==57π表面积(底面和侧面面积之和)为1S ,其外接球的表面积为2S ,则该圆柱的表面积与其外接球的表面积的比值12S S =________.【答案】34【解析】设圆柱的底面半径为r ,高为h ,则2h r =,上下底面圆圆心连线的中点即为该圆柱外接球的球心,可得外接球的半径R ==,再由圆柱的表面积公式和球的表面积公式分别计算1S 、2S 即可得比值.【详解】设圆柱的底面半径为r ,高为h ,因为圆柱的轴截面是一个正方形,所以2h r =,所以圆柱表面积22212π2π2π2π26πS r r h r r r r =+⋅=+⋅=,其外接球的球心在上下底面圆圆心连线的中点位置,可知球心到上底面圆的距离为12h r =,由勾股定理可得:外接球的半径R ==,所以外接球的表面积)22224π4π8πS R r ===,所以该圆柱的表面积与其外接球的表面积的比值22126ππ348S r r S ==,故答案为:34.8.(2021·重庆市杨家坪中学高一月考)学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为在一正三棱柱中挖去一个圆柱后的剩余部分(圆柱的上下两底面圆与三棱柱的底面各边相切),圆柱底面直径为,高为4cm .打印所用原料密度为31g /cm ,不考虑打印损耗,制作该模型所需原料的质量为______g .1.73=,π 3.14=,精确到0.1).【答案】24.6【解析】由正三棱柱的性质,结合已知求其底面面积,再由棱柱的体积公式求其体积V ,并求圆柱的体积为V ',则模型体积为V V '-,即可求制作该模型所需原料的质量.【详解】由题意,正三棱柱底面(等边三角形)如上图有AE OE AD DC =且2AC AE DC ==,AD AC =,OE ==6AC =,故底面面积1662S =⨯⨯=∴正三棱柱的体积462.3V Sh ===≈.而圆柱的体积为21237.7V r h ππ'==≈,∴制作该模型所需原料的质量为()124.6V V '-⨯=克.故答案为:24.69.(2021·上海高二期末)五月五是端午,门插艾,香满堂,吃粽子,蘸白糖,粽子古称“角黍”,是我国南北各地的节令食品,因各地风俗不同,粽子的形状和食材也会不同,有一种各面都是正三角形的正四面体形粽子,若该正四面体粽子的棱长为8cm ,则现有1立方米体积的食材,最多可以包成这种粽子_______个.【答案】16572【解析】根据题意,利用棱锥的体积公式求得正四面体粽子的体积,进而求得答案.【详解】如图所示,正四面体ABCD 的棱长为8cm ,设底面正三角形BCD 的中心为O ,连接AO ,则AO ⊥平面BCD ,连接BO,则23BO ==AO ==所以一个粽子的体积为:31188)32V cm =⨯⨯⨯=,由3311000000m cm =16572.8≈所以1立方米体积的食材,最多可以包成这种粽子16572个.故答案为:16572.10.(2021·浙江高二期末)在四面体ABCD 中,AB BC ⊥,CD BC ⊥,AB CD ⊥,2BC =,若四面体ABCDABCD 的体积的最大值为___________.【答案】83【解析】根据题意可以将此四面体放入一个长方体中,则易求四面体高与底面长的关系,再根据体积公式写出其体积表达式,最后利用基本不等式即可.【详解】如图所示,不妨将四面体ABCD 放入下图中的长方体中,则长方体的宽为2,设长方体的长为a ,高为h .因为四面体ABCD则r =2216a h +=,所以四面体ABCD 的体积22111833323BCD a h V S AB ah +=⋅=≤⋅=△,当且仅当a h ==时等号成立,所以四面体ABCD 的体积最大值为83.故答案为:831.(2021·全国高考真题)正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为()A.20+B.C .563D【答案】D【解析】由四棱台的几何特征算出该几何体的高及上下底面面积,再由棱台的体积公式即可得解.【详解】作出图形,连接该正四棱台上下底面的中心,如图,因为该四棱台上下底面边长分别为2,4,侧棱长为2,所以该棱台的高h ==下底面面积116S =,上底面面积24S =,练真题所以该棱台的体积((121116433V h S S =+=+故选:D.2.(2020·天津高考真题)若棱长为 )A .12πB .24πC .36πD .144π【答案】C【解析】【分析】求出正方体的体对角线的一半,即为球的半径,利用球的表面积公式,即可得解.【详解】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即3R ==,所以,这个球的表面积为2244336S R πππ==⨯=.故选:C.3.(2021·全国高考真题(理))已如A ,B ,C 是半径为1的球O 的球面上的三个点,且,1AC BC AC BC ⊥==,则三棱锥O ABC -的体积为( )A B C D 【答案】A【解析】由题可得ABC V 为等腰直角三角形,得出ABC V 外接圆的半径,则可求得O 到平面ABC 的距离,进而求得体积.【详解】,1AC BC AC BC ⊥==,ABC ∴V 为等腰直角三角形,AB ∴=,则ABC V ,又球的半径为1,设O 到平面ABC 的距离为d ,则d ==所以11111332O ABC ABC V S d -=⋅=⨯⨯⨯=V故选:A.4.(2020·全国高考真题(理))埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A B C D 【答案】C【解析】如图,设,CD a PE b ==,则PO ==,由题意212PO ab =,即22142a b ab -=,化简得24()210b b a a -⋅-=,解得b a =.故选:C.5.(2018·全国高考真题(文))设是同一个半径为4的球的球面上四点,为等边三A B C D ,,,ABC △角形且其面积为,则三棱锥体积的最大值为( )A .B .C .D .【答案】B【解析】如图所示,点M 为三角形ABC 的中心,E 为AC 中点,当平面时,三棱锥体积最大此时,,点M 为三角形ABC 的中心中,有故选B.6.(2019·全国高考真题(理))已知三棱锥P -ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,则球O 的体积为( )A .B .C .D【答案】D D ABC -DM ⊥ABC D ABC -OD OB R 4===2ABC S AB ==V AB 6∴= 2BM 3BE ∴==Rt OMB ∴V OM 2==DM OD OM 426∴=+=+=()max 163D ABC V -∴=⨯=【解析】解法一:为边长为2的等边三角形,为正三棱锥,,又,分别为、中点,,,又,平面,平面,,为正方体一部分,,即 ,故选D .解法二:设,分别为中点,,且,为边长为2的等边三角形,又中余弦定理,作于,,,PA PB PC ABC ==∆ P ABC ∴-PB AC ∴⊥E F PA AB //EF PB ∴EF AC ∴⊥EF CE ⊥,CE AC C EF =∴⊥ PAC PB ⊥PAC APB PA PB PC ∴∠=90︒,∴===P ABC ∴-2R ==34433R V R =∴=π==π2PA PB PC x ===,E F ,PA AB //EF PB ∴12EF PB x ==ABC ∆CF ∴=90CEF ∠=︒1,2CE AE PA x ∴===AEC ∆()2243cos 22x x EAC x +--∠=⨯⨯PD AC ⊥D PA PC =为中点,,,,,又,两两垂直,,,故选D.D Q AC 1cos 2AD EAC PA x∠==2243142x xx x+-+∴=2212122x x x ∴+=∴==PA PB PC ∴======2AB BC AC ,,PA PB PC ∴2R ∴==R ∴=34433V R ∴=π==。
高三高考数学复习练习82空间几何体的表面积与体积

821.一个球的表面积是16π,那么这个球的体积为( )A.163π B.323π C .16π D .24π【解析】 设球的半径为R ,因为表面积是16π,所以4πR 2=16π,解得R =2,所以体积为43πR 3=32π3. 【答案】 B2.某几何体的三视图如图所示,则其表面积为( )A .πB .2πC .3πD .4π【解析】 由三视图可知,该几何体为半径为r =1的半球体,表面积为底面圆面积加上半球面的面积,所以S =πr 2+12×4πr 2=π×12+12×4π×12=3π.故选C. 【答案】 C3.在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.2π3B.4π3C.5π3 D .2π【解析】 过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,如图所示,该几何体的体积为V =V圆柱-V 圆锥=π·AB 2·BC -13·π·CE 2·DE =π×12×2-13π×12×1=5π3,故选C. 【答案】 C4.一个四面体的三视图如图所示,则该四面体的表面积是( )A .1+ 3B .2+ 3C .1+2 2D .2 2 【解析】 由空间几何体的三视图可得该空间几何体的直观图,如图所示,∴该四面体的表面积为S 表=2×12×2×1+2×34×(2)2=2+3,故选B. 【答案】 B5.(2018·太原一模)某几何体的三视图如图所示,则该几何体的表面积为( )A .6π+1B.(24+2)π4+1C.(23+2)π4+12D.(23+2)π4+1 【解析】 由几何体的三视图知,该几何体为一个组合体,其中下部是底面直径为2,高为2的圆柱,上部是底面直径为2,高为1的圆锥的四分之一,所以该几何体的表面积为4π+π+3π4+2π4+1=(23+2)π4+1,故选D. 【答案】 D6.甲几何体(上)与乙几何体(下)的组合体的三视图如图所示,甲、乙几何体的体积分别为V 1,V 2,则V 1∶V 2等于( )A .1∶4B .1∶3C .2∶3D .1∶π【解析】 由三视图知,甲几何体是半径为1的球,乙几何体是底面半径为2,高为3的圆锥,所以球的体积V 1=43π,V 2=13π×22×3=4π,所以V 1∶V 2=1∶3.故选B. 【答案】 B7.(2017·全国Ⅲ卷)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .πB.3π4C.π2D.π4【解析】 设圆柱的底面半径为r ,球的半径为R ,且R =1,由圆柱两个底面的圆周在同一个球的球面上可知,r ,R 及圆柱的高的一半构成直角三角形.∴r = 12-⎝⎛⎭⎫122=32.∴圆柱的体积为V =πr 2h =34π×1=3π4. 故选B.【答案】 B8.(2017·襄阳调研)如图是一个空间几何体的三视图,则该几何体的表面积为________.【解析】 由三视图可知,该几何体是一个正四棱柱挖掉一个半球所得的几何体,其中半球的底面就是正四棱柱上底面的内切圆,正四棱柱的底面边长为4,高为2,半球所在球的半径为2.所以该几何体的表面由正四棱柱的表面与半球的表面积之和减去半球的底面构成,故其表面积为(4×4×2+2×4×4)+12×(4π×22)-π×22=64+4π. 【答案】 64+4π9.(2018·乌鲁木齐二诊)已知四面体ABCD 满足AB =CD =6,AC =AD =BC =BD =2,则四面体ABCD 的外接球的表面积是________.【解析】 (图略)在四面体ABCD 中,取线段CD 的中点为E ,连接AE ,BE .∵AC =AD =BC =BD =2,∴AE ⊥CD ,BE ⊥C D.在Rt △AED 中,CD =6,∴AE =102.同理BE =102.取AB 的中点为F ,连接EF .由AE =BE ,得EF ⊥A B.在Rt △EF A 中,∵AF =12AB =62,AE =102,∴EF =1.取EF 的中点为O ,连接OA ,则OF =12.在Rt △OF A 中,OA =72.∵OA =OB =OC =OD ,∴该四面体的外接球的半径是72,∴外接球的表面积是7π. 【答案】 7π10.(2018·贵州适应性考试)已知球O 的表面积是36π,A ,B 是球面上的两点,∠AOB =60°,C 是球面上的动点,则四面体OABC 体积V 的最大值为________.【解析】 设球的半径为R ,由4πR 2=36π,得R =3.显然在四面体OABC 中,△OAB 的面积为定值,S △OAB =12×R ×32R =34R 2=934.要使三棱锥的体积最大,只需球上的点到平面OAB 的距离最大,显然,到平面OAB 距离的最大值为球的半径,所以四面体OABC 的体积的最大值V =13×934×R =934. 【答案】 93411.(2016·全国丙卷)如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明:MN ∥平面P AB ;(2)求四面体N -BCM 的体积.【解析】 (1)证明 由已知得AM =23AD =2. 如图,取BP 的中点T ,连接AT ,TN ,由N 为PC 中点知TN ∥BC ,TN =12BC =2. 又AD ∥BC ,故TN 綊AM ,所以四边形AMNT 为平行四边形,于是MN ∥AT .因为AT ⊂平面P AB ,MN ⊄平面P AB ,所以MN ∥平面P AB .(2)因为P A ⊥平面ABCD ,N 为PC 的中点,所以N 到平面ABCD 的距离为12P A. 取BC 的中点E ,连接AE .由AB =AC =3得AE ⊥BC ,AE =AB 2-BE 2= 5.由AM ∥BC 得M 到BC 的距离为5,故S △BCM =12×4×5=2 5. 所以四面体N -BCM 的体积V N -BCM =13×S △BCM ×P A 2=453. 12.如图所示,在空间几何体ADE -BCF 中,四边形ABCD 是梯形,四边形CDEF 是矩形,且平面ABCD ⊥平面CDEF ,AD ⊥DC ,AB =AD =DE =2,EF =4,M 是线段AE 上的动点.(1)试确定点M 的位置,使AC ∥平面MDF ,并说明理由;(2)在(1)的条件下,平面MDF 将几何体ADE -BCF 分成两部分,求空间几何体M -DEF 与空间几何体ADM -BCF 的体积之比.【解析】(1)当M 是线段AE 的中点时,AC ∥平面MDF .理由如下:连接CE 交DF 于点N ,连接MN .因为M ,N 分别是AE ,CE 的中点,所以MN ∥AC .又因为MN ⊂平面MDF ,AC ⊄平面MDF ,所以AC ∥平面MDF .(2)将几何体ADE -BCF 补成三棱柱ADE -B ′CF ,如图所示,三棱柱ADE -B ′CF 的体积为V =S △ADE ·CD =12×2×2×4=8,则几何体ADE -BCF 的体积V ADE BCF =V ADE B ′CF -V F BB ′C=8-13×⎝⎛⎭⎫12×2×2×2=203. 因为三棱锥M -DEF 的体积V M DEF =13×⎝⎛⎭⎫12×2×4×1=43, 所以V ADM BCF =203-43=163, 所以两几何体的体积之比为43∶163=1∶4.。
必修二_1.3_空间几何体的表面积和体积同步练习和详细答案

1.3空间几何体的表面积和体积【知识总结】1. 多面体的面积和体积公式名称 侧面积(S 侧) 全面积(S 全)体积(V )棱 棱柱 直截面周长x IS 侧+2S 底S底• h=S 直截面• h柱直棱柱 chS 底• h「棱锥棱锥 各侧面积之和1S 底• h3 正棱锥 1『 —ch 2S 侧+S 底棱台各侧面面积之和1—h(S 上底+S 下底+3棱 台正棱台1一 (c+c ' )h '2S 侧+S 上底+S 下底S 下底’S 下底)表中表示面积,'、分别表示上、下底面周长,表斜咼,'表示斜咼,表示侧棱长。
2 .旋转体的面积和体积公式名称圆柱圆锥圆台球S 侧 2 n rl n rl n (r 1+「2)lS 全 2 n r(l+r) n r(l+r) 2 2n (r 1+r 2)l+ n (r 1+r24 n RVn r 2h(即 n r 2l)1r 2h —n r h312 2—n h(r 1+r 1「2+r 2)3 43—n R3 表中I 、h 分别表示母线、咼,r 表示圆柱、圆锥与球冠的底半径,r i 、「2分别表示圆台上、下底面半径,R 表示半径。
【知能训练】A:多面体的表面积和体积 一•选择题1.如图,在直三棱柱 ABC-ABC i 中,AA=AB=2 BC=1, / ABC=90,若规 定主(正)视方向垂直平面 ACCA ,则此三棱柱的左视图的面积为 ( )A.—— B . 2 - C . 4 D . 22•某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底 边长为8、高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、 高为4的等腰三角形,则该几何体的表面积为()3.—个棱锥被平行于底面的平面所截,如果截面面积与底面面积之比为1: 2,则截面把棱锥的一条侧棱分成的两段之比是()A . 1 : 4B . 1 : 2C . 1 : ( "- 1 )D . 1: ( 一+1 ) 4.正六棱台的两底边长分别为1cm, 2cm,高是1cm,它的侧面积为()A . 80B . 24 一+88C. 24 一+40 D . 118A .9 ~ 2cm2B . 9 cmC. - cm 22D. 3 cm5. 要制作一个容积为 4卅,高为1m 的无盖长方体容器,已知该容器的底面造价是每平方米 20元,侧面造价是每平方米 10元,则该容器的最低总造价是( )A . 80 元B . 120 元C . 160 元D. 240 元6. (文) 四棱锥S-ABCD 的底面是矩形,锥顶点在底面的射影是矩形对角线的交点,四棱 锥及其三视图如图(AB 平行于主视图投影平面)则四棱锥 A . 24 B . 18 C . - - D . 87. 某空间组合体的三视图如图所示,则该组合体的体积为( A . 48B . 56C . 64D. 72&各棱长均为a 的三棱锥的表面积为( )A. 4 _a 2B . 3 "a 2C .2 _a 2D9.已知一个四棱锥的高为 3,其底面用斜二测画法所画出的水平放置的直观图是一个边长为1的正方形,则此四棱锥的体积为()10. 如图,在三棱柱 ABC-ABC 中,D, E , F 分别是AB, AC, AA 的中点,设三棱锥 F-ADE的体积为V 1,三棱柱 ABG-ABC 的体积为V 2,则V 1: V ___________________________________ .11. _______ 将边长为2的正方形沿对角线 AC 折起,以A, B, C, D 为顶点的三棱锥的体积最大值等 于 ____ .12.如图,一个三棱柱形容器中盛有水,且侧棱AA=8.若AAB 1B 水平放置时,液面恰好过AC BC, AC , BC 的中点,则当底面 ABC 水平放置时,液面的高为 _________________ . 13. 四棱锥P-ABCD 的底面ABCE 为正方形,且PD 垂直于底面 ABCD N 为PB 中点,则三棱锥 P-ANC 与四棱锥P-ABCD 的体积比为 ________________ .14.已知某四棱锥,底面是边长为2的正方形,且俯视图如图所示.若该四棱锥的侧视图为S-ABCD 的体积=( )A .B . 6C. -D . 2直角三角形,则它的体积为_________________15.如图所示,在三棱柱ABC-ABQ 中,AB=AC=AA=2, BC=2 ;且/ AAB=/ A i AC=60,则该三棱柱的体积是_________________________ .B:旋转体的表面积和体积1•如果圆锥的底面半径为,高为2,那么它的侧面积是()A. 4 n B . 2 n C . 2 n D . 4 n2.一圆锥的侧面展开图是半径为2的半圆,则该圆锥的全面积是()A. 5 nB. 4 nC. 3 nD. 2 n3•如果圆锥的轴截面是正三角形(此圆锥也称等边圆锥),则此圆锥的侧面积与全面积的比是()A. 1 : 2 B. 2: 3 C. 1 : 一 D. 2: _4•圆锥侧面积为全面积的,则圆锥的侧面展开图圆心角等于()A. - nB. nC. 2 nD.以上都不对5.圆台的上、下底面半径和高的比为 1 : 4: 4,母线长为10,则圆台的侧面积为()A. 81 nB. 100 nC. 14 nD. 169 n6.已知球的直径SC=8 A, B是该球球面上的两点,AB=2 ,/ SCAN SCB=60,则三棱锥S-ABC 的体积为()A. 2 ~B. 4 ~C. 6 ~D. 8 ~7.若圆柱的底面直径和高都与球的直径相等,圆柱、球的表面积分别记为S、S,则S:Sa=()A. 1 : 1B. 2: 1C. 3: 2D. 4: 1&若两个球的表面积之比为1: 4,则这两个球的体积之比为()A. 1 : 2B. 1 : 4C. 1 : 8D. 1 : 169.体积相等的正方体、球、等边圆柱(即底面直径与母线相等的圆柱)的全面积分别为S , S, S3,那么它们的大小关系为()A. S1 v S2 v S3B. S1 v S3V S2C. S2V S3 v S1D. S2 v S1 v S3二.填空题(共5小题)10.圆锥和圆柱的底面半径和高都是R,则圆锥的全面积与圆柱的全面积之比为________________n和n的矩形, 11 .已知一个圆柱的侧面展开图是一个长和宽分别为则该圆柱的体积是____________________12.在如图所示的斜截圆柱中,已知圆柱底面的直径为40cm,母线长最短50cm,最长80cm,则斜截圆柱的侧面面积S= cm 2.13.球的体积与其表面积的数值相等,则球的半径等于14•已知一圆柱内接于球O,且圆柱的底面直径与母线长均为2,则球为O的表面积为15.已知A, B, C是球面上三点,且AB=AC=4cm/ BAC=90,若球心O到平面ABC的距离为2 ,则该球的表面积为cm3.11.正三角形ABC的边长为2,将它沿高AD翻折,使点B与点C间的距离为1,此时四面体ABCD7卜接球表面积为三.解答题(共3小题)16•如图,某种水箱用的“浮球”,是由两个半球和一个圆柱筒组成•已知球的直径是6cm,圆柱筒长2cm.(1)这种“浮球”的体积是多少cm (结果精确到0.1 ) ?(2 )要在这样2500个“浮球”表面涂一层胶质,如果每平方米需要涂胶100克,共需胶多少?17.(文)如图,球O的半径长为10(1)求球O的表面积;(2)求球O的体积;(3)若球O的小圆直径AB=3Q求A、B两点的球面距离.18.设底面直径和高都是4厘米的圆柱的内切球为O.(1)求球O的体积和表面积;(2)与底面距离为1的平面和球的截面圆为M AB是圆M内的一条弦,其长为2 ,求AB 两点间的球面距离.参考答案: A:I、A 2、B 3、C 4、A 5、C 6、D 7、C 8、D 9、D10、解:因芮D,E,分S]是Ab肌的中自所以血虫DE;S AA BC=1:仆又F是宜納的中点,所以A T aS面的范离H为F到虧面距离h的2倍• 即三複栓盘卩1门-2匚的壽是三棱穩F-ME高的7倍-斷以如;畑空兰空=4T=1:西.故答案为1; 24.II、铅:妇也肪示,评正方也就口叭対術钱M * 3DSt + iO>甲n折更启的位豈为F・连揺即‘ *苛一TAZJLBC,AC l-BD* - BaflD- QrO--ACX 耶®IT g匡b> =楼帕的作祗対V D -kBC"v^EOC' -^Vc-BCC~ ;BCD' k AO*j52kBOD' x J S^ISOD_卞航:王方世的迪丢为2・可J?■■- BOD ft AH - To LABC谜劉昴尢值■*:S/\ 二 0D* =? x j^x忑小血乂目□力'二w in上aoii *’,丄i ?rv「.q-TTY-M' l「=丄工」•王5V.怡巧「此t」导.乂RJ农虻-土故告案为;半12、解:不妨令此三棱柱为直三棱柱,如图当侧面AA1B1B水平放置时,水的形状为四棱柱形,底面是梯形.设△ ABC的面积为S,贝U S梯形ABFE= S,V水=S? AA1=6S .当底面ABC水平放置时,水的形状为三棱柱形,设水面高为h,则有V水=Sh,••• 6S=Sh,.•• h=6 .故当底面ABC水平放置时,液面高为6 .故答案为:613、1:4 14、15、2解:團柱的側面展开囹星长利员务别为和TT的矩用,当毋线为戈氏时,區1桂的庙面半襌是扌此时囿桂体粮是(l)1 2Ttx3it=^;当母线为H时,圆柱酌展面半轻是学此时圆柱的体釈是(芥II"二竺匕£-t 4综上所求圈柱的体稅杲:—16、解:(1 )T该“浮球”的圆柱筒直径d=6cm ,•••半球的直径也是6cm,可得半径R=3cm,•两个半球的体积之和为V球=-冗R = - n ? 27 = 6 n cm3 * S 6…(2分)斗412、解:将相同的两个几何体,对接为圆柱,则圆柱的侧面展开,侧面展开图的面积 S=[ ( 50+80) X 20 n x 2]/2=2600 n cm2. 故答案为:2600 n13、 3 14、8 n 15、64 n学习参考而V 圆柱=n R ? h= n X 9X = n cm3…(2 分)•该“浮球”的体积是:V=V球+V圆柱=36 n +18 n =54 n" 169.6cm 3…(4分)(2)根据题意,上下两个半球的表面积是S 球表= n R = Xn X 9= 6 n cm?…(6 分)而“浮球”的圆柱筒侧面积为:S圆柱侧=2 n Rh=2 Xn X 3 X 2=12 n cm2…(8分)6 n n n• 1个“浮球”的表面积为S = —0一= —m因此,2500个“浮球”的表面积的和为2500 S = 00 X —= n m2…(10分)•/每平方米需要涂胶100克,•总共需要胶的质量为:100 X 12 n =1200 n (克)…(12分)答:这种浮球的体积约为169.6cm 3;供需胶1200 n克.…(13分)17、解:(1)球的表面积为4 n r 2=1200 n ; …(4分)(2)球的体积V=-n r3= 4000 _n ; …(8 分)(3)设球心为O,在△ AOB中,球O的小圆直径AB=30,球O的半径长为10解得Z AOB=",所以A、B两点的球面距离为0 n n . …(15分)18、解:(1)•••底面直径和高都是4厘米的圆柱的内切球为O,•球O的半径为2cm,.•.球O的体积为-n ? 2=,表面积4 n ? 22=16 n ;(2)•/ AB是圆M内的一条弦,其长为2 ,• Z AOB= n , • AB两点间的球面距离为".。
空间几何体的表面积与体积习题附答案

空间几何体的表面积与体积习题附答案1.圆柱的侧面积可以通过展开图计算,展开图是一个正方形,边长为2πr,所以侧面积为4πr^2,即4πS,因此选项为A。
2.根据三视图可以看出该几何体由两个同底的半圆锥组成,底面半径为1,高为3,因此体积为2×(1/3)πr^2h=π,因此选项为D。
3.根据三视图可以看出该几何体是一个组合体,由一个底面为等腰直角三角形的直三棱柱和一个底面为等腰直角三角形的三棱锥组成。
直三棱柱的高为2,三棱锥的高为2,因此梯形的高为2,底边为2和4,面积为(2+4)×2/2=6,共有2个梯形,因此梯形的面积之和为12,因此选项为B。
4.根据三视图可以看出该几何体为一个圆柱挖去一个同底的圆锥,圆锥的高为圆柱高的一半,因此圆锥的高为2,圆柱的底面积为π,侧面积为4π,圆锥的侧面积为2π×5/2=5π,因此表面积为π+4π+5π=9π+5π,因此选项为A。
5.根据三视图可以看出该几何体为一个直三棱柱削去一个同底的三棱锥,三棱柱的高为5,三棱锥的高为3,三棱锥与三棱柱的底面均为两直角边分别为3和4的直角三角形,因此三棱柱的体积为底面积×高=3×4×5=60,三棱锥的体积为1/3×底面积×高=1/3×3×4×3=4,因此该几何体的体积为60-4=56,因此选项为C。
C1F=4,连接EF,交AD于点G,求三角形AEF和四边形ABCG的面积和长方体ABCD-A1B1C1D1的体积.解:首先可以求出AE=BF=6,EF=8,再根据三角形相似可以求出AG=12,GD=4,因此AD=16,AGD为等腰直角三角形,所以GD=DG=4,因此CG=10,BG=AB-AG =4,所以ABCG为梯形,其面积为(AB+CG)×4=56.三角形AEF的面积为1/2×AE×EF=24.长方体ABCD-A1B1C1D1的体积为16×10×8=1280.题目1:一长方体被平面α分成两个高为10的直棱柱,求平面α把该长方体分成的两部分体积的比值。
高中数学必修2 空间几何体的表面积与体积最全试题及答案

空间几何体的表面积与体积一.相关知识点1.几何体的表面积(1)棱柱、棱锥、棱台的表面积就是各个面的面积的和。
(2)圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环。
(3)若圆柱、圆锥的底面半径为r,母线长l,则其表面积为S柱=2πr2+2πrl,S锥=πr2+πrl。
(4)若圆台的上下底面半径为r1,r2,母线长为l,则圆台的表面积为S=π(r21+r22)+π(r1+r2)l。
(5)球的表面积为4πR2(球半径是R)。
2.几何体的体积(1)V柱体=Sh。
(2)V锥体=13Sh。
(3)V台体V圆台=13π(r21+r1r2+r22)h,V球=43πR3(球半径是R)。
一、细品教材1.(必修2P28A组T3改编)如图,将一个长方体用过相邻三条棱的中点的平面截出一个棱锥,则该棱锥的体积与剩下的几何体体积的比为________。
2.(必修2P36A组T10改编)一直角三角形的三边长分别为6 cm,8 cm,10 cm,绕斜边旋转一周所得几何体的表面积为________。
细品教材答案:1.1∶47; 2.3365π cm2二、基础自测1.(2016·全国卷Ⅱ)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A.20π B.24πC.28π D.32π2.已知正四棱锥的侧棱与底面的边长都为32,则这个四棱锥的外接球的表面积为()A.12π B.36πC.72π D.108π3.表面积为3π的圆锥,它的侧面展开图是一个半圆,则该圆锥的底面直径为__________。
4.(2016·北京高考)某四棱柱的三视图如图所示,则该四棱柱的体积为________。
5.(2016·赤峰模拟)已知三棱柱ABC-A1B1C1的侧棱和底面垂直,且所有棱长都相等,若该三棱柱的各顶点都在球O的表面上,且球O的表面积为7π,则此三棱柱的体积为________。
基础自测答案1.C;2.B;3.2;4.32;5.94三.直击考点考点一空间几何体的表面积【典例1】(1)某几何体的三视图如图所示,则该几何体的表面积等于()A.8+22B.11+22C.14+2 2 D.15(2)(2016·全国卷Ⅰ)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径。
高二数学空间几何体的表面积与体积试题答案及解析

高二数学空间几何体的表面积与体积试题答案及解析1.正四棱锥的五个顶点在同一个球面上,若其底面边长为4,侧棱长为,则此球的表面积为()A.B.C.D.【答案】B【解析】设球的半径为,正方形的ABCD的对角线的交点 M,则球心在直线PM上.,由勾股定理得,再由射影定理得即∴此球的表面积为.【考点】球的表面积.2.已知圆锥的高与底面半径相等,则它的侧面积与底面积的比为________.【答案】.【解析】设圆锥的底面半径和高为,则其母线长;所以圆锥的侧面积,底面面积,则它的侧面积与底面积的比为.【考点】圆锥的侧面积公式.3.如图1,直角梯形中,,分别为边和上的点,且,.将四边形沿折起成如图2的位置,使.(1)求证:平面;(2)求四棱锥的体积.【答案】(1)见解析;(2)【解析】(1)此题是个折叠图形题,平面和立体的互化,分析可知面面;(2)求体积,抓住地面和底面上的高,显然平面面,这个证明很重要,可以确定底面和底面上的高.试题解析:(1)证:面面又面所以平面(2)取的中点,连接平面又平面面所以四棱锥的体积【考点】线面平行的判定,线面垂直的判定.4.如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4,AB=2,以BD的中点O为球心、BD为直径的球面交PD于点M.(1)求证:平面ABM平面PCD;(2)求三棱锥M-ABD的体积.【答案】(1)见解析(2)【解析】(1)由PA⊥平面ABCD知,PA⊥AB,由ABCD为矩形知,AB⊥AD,由线面垂直判定定理知,AB⊥PAD,所以PB⊥AB,由以BD为直径的球与PB的交点为M知,BM⊥DM,由线面垂直判定知PD⊥面ABM,由面面垂直判定定理知面PCD⊥面ABM;(2)由(1)知,PD⊥面ABM,所以PD⊥AM,因为PA=AD=4,所以M是PD的中点,取AD的中点为N,则NM平行PA,因为PA⊥平面ABCD,所以MN⊥ABCD,MN==2,即MN是三棱锥M-ABD的高,用棱锥的体积公式即可求出其体积.试题解析:(1)又由题意得,又 6分(2)由(1)知,PD⊥面ABM,所以PD⊥AM,因为PA=AD=4,所以M是PD的中点,取AD的中点为N,则NM平行PA,因为PA⊥平面ABCD,所以MN⊥ABCD,MN==2,所以===. 12分考点:球的性质,线面垂直的判定与性质,面面垂直判定定理,棱锥的体积公式,逻辑推论证能力.5.四面体ABCD中,已知AB=CD=,AC=BD=,AD=BC=,则四面体ABCD的外接球的表面()A.25p B.45p C.50p D.100p【答案】C【解析】作长方体,AB=CD=,AC=BD=,AD=BC=,该长方体和四面体有共同的外接球,长方体的对角线长为直径长,,表面积【考点】四面体的外接球的体积.6.如图,已知球的面上有四点,平面,,,则球的表面积为.【答案】【解析】把几何体看成长方体一部分,由于,,因此为球的直径半径,因此球的表面积【考点】球的表面积公式的应用.7.已知空间4个球,它们的半径分别为2, 2, 3, 3,每个球都与其他三个球外切,另有一个小球与这4个球都外切,则这个小球的半径为()A.B.C.D.【答案】B【解析】设半径为的两个球的球心为,半径为2的两个球的球心为,与这4个球都外切的小球的球心为,半径为,连接,得到四棱锥,则,,连接,取的中点分别为,连接,在中,,同理,为等腰三角形,,同理可证,是异面直线的公垂线,又分别是的中点,在线段上,在中,,同理得,在中,,又,由此可得,解得,负值舍去。
高中几何体试题及答案

高中几何体试题及答案试题一:正方体的体积和表面积计算某正方体的边长为a,求该正方体的体积和表面积。
解答:正方体的体积 V = a³正方体的表面积 S = 6a²试题二:圆柱的体积和表面积计算已知圆柱的底面半径为r,高为h,求圆柱的体积和表面积。
解答:圆柱的体积V = πr²h圆柱的表面积S = 2πrh + 2πr²试题三:圆锥的体积和表面积计算已知圆锥的底面半径为r,高为h,求圆锥的体积和表面积。
解答:圆锥的体积V = (1/3)πr²h圆锥的表面积 S = πr(r + l),其中l是圆锥的斜高,可通过勾股定理计算:l = √(r² + h²)试题四:球的体积和表面积计算已知球的半径为R,求球的体积和表面积。
解答:球的体积V = (4/3)πR³球的表面积S = 4πR²试题五:棱锥的体积计算已知一个正四棱锥的底面边长为a,高为h,求棱锥的体积。
解答:正四棱锥的体积 V = (1/3)ah²试题六:棱柱的体积和表面积计算已知一个正六棱柱的底面边长为a,高为h,求棱柱的体积和表面积。
解答:正六棱柱的体积 V = 6a²h正六棱柱的表面积S = 6a(a + √3h)试题七:椭圆的面积计算已知椭圆的长轴为2a,短轴为2b,求椭圆的面积。
解答:椭圆的面积A = πab试题八:双曲线的面积计算已知双曲线的实轴为2a,虚轴为2b,求双曲线的面积。
解答:双曲线的面积A = πa(b + a)结束语:以上试题涵盖了高中几何体的常见体积和面积计算问题,希望同学们能够熟练掌握这些基本公式,并能够灵活运用到实际问题中去。
通过不断的练习和思考,相信你们能够在几何学领域取得优异的成绩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学空间几何体的表面积与体积试题答案及解析1.正四棱锥的五个顶点在同一个球面上,若其底面边长为4,侧棱长为,则此球的表面积为()A.B.C.D.【答案】B【解析】设球的半径为,正方形的ABCD的对角线的交点 M,则球心在直线PM上.,由勾股定理得,再由射影定理得即∴此球的表面积为.【考点】球的表面积.2.一个圆柱形的罐子半径是4米,高是9米,将其平放,并在其中注入深2米的水,截面如图所示,水的体积是()平方米.A.B.C.D.【答案】D.【解析】所求几何体的体积为阴影部分的面积与高的乘积,在中,,则,,体积.【考点】组合体的体积.3.一个四棱锥的侧棱长都相等,底面是正方形,其正视图如图所示,则该四棱锥的侧面积是_________.【答案】【解析】由正视图可知四棱锥的底面边长为2,高为2,可求出斜高为,因此四棱锥的侧面积,答案为.【考点】1.几何体的三视图;2.锥体的侧面积计算4.已知球的直径SC=4,A.,B是该球球面上的两点,AB=2,∠ASC=∠BSC=45°,则棱锥S-ABC的体积为_________【答案】【解析】设AB的中点为D,球心为O,连结SD,CD,OD,由SC=4为球的直径知,∠SBC=∠SAC=90o,因为∠ASC=∠BSC=45°,所以SA=BC=SB=AC=,所以SD⊥AB,DC⊥AB,所以AB⊥面SDC,因为AB=2,所以SD=DC==,所以DO= =,所以= ===.考点:球的性质,线面垂直判定,三棱锥的体积公式,转化思想5.如图,一个盛满水的三棱锥容器,不久发现三条侧棱上各有一个小洞,且知,若仍用这个容器盛水,则最多可盛水的体积是原来的 .【答案】【解析】过作截面平行于平面,可得截面下体积为原体积的,若过点F,作截面平行于平面,可得截面上的体积为原体积的,若C为最低点,以平面为水平上面,则体积为原体积的,此时体积最大.【考点】体积相似计算.6.一个半径为1的小球在一个内壁棱长为的正四面体封闭容器内可向各个方向自由运动,则该小球表面永远不可能接触到的容器内壁的面积是.【答案】【解析】如图甲,考虑小球挤在一个角时的情况,记小球半径为,作平面//平面,与小球相切于点,则小球球心为正四面体的中心,,垂足为的中心.因,故,从而.记此时小球与面的切点为,连接,则.考虑小球与正四面体的一个面(不妨取为)相切时的情况,易知小球在面上最靠近边的切点的轨迹仍为正三角形,记为,如图乙.记正四面体的棱长为,过作于.因,有,故小三角形的边长.小球与面不能接触到的部分的面积为(如答图2中阴影部分).又,,所以.由对称性,且正四面体共4个面,所以小球不能接触到的容器内壁的面积共为.【考点】(1)三棱锥的体积公式;(2)分情况讨论及割补思想的应用。
7.如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为()A.B.C.D.【答案】A【解析】设球的半径为,由球的截面性质得,解得,故球的体积为。
【考点】(1)球的截面性质;(2)球的体积公式。
8.三角形中,,以边所在直线为旋转轴,其余各边旋转一周而形成的曲面所围成的几何体的体积为()A.B.C.D.【答案】B【解析】依题意可知,旋转体的形状如下图,是一个圆锥,其中圆锥的高为,底面圆的半径为,所以该圆锥的体积为,故选B.【考点】旋转体的体积.9.如图所示,在四棱锥中,底面是直角梯形,,,侧棱底面,且,则点到平面的距离为()A.B.C.D.【答案】D【解析】由侧棱底面可知,,连接BD,,则.连接AC,直角梯形中,可得,。
侧棱底面,所以侧棱AC,直角三角形SAC中,,直角三角形ACD中,中,由余弦定理可得,则,.所以即.【考点】几何体的体积,等积法求点到面的距离.10.棱长为2的正方体的内切球的表面积为()A.B.C.D.【答案】C【解析】设球的半径为,则由题意,得,即,∴内切球的表面积为,故选C.【考点】球的表面积.11.三棱锥的侧棱两两垂直且长度分别为2cm,3cm,1cm,则该三棱锥的体积是 cm3.【答案】1.【解析】由题可知三棱锥,的底是以OA,OB为直角边的直角三角形,高就是OC,所以根据三棱锥的体积公式即可其体积.【考点】三棱锥的体积公式.12.如图,在正方体中,点在面对角线上运动,给出下列四个命题:①∥平面;②;③平面⊥平面;④三棱锥的体积不变.则其中所有正确的命题的序号是.【答案】①③④.【解析】可以以D为原点,以DA,DC,为坐标轴建立空间直角坐标系,利用向量的坐标运算可以证明(1),(3)成立;对于(4)如右图,三棱锥的底面△面积为定值,高BP也为定值,所以三棱锥的体积不变.【考点】(1)空间垂直平行的证明;(2)三棱锥的体积公式.13.三棱锥的侧棱两两垂直且长度分别为2cm,3cm,1cm,则该三棱锥的体积是 cm3.【答案】1.【解析】由题可知三棱锥,的底是以OA,OB为直角边的直角三角形,高就是OC,所以根据三棱锥的体积公式即可其体积.【考点】三棱锥的体积公式.14.三条侧棱两两互相垂直且长都为的三棱锥的四个顶点全部在同一个球面上,则该球的表面积为()A.B.C.D.【答案】B【解析】设该正三棱锥为,依题意两两垂直且,该正三棱锥的外接球与以为邻边的正方体的外接球是相同的,正方体的边长为,体对角线长为,故球的半径为,所以球的表面积为,故选B.【考点】1.三棱锥的外接球;2.球的表面积公式.15.如图,三棱柱ABC-A1B1C1的侧棱AA1⊥平面ABC,△ABC为正三角形,且侧面AA1C1C是边长为2的正方形,E是的中点,F在棱CC1上。
(1)当CF时,求多面体ABCFA1的体积;(2)当点F使得A1F+BF最小时,判断直线AE与A1F是否垂直,并证明的结论。
【答案】(1) ;(2) ,证明详见解析【解析】(1)此多面体是以为底面,以B为顶点的四棱锥,而且,因为△ABC为正三角形,所以△ABC的AC边上的高即为此四棱锥的高,底面是直角梯形,所以利用锥体体积公式即可求得其体积。
(2)把立体图展成平面图后,两点之间直线最短,连接交与点F,此时A1F+BF最小,分析可知F为的中点。
过点作交于,则是的中点,此时只需判断AE与EG是否垂直即可。
求出三角形AEG三边长即可得证,详见解析。
试题解析:解:(Ⅰ)由已知可得的高为且等于四棱锥的高.,即多面体的体积为 5分(Ⅱ)将侧面展开到侧面得到矩形,连结,交于点,此时点使得最小.此时平行且等于的一半,为的中点. 7分过点作交于,则是的中点,.过点作交于,则又于是在中,在中,在中,,∴ 13分【考点】几何体体积,线线垂直。
16.若圆锥的侧面积为,底面积为,则该圆锥的母线长为 .【答案】【解析】由圆锥的侧面积公式,底面积公式为得解得【考点】圆锥的表面积公式17.已知某球体的体积与其表面积的数值相等,则此球体的半径为.【答案】【解析】设该球体的半径为,那么,解得:.【考点】球的体积与表面积公式.18.正方体的外接球与内切球的球面面积分别为S1和S2则()A.S1=2S2B.S1=3S2C.S1=4S2D.S1=2S2【答案】B【解析】不妨设正方体的棱长为1,则外接球直径为正方体的体对角线长为,而内切球直径为1,所以,所以.故答案选【考点】1.正方体的外接球与内切球;2.球的表面积.19.棱长都是1的三棱锥的表面积为()A.B.C.D.【答案】A【解析】,棱长均为1的三棱锥实际上四个面就为四个边长等于1的正三角形。
下三角形的面积公式要熟记.【考点】三棱锥、表面积20.已知矩形ABCD的顶点在半径为5的球O的球面上,且,则棱锥O-ABCD的侧面积为()A.B.44C.20D.46【答案】B【解析】;,∴.【考点】几何体的体积.21.已知矩形ABCD的顶点在半径为5的球O的球面上,且,则棱锥O-ABCD的侧面积为()A.B.44C.20D.46【答案】B【解析】;,∴.【考点】几何体的体积.22.已知各顶点都在一个球面上的正四棱柱(底面为正方形的直四棱柱)高为4,体积为16,则这个球的表面积是()A.B.C.D.【答案】A【解析】设正四棱柱底面正方形的边长为,则,∴=2,由题意可知,正四棱柱的体对角线长就是其外接球的直径,∴,,选A.【考点】1、几何体的外接球;2、球的表面积.23.一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积是p,则这个三棱柱的体积为【答案】【解析】由球的体积公式,得,解得,所以正三棱柱的高h=2R=4.设正三棱柱的底面边长为a,则其内切圆的半径为:,得,所有该正三棱柱的体积为.【考点】1.球的体积;2.柱体的体积24.如图,已知球O是棱长为1的正方体ABCB-A1B1C1D1的内切球,则平面ACD1截球O的截面面积为()A.B.C.(D.【答案】A【解析】根据正方体的几何特征知,平面ACD1是边长为的正三角形,且球与与以点D为公共点的三个面的切点恰为三角形ACD1三边的中点,故所求截面的面积是该正三角形的内切圆的面积,则由图得,△ACD内切圆的半径是×tan30°=,1则所求的截面圆的面积是π××=,故选A.【考点】正方体及其内接球的几何特征点评:中档题,关键是想象出截面图的形状,利用转化与化归思想,将空间问题转化成平面问题。
25.如图,设正方体的棱长为,是底面上的动点,是线段上的动点,且四面体的体积为,则的轨迹为()【答案】A【解析】根据题意,由于设正方体的棱长为,是底面上的动点,是线段上的动点,且四面体的体积为,而正方体的体积为1,则可知为点Q到AB的距离为定值,那么可知高的值,那么点P到CD边的距离为定值,因此可知P的轨迹满足到AB的距离要近,故选A.【考点】四面体的体积点评:主要是考查了四面体体积的计算,属于基础题。
26.若某多面体的三视图(单位:cm)如图所示,则此多面体的表面是.【答案】【解析】由三视图可知该几何体是正四棱锥,底面是边长为2的正方形,侧面是斜高为2的等腰三角形,所以面积为【考点】三视图及简单几何体点评:先由三视图的特点得到几何体的形状,再结合相应的公式求其面积27. 半径为1的球面上有三点,其中点与两点间的球面距离均为,两点间的球面距离为,则球心到平面的距离为( ) A .B .C .D .【答案】B【解析】根据题意可知:球心O 与A ,B ,C 三点构成三棱锥O-ABC ,且OA=OB=OC=R=1,∠AOB=∠AOC=90°,∠BOC=60°,故AO ⊥面BOC .所以此题可以根据体积法求得球心O 到平面ABC 的距离. 解:球心O 与A ,B ,C 三点构成三棱锥O-ABC ,如图所示,已知OA=OB=OC=R=1,∠AOB=∠AOC=90°,∠BOC=60°,由此可得AO ⊥面BOC .∵S △BOC =,S △ABC =.∴由V A-BOC =V O-ABC ,得 h=.故选B .【考点】点到面的距离, 球面距离点评:本小题主要考查立体几何球面距离及点到面的距离、三棱锥的结构等基础知识,考查运算求解能力,考查空间想象力.属于基础题28. 如图,一个空间几何体的正视图、侧视图、俯视图为全等的等腰直角三角形,已知直角边长为2, 则这个几何体的体积为( )A .B .C .4D .8【答案】A【解析】根据三视图,可知该几何体是三棱锥,右图为该三棱锥的直观图,三棱锥的底面是一个腰长是2的等腰直角三角形,∴底面的面积是×2×2=2垂直于底面的侧棱长是2,即高为2,∴三棱锥的体积是×2×2=故选A【考点】三视图与直观图点评:本题是基础题,考查三视图与直观图的关系,几何体的体积计算,考查计算能力,空间想象能力29. 已知三棱锥的各顶点都在一个半径为的球面上,球心在上,底面,,则球的体积与三棱锥体积之比是( )A .B .C .D .【答案】D【解析】如图,,,所以,,所以【考点】球内接多面体点评:本题考查球的内接体的体积和球的体积的计算问题,是基础题.30.如图,某几何体的下部分是长为8,宽为6,高为3的长方体,上部分是侧棱长都相等且高为3的四棱锥,求:(1)该几何体的体积;(2)该几何体的表面积.【答案】(1)(2)【解析】(1)……2分……4分所以该几何体的体积为.……6分(2)设为四棱锥的高,为的中点,为的中点,,,,所以,……10分所以该几何体的表面积为……14分【考点】本小题主要考查空间组合体的体积和表面积计算.点评:要求空间组合体的体积和表面积,只要分别求出各个简单几何体的体积和表面积即可,要仔细计算.31.一个正三棱锥的四个顶点都在半径为1的球面上,其底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积为A.B.C.D.【答案】C【解析】球的大圆半径为1,所以正三棱锥底面三角形是半径为1的圆的内接正三角形,边长为,底面积为,顶点到底面的距离等于半径1,所以体积为【考点】球内接正三棱锥的体积点评:求解本题的关键在于分析清球与正三棱锥的联系,从而由球的半径得到正三棱锥中的边的长度32.如图,已知球O的球面上四点A,B,C,D,DA平面ABC,AB BC,DA=AB=BC=,则球O的表面积等于_____.【答案】【解析】由题意画出图形如图,因为三棱锥D-ABC的顶点都在球O的球面上,DA平面ABC,AB BC,DA=AB=BC=,可知球的直径为,因此其半径为,那么可知球的表面积为,故答案为【考点】本题主要是考查直线与平面垂直的性质,球的内接几何体与球的关系,考查空间想象能力,计算能力.点评:解决该试题的关键是画出图形,把三棱锥扩展为长方体,三棱锥的外接球就是长方体的外接球,长方体的体对角线就是球的直径,由此能求出球O的表面积.33.一个圆锥的侧面展开图是半径为R的圆的一半,则它的体积为—————————————【答案】【解析】依题意有该圆锥母线长为R,则底面周长为,设圆锥底面圆的半径为,则,所以,所以该圆锥的高为,所以该圆锥的体积为【考点】本小题主要考查圆锥的母线、底面圆的半径、圆锥的高之间的关系和圆锥体积的求法,考查学生的运算求解能力.点评:对于圆锥而言,圆锥的母线、底面圆的半径、圆锥的高和侧面展开图之间的关系是应该重点掌握的内容,要准确掌握,灵活应用.34.一个体积为的正方体的顶点都在球面上,则球的表面积是()A.B.C.D.【答案】B【解析】因为正方体的体积为,所以棱长为,因为正方体的定点都在球面上,所以正方体的体对角线应该为球的直径,所以球的直径为所以球的半径为,所以球的表面积为【考点】本小题主要考查正方体与其外接球的关系和球的表面积的计算,考查学生的运算求解能力.点评:正方体外接于球,则正方体的体对角线为球的直径;如果球内切于正方体,则正方体的棱长等于球的直径.35.(本小题满分12分)如图,直角梯形ABCD中,∠B=90°,AD//BC,AD=1,BC=2,∠C=60°,将该梯形绕着AB所在的直线为轴旋转一周,求该旋转体的表面积和体积。