二次函数性质(对称性)(含答案)

合集下载

二次函数的对称性

二次函数的对称性

(一)、教学内容1.二次函数得解析式六种形式①一般式y=ax2 +bx+c(a≠0)②顶点式(a≠0已知顶点)③交点式(a≠0已知二次函数与X轴得交点)④y=ax2(a≠0)(顶点在原点)⑤y=ax2+c(a≠0) (顶点在y轴上)⑥y=ax2 +bx (a≠0) (图象过原点)2.二次函数图像与性质对称轴:顶点坐标:与y轴交点坐标(0,c)增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大ﻩ当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小☆二次函数得对称性二次函数就是轴对称图形,有这样一个结论:当横坐标为x1, x2 其对应得纵坐标相等那么对称轴:与抛物线y=ax2 +bx+c(a≠0)关于y轴对称得函数解析式:y=ax2-bx+c(a≠0)与抛物线y=ax2 +bx+c(a≠0)关于x轴对称得函数解析式:y=-ax2–bx-c(a≠0)当a>0时,离对称轴越近函数值越小,离对称轴越远函数值越大;当a<0时,离对称轴越远函数值越小,离对称轴越近函数值越大;【典型例题】题型 1 求二次函数得对称轴1、二次函数y=-mx+3得对称轴为直线x=3,则m=________。

2、二次函数得图像上有两点(3,-8)与(-5,-8),则此拋物线得对称轴就是( ) (A) (B) (C) (D)3、y=2x-4得顶点坐标为___ _____,对称轴为__________。

4、如图就是二次函数y=ax2+bx+c图象得一部分,图象过点A(-3,0),对称轴为x=-1.求它与x轴得另一个交点得坐标( , )5、抛物线得部分图象如图所示,若,则x得取值范围就是( )A、 B、C、或D、或6、如图,抛物线得对称轴就是直线,且经过点(3,0),则得值为 ( )A、0B、-1C、 1D、2题型2 比较二次函数得函数值大小1、、若二次函数,当x取,(≠)时,函数值相等,则当x取+时,函数值为( )(A)a+c (B)a-c (C)-c (D)c2、若二次函数得图像开口向上,与x轴得交点为(4,0),(-2,0)知,此抛物线得对称轴为直线x=1,此时时,对应得y1 与y2得大小关系就是( )A.y1 <y2B、 y1=y2C、 y1>y2D、不确定点拨:本题可用两种解法yxO–1 13O–1 331解法1:利用二次函数得对称性以及抛物线上函数值y随x得变化规律确定:a>0时,抛物线上越远离对称轴得点对应得函数值越大;a<0时,抛物线上越靠近对称轴得点对应得函数值越大解法2:求值法:将已知两点代入函数解析式,求出a,b得值再把横坐标值代入求出y1 与y2得值,进而比较它们得大小变式1:已知二次函数上两点,试比较得大小变式2:已知二次函数上两点,试比较得大小变式3:已知二次函数得图像与得图像关于y轴对称,就是前者图像上得两点,试比较得大小题型3 与二次函数得图象关于x、y轴对称:二次函数就是轴对称图形,有这样一个结论:当横坐标为x1,x2其对应得纵坐标相等那么对称轴:与抛物线y=ax2 +bx+c(a≠0)关于y轴对称得函数解析式:y=ax2-bx+c(a≠0)与抛物线y=ax2+bx+c(a≠0)关于x轴对称得函数解析式:y=-ax2 –bx-c(a≠0)1、把抛物线y=-2x2+4x+3沿x轴翻折后,则所得得抛物线关系式为____ ____2、与y= -3x+关于Y轴对称得抛物线________________3、求将二次函数得图象绕着顶点旋转180°后得到得函数图象得解析式。

专题12 二次函数(解析版)

专题12 二次函数(解析版)

专题12 二次函数1.二次函数的概念:一般地,自变量x 和因变量y 之间存在如下关系: y=ax 2+bx+c(a≠0,a 、b 、c 为常数),则称y 为x 的二次函数。

抛物线)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。

2.二次函数y=ax 2 +bx+c(a ≠0)的图像与性质(1)对称轴:2b x a=- (2)顶点坐标:24(,)24b ac b a a-- (3)与y 轴交点坐标(0,c )(4)增减性:当a>0时,对称轴左边,y 随x 增大而减小;对称轴右边,y 随x 增大而增大;当a<0时,对称轴左边,y 随x 增大而增大;对称轴右边,y 随x 增大而减小。

3.二次函数的解析式三种形式。

(1)一般式 y=ax 2+bx+c(a ≠0).已知图像上三点或三对x 、y 的值,通常选择一般式.(2)顶点式 2()y a x h k =-+ 224()24b ac b y a x a a-=-+ 已知图像的顶点或对称轴,通常选择顶点式。

(3)交点式 12()()y a x x x x =--专题知识回顾y x O已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式。

4.根据图像判断a,b,c 的符号(1)a 确定开口方向 :当a>0时,抛物线的开口向上;当a<0时,抛物线的开口向下。

(2)b ——对称轴与a 左同右异。

(3)抛物线与y 轴交点坐标(0,c )5.二次函数与一元二次方程的关系抛物线y=ax 2 +bx+c 与x 轴交点的横坐标x 1, x 2 是一元二次方程ax 2 +bx+c=0(a ≠0)的根。

抛物线y=ax 2 +bx+c ,当y=0时,抛物线便转化为一元二次方程ax 2 +bx+c=024b ac ->0时,一元二次方程有两个不相等的实根,二次函数图像与x 轴有两个交点;24b ac -=0时,一元二次方程有两个相等的实根,二次函数图像与x 轴有一个交点;24b ac -<0时,一元二次方程有不等的实根,二次函数图像与x 轴没有交点。

二次函数的对称性

二次函数的对称性

二次函数的对称性二次函数是轴对称图形,有这样一个结论:当横坐标为x 1, x 2 其对应的纵坐标y 相等,那么对称轴122x x x +=其可以变形为:x 1 = x 2 =例、已知二次函数y=ax 2+bx+c 的图象过点A (1,2),B (3,2),C (5,7)三点,则该二次函数的对称轴为__________变形:已知二次函数y=ax 2+bx+c 的图象的对称轴为直线x=3,点A (1,2)与点B 关于对称轴对称,则点B 的坐标为____________变形:已知二次函数y=ax 2+bx+c 的图象的对称轴为直线x=3,点A (3,2)与点B 关于对称轴对称,则点B 的坐标为____________练习、已知二次函数y=ax 2+bx+c 的图象过点A (-1,2),B (3,2),C (5,7)三点,则该二次函数的对称轴为__________练习、已知二次函数y=ax 2+bx+c 的图象过点A (-1,2),B (3,2),C (5,7)三点,则点C 关于二次函数的对称轴的对称点D 的坐标为__________练习、已知二次函数y=ax 2+bx+c 的图象过点A (-3,3),B (-5,3),C (1,6)三点,则点C 关于二次函数的对称轴的对称点D 的坐标为__________练习、已知二次函数y=ax 2+bx+c 的图象的对称轴为直线x=3,点A (1,2)与点B 关于对称轴则二次函数y=ax 2+bx+c 的的对称轴为____________,在x=2时,y=___________.在y=-5时,x=____________增减性在对称中的应用已知二次函数y=ax2+bx+c(a>0)的图象过点A(-1,2),B(3,2).若点M(-2,y1),N(-1,y2),K(0,y3)也在二次函数y=ax2+bx+c的图象上,则y1、y2、y3的大小关系为__________已知二次函数y=ax2+bx+c(a>0)的图象过点A(-1,2),B(3,2).若点M(2,y1),N(4,y2),K(3,y3)也在二次函数y=ax2+bx+c的图象上,则y1、y2、y3的大小关系为__________已知二次函数y=ax2+bx+c(a<0)的图象过点A(-1,2),B(3,2).若点M(-2,y1),N(-1,y2),K(0,y3)也在二次函数y=ax2+bx+c的图象上,则y1、y2、y3的大小关系为__________已知二次函数y=ax2+bx+c(a<0)的图象过点A(-1,2),B(3,2).若点M(2,y1),N(4,y2),K(3,y3)也在二次函数y=ax2+bx+c的图象上,则y1、y2、y3的大小关系为__________例2、已知二次函数y=ax2+bx+c的图象过点A(1,2),B(3,2),C(5,7).若点M(-2,练习1、已知点(-2,y1),(-1,y2),(3,y3)都在函数y=x2的图象上,则y1,y2,y3的大小关2、已知抛物线y=ax2+bx+c(a<0)过A(-3,0)、O(1,0)、B(-5,y1)、C(5,y2)四点,则巩固作业:则二次函数y=ax2+bx+c的的对称轴为____________,顶点坐标为___________在x= 4时,y=___________.在y= -8时,x=____________2、已知二次函数y=ax2+bx+c的图象过点A(1,2),B(3,2),C(5,-2).若点M(-2,y1),N(-1,y2),K(8,y3)也在二次函数y=ax2+bx+c的图象上,则y1,y2,y3的大小关系是______________________3、已知点(-2,y1),(-1,y2),(5,y3)都在函数y=(x-1)2的图象上,则y1,y2,y3的大小关系是________________________4、已知抛物线y=ax2+bx+c(a>0)过A(-3,0)、O(1,0)、B(-5,y1)、C(5,y2)四点,则(2)二次函数图象的对称变换:①两抛物线关于x 轴对称,此时顶点关于 x 轴对称,a 的符号相反;②两抛物线关于y 轴对称,此时顶点关于y 轴对称,a 的符号不变;(3)二次函数图象的旋转:开口反向(或旋转180°),此时顶点坐标不变,只是a的符号相反.抛物线y=-(x+1)2 +2关于x轴对称的直线的解析式为:________________________抛物线y=-(x+1)2 +2关于y轴对称的直线的解析式为:________________________抛物线y=-(x+1)2 +2关于原点对称的直线的解析式为:________________________抛物线y=-(x+1)2 +2饶顶点旋转180°后的直线的解析式为:________________________练习、抛物线y=-(x+1)2 -2关于x轴对称的直线的解析式为:________________________抛物线y=(x-1)2 +2关于y轴对称的直线的解析式为:________________________抛物线y=-2(x-1)2 +2关于原点对称的直线的解析式为:________________________抛物线y=-(x+1)2 -2饶顶点旋转180°后的直线的解析式为:________________________1、在下列二次函数中,其图象的对称轴为直线x= - 2的是()A.y=(x+2)2B.y=2x2-2C.y=-2x2-2D.y=2(x-2)22、二次函数y=x2-2x+3的图象的顶点坐标为_ ( )___________3、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x= -1,下列结论:①abc<0;①2a+b=0;①a-b+c>0;①4a-2b+c<0.其中正确的是()A.①①B.只有①C.①①D.①①4、如图,在平面直角坐标系xOy中,二次函数图象的顶点坐标为(4,-3),该图象与x轴相交于点A、其中点A的横坐标为1. 求该二次函数的表达式;5、次函数y=ax2+bx+c的图象经过点(-1,0),(3,0)和(0,2),求其函数关系式,并写出其顶点坐标。

二次函数的对称性

二次函数的对称性

一、引入f x=x2的图像关于y 轴对称,为啥子呢?答案一: 折叠能重合.答案二:f x=x2关于y轴对称的点都在f x=x2上.(作y=x2图像)(线由点构成)讲:设(a,b)是f x=x2上任意一点,则b=f a=a2.而(a,b)关于y轴的对称点为(−a,b),则f−a=a2=b.∴(−a,b)在f x=x2图像上. ∴f x=x2关于 y轴对称.∴f−a=f(a). ﹡对函数f x来讲, 将﹡式用文字语言描述: 自变量互为相反数, 函数值相等, 称之为偶函数. 对所以图像关于轴对称的函数都有此性质吗? 用余弦函数图像说明混脸熟.二、新课1、如果对一切使F x有定义的x, F−x也有定义, 并且F−x=F x成立, 则称F x为偶函数。

类比:如果对一切使F x有定义的x,F−x也有定义, 并且F−x=−F x成立, 则称F x为奇函数.2、从函数三要素来分析奇函数、偶函数.①定义域:在数轴上关于原点对称.②解析式举例: 奇函数: x n(n为奇数),偶函数:x n(n为偶数).③值域:无限制。

例1. 判断下列函数的奇偶性。

(1)f x=|x+1|+|x−1|.(2)f x=1−x2x+1.(3)f x=12x2+1 x>0;−12x2−1 x<0.(4)f x=1−x2|x+2|.例2. 已知f x为R上奇函数. 当x>0时, f x=−2x2+3x+1.(1) 求f x解析式.(2) 做出函数f x的图像.小结:基本知识: 1.奇、偶、定义域特点.2.判断函数奇偶性的方法.数学习惯: 符号语言, 文字语言, 图形语言的转换.数学思想: 类比, 函数思想——用研究函数的方法研究函数(三要素、性质). 作业:一、复习引入回顾上节小结的内容(具体化).二、新课1、具有奇偶性的函数, 其单调性如何?举例:f x=x2,g x=1x.结论:奇函数在关于原点对称的区间上单调性相同.偶函数在关于原点对称的区间上单调性相反.2、二次函数f x=a(x−1)2+1a≠0的对称轴是x=1为什么?①图像上观察:1+t,a t2+1,(1−t,a t2+1)②解析式:f1+t=f1−t,t∈R成立.③将上式翻译成文字语言:对来说,自变量和为2,函数值相等.④一般化:f x=a(x−h)2+k关于x=h对称.f x= ax2+bx+c对称轴为x=−b2a.点: 对任意x∈R, f h+t=f h−t.自变量和为2h,则图像关于x=h对称.⑤更一般化:对其它(非二次函数). 若f a+x=f a−x, x∈R成立,则函数f x图像关于x=a对称.3、二次函数图像的分类y= ax2+bx+c a≠0①②③④⑤⑥课外思考题:从偶函数图像关于y轴对称,解析式满足f−x=f x可得出:一般函数图像关于x=a对称,其解析式满足f a+x=f a−x.用类比方法, 得出函数图像关于a,0对称, 其解析式满足的条件, 并翻译成文字语言.例1. 已知二次函数f x同时满足①f1+x=f1−x②f(x)的最大值为15 ③f x=0的两根立方和等于17, 求f x的解析式.优化方案P35, 随堂自测.(1)、(2)、(3)、(4)小结:(1)f(x)= ax2+bx+c a≠0的对称性.(2)f(x)对称轴x=a f a+x=f a−x对一切x∈R成立.数学思想:①特殊到一般②类比方法上类比结论上类比作业:。

二次函数的对称性与单调性

二次函数的对称性与单调性

二次函数的对称性与单调性二次函数是一种重要的数学函数,在数学建模、物理学等领域都有广泛的应用。

掌握二次函数的基本性质,对于理解和解决实际问题具有重要意义。

本文将重点讨论二次函数的对称性与单调性。

一、二次函数的对称性二次函数的一般形式为:f(x) = ax² + bx + c,其中a、b、c为常数,且a ≠ 0。

根据对称性的不同,可以分为以下几种情况。

1. 关于y轴对称当a为偶数时,二次函数关于y轴对称。

即若f(x)为二次函数,则有f(-x) = f(x)。

例子:考虑二次函数f(x) = x² - 2x + 1,将x改为-x,则有f(-x) = (-x)² - 2(-x) + 1 = x² + 2x + 1 = f(x),因此该二次函数关于y轴对称。

2. 关于x轴对称当c = 0时,二次函数关于x轴对称。

即若f(x)为二次函数,则有f(x) = f(-x)。

例子:考虑二次函数f(x) = x² - 4,将x改为-x,则有f(-x) = (-x)² - 4 = x² - 4 = f(x),因此该二次函数关于x轴对称。

3. 关于原点对称当b = 0时,并且a、c异号,二次函数关于原点对称。

即若f(x)为二次函数,则有f(-x) = -f(x)。

例子:考虑二次函数f(x) = -x²,将x改为-x,则有f(-x) = -(-x)² = -x²= -f(x),因此该二次函数关于原点对称。

二、二次函数的单调性二次函数的单调性表示函数在定义域上的增减性。

根据二次函数的a值的正负,可以判断其单调性。

1. 当a > 0时,二次函数在定义域上单调递增。

对于二次函数f(x) = ax² + bx + c,如果a > 0,则对于任意x₁、x₂,若x₁ < x₂,有f(x₁) < f(x₂),即函数在定义域上单调递增。

初三数学二次函数的性质试题答案及解析

初三数学二次函数的性质试题答案及解析

初三数学二次函数的性质试题答案及解析1.抛物线y=5(x﹣2)2+1的顶点是.【答案】(2,1)【解析】根据抛物线的顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),可直接写出顶点坐标.解:抛物线y=5(x﹣2)2+1的顶点是(2,1).故答案为:(2,1).点评:此题主要考查了二次函数的性质,二次函数顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h.2.观察二次函数y=x2﹣2x﹣1的图象,若x>0,则y的取值范围是.【答案】y>﹣1【解析】令x=0求得y值,然后根据其开口方向确定函数值的取值范围即可.解:令x=0,解得:y=﹣1∵开口方向向上,且对称轴为x=1,∴当x>0,则y的取值范围是y>﹣1故答案为:点评:本题考查了二次函数的性质,也可根据图象利用数形结合的方法求解.3.已知二次函数的图象(0≤x≤3)如图所示,则当0≤x≤3时,函数值y的范围是.【答案】﹣1≤y≤3【解析】结合图象找到自变量在0≤x≤3范围内函数值的最大值和最小值即可.解:观察图象发现:当0≤x≤3时,函数值的y的取值范围是﹣1≤y≤3,故答案为:﹣1≤y≤3点评:本题考查了二次函数的性质,结合图象找到最大值和最小值是解答本题的关键.4.函数y=﹣2(x﹣1)2+3的最大值为.【答案】3【解析】根据函数的顶点式解析式,即可求解.解:根据函数的顶点式关系式y=﹣2(x﹣1)2+3知,当x=1时,二次函数y=﹣2(x﹣1)2+3有最大值3.故答案为:3.点评:本题主要考查的是关于二次函数最值的题目.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.5.已知抛物线的顶点坐标为(﹣1,﹣2),且通过点(1,10),则该抛物线的解析式为.【答案】y=3(x+1)2﹣2【解析】设抛物线的解析式为y=a(x+1)2﹣2.然后将点(1,10)代入其中,利用待定系数法求该抛物线的解析式即可.解:由题意,可设抛物线的解析式为y=a(x+1)2﹣2.∵该抛物线的解析式通过点(1,10),∴10=a(1+1)2﹣2,解得,a=3;故该抛物线的解析式是:y=3(x+1)2﹣2.点评:本题考查了待定系数法求二次函数的解析式.解答该题时,要充分利用已知条件“抛物线的顶点坐标为(﹣1,﹣2)”来设该抛物线的解析式.6.根据图中的抛物线可以判断:当x 时,y随x的增大而减小.【答案】<1【解析】要确定抛物线的单调性首先要知道其对称轴,然后根据对称轴来确定x的取值范围.解:根据图象可知对称轴为x=(﹣1+3)÷2=1,所以当x<1时,y随x的增大而减小;当x=1时,y有最小值.故答案为:<1;点评:此题主要考查了函数的单调性与对称性.7.请你写出一个你学习过的函数表达式,使它满足当1<x<2时,﹣2<y<﹣1.你写的函数是.【答案】y=x﹣3【解析】答案不唯一,只要满足条件即可,如y=x﹣3,当1<x<2时,﹣2<y<﹣1.解:答案不唯一,如一次函数y=x﹣3,满足当1<x<2时,﹣2<y<﹣1,故答案为:y=x﹣3.点评:本题主要考查对学过的函数(如一次函数的性质)的理解和掌握,此题是一个开放型的题目,题型较好,能锻炼学生的思维能力.8.如果函数y=a(x﹣1)2+c与函数y=x2+2bx+b2﹣5的顶点相同,且其中一个函数经过点(2,7),求这两个函数的解析式.【答案】y=12(x﹣1)2﹣5【解析】先求出函数y=a(x﹣1)2+c与函数y=x2+2bx+b2﹣5的顶点,然后根据题意求得b、c的值;再由已知条件“其中一个函数经过点(2,7)”,利用待定系数法求得函数的解析式.解:∵函数y=a(x﹣1)2+c的顶点是(1,c),函数y=x2+2bx+b2﹣5=(x+b)2﹣5的顶点是(﹣b,﹣5),∴1=﹣b,即b=﹣1,c=﹣5;∴函数y=x2+2bx+b2﹣5的解析式为:y=x2﹣2x﹣4;又∵其中一个函数经过点(2,7),∴函数y=a(x﹣1)2+c经过点(2,7),∴7=a(2﹣1)2﹣5,解得,a=12;故函数y=a(x﹣1)2+c的解析式是:y=12(x﹣1)2﹣5.点评:本题考查了待定系数法求二次函数的解析式.在求函数y=x2+2bx+b2﹣5的顶点时,先将函数关系式转化为顶点式方程,然后求其顶点.这样减免了利用顶点坐标公式求解的繁琐过程.9.已知二次函数y=ax2+bx﹣3的图象经过点A(2,﹣3),B(﹣1,0).求二次函数的解析式.【答案】y=x2﹣2x﹣3【解析】根据题意知,将A(2,﹣3),B(﹣1,0)代入二次函数的解析式,利用待定系数法法求该二次函数的解析式即可.解:根据题意,得,解得,;∴该二次函数的解析式为:y=x2﹣2x﹣3.点评:本题主要考查了待定系数法求二次函数的解析式.解题时,借用了二次函数图象上点的坐标特征:经过图象上的点一定在函数图象上,且图象上的每一个点均满足该函数的解析式.10.抛物线y=2(x﹣2)2+1的顶点坐标是()A.(2,1)B.(2,﹣1)C.(﹣2,1)D.(﹣2,﹣1)【答案】A【解析】直接利用顶点式的特点可写出顶点坐标.解:∵顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),∴y=2(x﹣2)2+1的顶点坐标是(2,1).故选A.点评:主要考查了求抛物线的顶点坐标、对称轴的方法.11.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示.给出下列说法:①抛物线与y轴的交点为(0,6);②抛物线的对称轴是在y轴的右侧;③抛物线一定经过点(2,0);④在对称轴左侧,y随x增大而减小.从表可知,说法正确的个数有()A.1个 B.2个 C.3个 D.4个【答案】B【解析】根据表中数据和抛物线的对称性,可得到抛物线的开口向下,当x=3时,y=0,即抛物线与x轴的交点为(﹣2,0)和(3,0);因此可得抛物线的对称轴是直线x=,再根据抛物线的性质即可进行判断.解:根据图表,抛物线与y轴交与(0,6),①正确;∵抛物线经过点(0,6)和(1,6),∴对称轴为x==,∴②正确;设抛物线经过点(x,0),∴x==解得:x=3∴抛物线一定经过(3,0),故③错误;在对称轴左侧,y随x增大而增大,④错误故选B.点评:本题考查了抛物线y=ax2+bx+c的性质:抛物线是轴对称图形,它与x轴的两个交点是对称点,对称轴与抛物线的交点为抛物线的顶点;a<0时,函数有最大值,在对称轴左侧,y随x增大而增大.12.二次函数y=2(x﹣1)2﹣3的顶点坐标为()A.(1,3)B.(﹣1,﹣3)C.(﹣1,3)D.(1,﹣3)【答案】D【解析】二次函数的顶点式方程:y=a(x﹣h)2+k,其顶点坐标是P(h,k).解:∵二次函数的顶点式方程是:y=2(x﹣1)2﹣3,∴该函数的顶点坐标是:(1,﹣3);故选D.点评:本题考查了二次函数的性质.在二次函数的图象上①顶点式:y=a(x﹣h)2+k,其顶点坐标是P(h,k);②对于二次函数 y=ax2+bx+c 其顶点坐标为(,).13.抛物线y=﹣3(x﹣3)2+5的顶点坐标为()A.(3,5)B.(﹣3,5)C.(5,﹣3)D.(5,3)【答案】A【解析】因为y=﹣3(x﹣3)2+5是二次函数的顶点式,根据顶点式可直接写出顶点坐标.解:∵抛物线解析式为y=﹣3(x﹣3)2+5,∴二次函数图象的顶点坐标是(3,5).故选A.点评:本题考查了二次函数的性质,根据抛物线的顶点式,可确定抛物线的开口方向,顶点坐标(对称轴),最大(最小)值,增减性等.14.已知二次函数y=x2+bx+c的图象上有三个点(﹣1,y1)、(1,y2)、(3,y3),若y1=y3,则()A.y2>c>y1B.y2<c<y1C.c>y1>y2D.c<y1<y2【答案】B【解析】根据已知得出(﹣1,y1)和(3,y3)关于二次函数数y=x2+bx+c的对称轴对称,抛物线的开口向上,求出对称轴是直线x=1,根据0<1<3即可求出答案.解:∵y1=y3,∴(﹣1,y1)和(3,y3)关于二次函数数y=x2+bx+c的对称轴对称,∴二次函数y=x2+bx+c的对称轴是直线x==1,且二次函数图象的开口向上,∵x=0时,y=c,0<1<3,∴y2<c<y1,故选B.点评:本题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能求出对称轴和根据二次函数的性质求出正确答案是解此题的关键.15.(2010•无锡一模)二次函数y=x2﹣x+m(m为常数)的图象如图所示,当x=a时,y<0;那么当x=a﹣1时,函数值()A.y<0B.0<y<m C.y>m D.y=m【答案】C【解析】根据对称轴及函数值判断a的取值范围,从而得出a﹣1<0,因为当x是y随x的增大而减小,所以当x=a﹣1<0时,函数值y一定大于m.解:当x=a时,y<0,则a的范围是x1<a<x2,又对称轴是x=,所以a﹣1<0,当x是y随x的增大而减小,当x=0是函数值是m.因而当x=a﹣1<0时,函数值y一定大于m.故选C.点评:本题主要考查了二次函数的对称轴,以及增减性.16.已知抛物线y=﹣x2+4x,则它的顶点坐标与函数值y的取值范围分别是()A.(2,4)与y≥4B.(2,4)与y≤4C.(﹣2,4)与y≥4D.(﹣2,4)与y≤4【答案】B【解析】已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标,从而得出对称轴.解:∵y=﹣x2+4x=﹣(x﹣2)2+4,∴顶点坐标为:(2,4),∵开口向下,∴有最大值4,∴y≤4,故选B.点评:主要考查了函数的单调性.二次函数y=ax2+bx+c(a,b,c为常数,a≠0),当a>0时,在对称轴左侧y随x的增大而减小,在对称轴右侧y随x的增大而增大;当a<0时,在对称轴左侧y随x的增大而增大,在对称轴右侧y随x的增大而减小.正比例函数中当k>0时,y随x的增大而增大,k<0时,y随x的怎大而减小.17.下列二次函数中,顶点在x轴上的是()A.y=x2+2B.y=﹣x2﹣4x+4C.y=4x2﹣4x+1D.y=x2﹣2x﹣1【答案】C【解析】根据顶点在x轴上时,顶点的纵坐标是0,只要求出顶点的纵坐标就行,即求出的值即可.解:∵顶点在x轴上时,顶点的纵坐标是0,A、==2≠0,故本选项错误;B、==8≠0,故本选项错误;C、==0,故本选项正确;D、==﹣2≠0,故本选项错误.故选C.点评:本题主要考查对二次函数的性质,二次函数的最值等知识点的理解和掌握,知道顶点在x轴上,就是顶点的纵坐标是0是解此题的关键.18.抛物线y=2(x﹣3)2+4的顶点坐标是()A.(3,4)B.(4,3)C.(﹣3,4)D.(﹣3,﹣4)【答案】A【解析】已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标,从而得出对称轴.解:y=2(x﹣3)2+4是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(3,4).故选A.点评:此题主要考查了二次函数的性质,关键是熟记:顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h.19.下列函数中y随x增大而减小的有()①;②;③y=﹣x2(x≥0);④y=﹣3x.A.1个B.2个C.3个D.4个【答案】B【解析】反比例函数的增减性需要考虑所在象限,在一次函数中,要使y随x的增大而减小,则需k<0,二次函数需要以对称轴为界讨论.解:①中k=﹣9<0,在每一象限内y随着x的增大而增大;②中k=11>0,在每一象限内y随着x的增大而减小;③y=﹣x2(x≥0)中开口向上,对称轴为y=0,当x≥0时y随着x的增大而减小;④y=﹣3x中k=﹣3<0,y随着x的增大而减小,正确的有两个.故选B.点评:本题考查了二次函数的性质、正比例函数的性质及反比例函数的性质,特别是在叙述反比例函数的增减性的时候,要强调在哪一个象限.20.已知抛物线y=5(x﹣1)2,下列说法中,你认为不正确的是()A.顶点坐标为(1,0)B.对称轴为直线x=0C.当x>1时,y随x的增大而增大D.当x<1时,y随x的增大而减小【答案】B【解析】根据二次函数y=5(x﹣1)2的性质,利用排除法求解.解:A、顶点坐标为(1,0),正确,不符合题意;B、对称轴为直线x=1,错误,符合题意;C、当x>1时,y随x的增大而增大,正确,不符合题意;D、当x<1时,y随x的增大而减小,正确,不符合题意.故选B.点评:本题考查了二次函数的性质,牢记形如y=a(x﹣h)2的二次函数的性质是解答本题的关键.。

二次函数的对称性与像特征

二次函数的对称性与像特征

二次函数的对称性与像特征二次函数是高中数学中的重要内容之一,它的图像形态与一次函数有很大的不同。

在学习二次函数时,我们需要理解其对称性与像特征,这对于解题和分析二次函数的性质非常重要。

1. 顶点对称性二次函数的图像是一个抛物线,它的顶点是凸起或凹陷的最高或最低点。

顶点对称性是指二次函数图像关于顶点对称。

具体而言,如果顶点的坐标为(h,k),则二次函数图像上任意一点P的坐标(x,y)满足关系式:y = k + a(x - h)^2其中,a是二次函数的参数,决定了抛物线的开口方向。

当a>0时,抛物线开口向上,称为凸抛物线;当a<0时,抛物线开口向下,称为凹抛物线。

2. y轴对称性二次函数的图像也具有y轴对称性,即图像关于y轴对称。

这意味着当图像中的一点P的坐标为(x,y)时,点P'的坐标为(-x,y)。

具体而言,对于二次函数图像的任意点(x,y),都有关系式:f(x) = f(-x)3. x轴对称性二次函数的图像也具有x轴对称性,即图像关于x轴对称。

这意味着当图像中的一点P的坐标为(x,y)时,点P'的坐标为(x,-y)。

具体而言,对于二次函数图像的任意点(x,y),都有关系式:f(x) = -f(-x)4. 零点与判别式二次函数的零点是指函数图像与x轴相交的点,即函数值为0的点。

对于一般的二次函数y = ax^2 + bx + c,我们可以使用求根公式计算零点。

求根公式为:x = (-b ± √(b^2 - 4ac)) / (2a)其中,b^2 - 4ac被称为判别式,通过判别式的正负可以判断二次函数的零点情况:- 当判别式大于0时,二次函数有两个不相等的实数根;- 当判别式等于0时,二次函数有两个相等的实数根;- 当判别式小于0时,二次函数没有实数根。

5. 极值与开口方向对于二次函数y = ax^2 + bx + c,其顶点坐标可以通过计算公式 h =-b / (2a) 和 k = f(h) 获得。

二次函数的奇偶性与对称性

二次函数的奇偶性与对称性

二次函数的奇偶性与对称性二次函数是高中数学中常见的函数类型,它的基本形式是f(x) =ax^2 + bx + c,其中a、b、c为实数,且a不等于0。

在二次函数中,关于奇偶性与对称性的讨论十分重要。

首先,我们来研究二次函数的奇偶性。

根据函数的定义,对于任意实数x,如果有f(-x) = f(x),则称该函数为偶函数;如果有f(-x) = -f(x),则称该函数为奇函数。

对于二次函数来说,我们可以通过判断a的正负来确定它的奇偶性。

如果a为正数,则二次函数会开口向上,呈现一个U形。

在这种情况下,f(-x) = a(-x)^2 + b(-x) + c = f(x),即二次函数为偶函数。

反之,如果a为负数,则二次函数会开口向下,呈现一个倒U形。

在这种情况下,f(-x) = a(-x)^2 + b(-x) + c = -f(x),即二次函数为奇函数。

其次,我们来探讨二次函数的对称性。

二次函数存在关于直线x = -b / (2a)的对称轴。

也就是说,对于任意实数x,f(x)与f(2a - x)的函数值相等。

这个性质可以通过二次函数的图像来直观理解。

无论二次函数是开口向上还是开口向下,它的图像都会关于对称轴对称。

通过研究二次函数的奇偶性与对称性,我们可以得到以下结论:1. 当a为正数时,二次函数为偶函数,开口向上,并且关于对称轴对称;2. 当a为负数时,二次函数为奇函数,开口向下,并且关于对称轴对称。

根据以上的结论,我们可以进一步讨论二次函数的性质。

首先是极值点。

对于一个开口向上的二次函数,恰好在对称轴上有一个极小值点,记为顶点。

而对于一个开口向下的二次函数,恰好也在对称轴上有一个极大值点,同样也是顶点。

顶点的横坐标为 -b / (2a),纵坐标为f(-b / (2a))。

除了顶点之外,二次函数还有两个重要的性质,分别是零点和判别式。

二次函数的零点是函数图像与x轴相交的点,即f(x) = 0的解。

根据二次函数的求根公式,零点的横坐标可以通过以下公式求得:x = (-b ± √(b^2 - 4ac)) / 2a判别式的求法是通过计算b^2 - 4ac来得到的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数性质
对称性和增减性:
点A(1,正确的是
A. 1 >2
B. 1 < 2
C. 1 ≥2
D. 1 ≤2 2.若二次函数的与的部分对应值如下表:
则当=1时,的值为
A 、5
B 、﹣3
C 、-13
D 、-27
3.已知一元二次方程的一根为,在二次函数的图象上有
三点、、,、、的大小关系是
A. B. C. D.
4.若二次函数的图象经过A (-1,1)、B (2,2)、C (,3)三点,则关于1、2、3大小关系正确的是
A.1>2>3
B.1>3>2
C.2>1>3
D.3>1>2
x y y y y y y y y 2y ax bx c =++x y x y 230x bx +-=3-23y x bx =+-14 5
,y ⎛⎫- ⎪⎝⎭
25 4
,y ⎛⎫- ⎪⎝⎭
31 6
,y ⎛⎫ ⎪⎝⎭
1y 2y 3y 123y y y <<213y y y <<312y y y <<132y y y <<c x x y +-=62y y 23+y y y y y y y y y y y y y y y y
5.已知函数,若使成立的值恰好有三个,则的值为 A 、0 B 、1 C 、2 D 、3
6.如图6,抛物线与交于点,过点作轴的平行线,分别交两条抛物线于点.则以下结论: ①无论取何值,的值总是正数. ②.
③当时,. ④.
其中正确结论是( )
A .①② B.②③ C.③④ D.①④
()()()()
2
211 351 3x x y x x >⎧--≤⎪=⎨--⎪⎩y k =x k 21(2)3y a x =+-2
21(3)12
y x =-+(13)A ,
A x
B
C ,x 2y 1a =0x =214y y -=23AB AC =。

相关文档
最新文档