原子吸收光谱法的优缺点

合集下载

原子吸收光谱法的优缺点

原子吸收光谱法的优缺点

原子吸收光谱法的优缺点
1.高选择性和灵敏度:原子吸收光谱法可以检测到极小量的化合物,从而具有极高的灵敏度和选择性。

2. 精度高:原子吸收光谱法采用单光子计数技术,可以提供高精度的数据。

3. 适用于大多数元素:原子吸收光谱法对于大多数元素,包括稀土元素和金属元素等,都具有较高的敏感性和选择性。

4. 直观、可靠:原子吸收光谱法操作简单、直观,且可靠。

缺点:
1. 不能确定化合物结构:原子吸收光谱法只能确定原子的存在,不能确定化合物的结构。

2. 不能分析复杂混合物:原子吸收光谱法不能用于分析复杂混合物,因为这些混合物可能会干扰原子吸收光谱法。

3. 样品制备:原子吸收光谱法需要样品制备,通常需要将样品转化为原子形式。

4. 仪器成本高:原子吸收光谱法仪器成本高,对于小型实验室来说,可能不太实用。

综上所述,原子吸收光谱法是一种具有高选择性和灵敏度的分析方法,但其缺点包括不能确定化合物结构、不能分析复杂混合物等。

在实际应用中,需要根据实验需要和实验条件选择合适的分析方法。

- 1 -。

原子吸收分光光度法(重点)

原子吸收分光光度法(重点)
优缺点:
(1)辐射光强度大,稳定,谱线窄,灯容易更换。 (2)每测一种元素需更换相应的灯。
三、原子化系统
1.作用
将试样中离子转变成原子蒸气。
2.原子化方法
火焰法
无火焰法—电热高温石墨管,激光。
3.火焰原子化装置—雾化器和燃烧器。
(1)雾化器:结构如图所示:
主要缺点:雾化效率
低。
(2)火焰
试样雾滴在火焰中,经蒸发,干燥,离解(还原)等过 程产生大量基态原子。
二、原子在各能级的分布
原子吸收光谱是利用待测元素的原子蒸气中基 态原子与共振线吸收之间的关系来测定的。
需要考虑原子化过程中,原子蒸气中基态原子 与待测元素原子总数之间的定量关系。
热力学平衡时,两者符合Boltzmann分布定律。
三、原子吸收线的轮廓和变宽
(一)原子吸收线的产生 当通过基态原子的光辐射具有的能量hν恰好等于
结构如图所示
3.空心阴极灯的原理
•施加适当电压时,电子将从空心阴极内壁加速飞向阳极; 在加速飞行过程与充入的惰性气体分子碰撞而使之电离, 产生正电荷,其在电场作用下,向阴极内壁猛烈轰击;使 阴极表面的金属原子溅射出来,溅射出来的金属原子再与 电子、惰性气体原子及离子发生撞碰而被激发,发出被测 元素特征的共振线。 • 用不同待测元素作阴极材料,可制成相应空心阴极灯。 • 空心阴极灯的辐射强度与灯的工作电流有关。
(1)待测元素与其共存物质作用生成难挥发的化合物,致 使参与吸收的基态原子减少。
例:a、钴、硅、硼、钛、铍在火焰中易生成难熔化合物
b、硫酸盐、硅酸盐与铝生成难挥发物。
(2)待测离子发生电离反应,生成离子,不产生吸收,总 吸收强度减弱,电离电位≤6eV的元素易发生电离,火焰温 度越高,干扰越严重,(如碱及碱土元素)。

原子荧光光谱和原子吸收光谱的区别

原子荧光光谱和原子吸收光谱的区别

原子荧光光谱和原子吸收光谱的区别
原子荧光光谱和原子吸收光谱是两种常见的光谱分析方法,它们的区别主要在于测量原理和应用领域。

原子荧光光谱是通过激发原子内部能级,使得原子中的电子跃迁到较高的能级,然后再回到基态时放出光子,从而形成光谱。

这种光谱具有独特的谱线,每个谱线对应着原子中某个特定的能级跃迁所释放出的能量。

原子荧光光谱常用于分析金属、非金属元素和稀土元素等化学元素的含量和化学结构。

原子吸收光谱则是通过测量样品中的元素吸收特定波长的光线,来推断该元素的含量。

原子吸收光谱要求样品经过化学处理,使得其中的元素以单质或者化合物的形式存在,并且必须具有一定的浓度。

在测量过程中,光源会发射特定波长的光线,这些光线会穿过样品,被吸收掉一部分,未被吸收的光线会被检测器测量。

吸收光线的强度与样品中元素的含量成正比,因此可以通过测量吸收光线的强度来推断样品中元素的含量。

原子吸收光谱常用于分析金属、非金属元素以及汞、铅等有毒元素的含量。

总之,原子荧光光谱和原子吸收光谱各有优缺点,应根据具体需要选择合适的方法进行分析。

- 1 -。

原子发射光谱法和原子吸收光谱法的优缺点

原子发射光谱法和原子吸收光谱法的优缺点

原子发射光谱法(Atomic Emission Spectroscopy,AES)和原子吸收光谱法(Atomic Absorption Spectroscopy,AAS)是常用的分析方法,它们利用原子在能量激发下发射或吸收特定波长的光线来确定样品中的元素含量。

以下是它们的优缺点比较:一、原子发射光谱法优点:1. 灵敏度高:原子在激发后能发出强烈的荧光,使得检测灵敏度高。

2. 分辨率高:能够分离出元素的不同能级,对于元素的多种化合价态也有很好的分辨率。

3. 多元素分析:可以同时分析多种元素,适用于复杂样品。

4. 快速:仅需要几分钟即可得到结果。

缺点:1. 形成荧光需要外部能量输入,易受分析环境影响,如气体的压力和温度等。

2. 需要专业人员操作:仪器复杂,需要专业的技术人员进行操作和维护。

3. 样品处理复杂:由于样品需要被分解为原子态,因此需要严格的前处理过程。

4. 不能定量:由于荧光强度与供能的原子数不成比例,因此不能直接定量。

二、原子吸收光谱法优点:1. 灵敏度高:具有极高的检测灵敏度,尤其适用于微量元素的分析。

2. 定量性好:由于原子吸收的强度与元素浓度呈线性关系,因此可以直接定量。

3. 选择性好:由于不同元素的吸收谱线是独立的,因此可以区分不同元素。

4. 不受环境影响:对于气体和液体样品,只需要进行简单的前处理即可进行分析。

缺点:1. 只能测量单一元素:每个元素只有一个特定的吸收波长,因此只能测量一个元素。

2. 影响灵敏度的因素多:灵敏度受到多种因素影响,如化学基质等。

3. 仅限于溶液测量:由于需要将样品转化为气态原子,因此只适用于溶液样品。

4. 仪器复杂:仪器需要精密的光学部件以保证精确的测量结果。

无论是原子发射光谱法还是原子吸收光谱法,都有其独特的优点和缺点。

在选择分析方法时,需要考虑样品类型、分析目标和实验室条件等因素,并综合评估各种分析方法的优缺点,以选择最适合的方法。

原子吸收光谱分析的特点

原子吸收光谱分析的特点

原子化过程: MeX 脱水 MeX 蒸发 MeX 分解 (溶液)(固体微粒) (气态分子) Me +X (基态原子)
火焰的组成: 空气-乙炔火焰:温度在2500K左右; N2O-乙炔火焰:温度可达到3000K左右; 空气-氢气火焰:最高温度2300K左右。
火焰的类型: 贪燃:燃气较少,(燃助比小于化学计量,约为1比6),燃烧完全,温度较高
原子吸收光谱分析的特点
1
2020/11/26
原子吸收光谱分析的特点: (1) 检出限低,10-10~10-14 g; (2) 准确度高,1%~5%; (3) 选择性高,一般情况下共存元素不干扰,无须分离; (4) 应用广,可测定70多个元素(各种样品中); 局限性:难熔元素(如W)、非金属元素测定困难、不能同时进行多元素分析。
原子吸收光谱分析的基本过程: (1)用该元素的锐线光源发射出特征辐射;
(2)试样在原子化器中被蒸发、解离为气态基态原子;
(3)当元素的特征辐射通过该元素的气态基态原子区时,部分光被蒸气中基态原子吸收而减弱, 通过单色器和检测器测得特征谱线被减弱的程度,即吸光度,根据吸光度与被测元素的浓度 成线性关系,从而进行元素的定量分析。
第一节原子吸收光谱法基本原理
一、基态原子数与原子化程度关系 原子化温度下大多数化合物解离成原子状态,被测元素有基态原子和激发态原子。热力学平衡时:
Nj gj eE0k TEj gj ek TEgj e kh T
N0 g0
g0
g0
上式中gj和gO分别为激发态和基态的统计权重,激发态原子数Nj与基态原子数No之比较小,<0.1%。 可以用基态原子数代表待测元素的原子总数。公式右边除温度T外,都是常数。T 一定,比值一定。
电源:10~25V,500A。用于产生高温。 保护系统: 保护气(Ar)分成两路

原子吸收光谱法与原子发射光谱法的比较

原子吸收光谱法与原子发射光谱法的比较

原子吸收光谱法与原子发射光谱法的比较摘要原子吸收光谱法及原子发射光谱法的产生,原理,用法等的比较。

关键词原子吸收光谱法;原子发射光谱法原子吸收光谱法是根据蒸气相中被测元素的基态原子对其原子共振辐射的吸收强度来测定试样中被测元素的含量。

原子吸收光谱法的优点与不足:<1> 检出限低,灵敏度高。

火焰原子吸收法的检出限可达到ppb级,石墨炉原子吸收法的检出限可达到10-10-10-14g。

<2> 分析精度好。

火焰原子吸收法测定中等和高含量元素的相对标准差可<1%,其准确度已接近于经典化学方法。

石墨炉原子吸收法的分析精度一般约为3-5%。

<3> 分析速度快。

原子吸收光谱仪在35分钟内,能连续测定50个试样中的6种元素。

<4> 应用范围广。

可测定的元素达70多个,不仅可以测定金属元素,也可以用间接原子吸收法测定非金属元素和有机化合物。

<5> 仪器比较简单,操作方便。

<6> 原子吸收光谱法的不足之处是多元素同时测定尚有困难,有相当一些元素的测定灵敏度还不能令人满意。

原子发射光谱法是根据处于激发态的待测元素原子回到基态时发射的特征谱线对待测元素进行分析的方法。

原子发射光谱法包括了三个主要的过程,即由光源提供能量使样品蒸发、形成气态原子、并进一步使气态原子激发而产生光辐射;将光源发出的复合光经单色器分解成按波长顺序排列的谱线,形成光谱;用检测器检测光谱中谱线的波长和强度。

由于待测元素原子的能级结构不同,因此发射谱线的特征不同,据此可对样品进行定性分析;而根据待测元素原子的浓度不同,因此发射强度不同,可实现元素的定量测定。

原子吸收光谱是原子发射光谱的逆过程。

基态原子只能吸收频率为ν=(Eq-E0)/h的光,跃迁到高能态Eq。

因此,原子吸收光谱的谱线也取决于元素的原子结构,每一种元素都有其特征的吸收光谱线。

原子的电子从基态激发到最接近于基态的激发态,称为共振激发。

原子吸收光谱法的优缺点

原子吸收光谱法的优缺点

原子吸收光谱法的优缺点优点:1.高选择性:原子吸收光谱法对物质的选择性非常高。

由于每个元素的原子结构是唯一的,每个元素吸收光的特性也是不同的。

因此,通过选择适当的波长进行测量,就可以获得该元素的特定吸收信号,避免其他干扰物质带来的干扰。

2.高灵敏度:原子吸收光谱法具有很高的灵敏度。

通过使用专用的原子吸收光谱仪器,可以很容易地检测到低浓度的元素。

这种高灵敏度使原子吸收光谱法成为许多分析任务的首选方法,尤其是在需要追踪元素含量的环境和生物化学应用中。

3.宽线性范围:原子吸收光谱法具有宽线性范围。

这意味着可以在一个宽范围内测量元素的浓度,而不需要经常稀释或浓缩样品。

这种宽线性范围使得原子吸收光谱法适用于测量各种浓度的样品,从低浓度到高浓度。

4.速度快:原子吸收光谱法具有很快的分析速度。

由于原子吸收光谱仪器的自动化程度很高,可以进行高通量的样品分析,整个过程只需要几分钟。

这种快速的分析速度使得原子吸收光谱法适用于大量样品的分析,提高了工作效率。

缺点:1.需要仪器和设备:原子吸收光谱法需要专用的原子吸收光谱仪器,这些仪器通常比较昂贵。

此外,还需要其他一些设备,如气体供应装置和样品处理设备。

这些仪器和设备的成本和运维费用可能会限制该方法的使用。

2.仅适用于液态和气态样品:原子吸收光谱法只适用于液态和气态样品的分析。

对于固态样品,需要进行样品前处理,如溶解、挥发等,这增加了分析的复杂性和时间消耗。

3.元素之间的互相干扰:原子吸收光谱法中,不同元素之间可能存在互相干扰的问题。

这是因为不同元素之间的吸收线可能重叠,导致测量结果的准确度降低。

为了解决这个问题,需要进行干扰校正或选择合适的波长进行测量。

4.有限的分析范围:原子吸收光谱法只能用于测量金属元素的浓度,无法用于测量非金属元素。

对于非金属元素,需要使用其他分析方法,如离子色谱法或荧光光谱法。

总之,原子吸收光谱法是一种灵敏、准确和可靠的分析方法,广泛应用于环境监测、生物化学、食品分析等领域。

仪器分析 复习 重修 自学 预习5 原子吸收光谱分析法

仪器分析 复习 重修 自学 预习5 原子吸收光谱分析法
第四章
原子吸收光谱分析法
原子吸收基本原理
第一节
一、共振线 二、基态原子数与原子化温度 三、定量基础
历史
原子吸收光谱法是一种基于待测基态原子对特征谱线的 吸收而建立的一种分析方法。这一方法的发展经历了3个发 展阶段:
原子吸收现象的发现
1802年Wollaston发现太阳光谱的暗线; 1859年Kirchhoff和 Bunson解释了暗线产生的原因;
试样雾滴在火焰中,经蒸发,干燥,离解(还原)等过 程产生大量基态原子。火焰原子化的方法就是使试样变成 原子蒸汽。 火焰温度的选择: (a)保证待测元素充分离解为基态原子的前提下,尽量 采用低温火焰;因为火焰温度越高,产生的热激发态原子 越多,则基态原子数量减少;但太低温就会使盐类无法解
离,降低灵敏度。
I
Ve
I 0V e KV L dv;当发射线宽《吸收线宽时,可以认为
0 Ve
KV 是常数,相当峰值吸收系数K 0:I e K 0 L 于是A lg 1 e
K0L
I
0
0V
dv
0.4343 K 0 L
K0=?
吸收线轮廓仅取决于多普勒变宽时 1 KV dv 2 ln 2 K 0v,结合积分吸收式 KV dv的值 2 ln 2 e 2 解得:K 0 fN 0 v mc
太阳光
暗 线
第一激发态
E
热能
基态
E = h = h
C

发现钠蒸汽发出的光线通过温度比较低的钠蒸汽,会引起 钠光的吸收,并且钠发射线和暗线在光谱中位置相同,由此 判断太阳连续光谱中的暗线是太阳外层中的钠原子对太阳光 谱中钠辐射吸收的结果
原子吸收光谱基本原理:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

主要有以下优点:
1 选择性强。

这是因为原子吸收带宽很窄的缘故。

因此,测定比较快速简便,并有条件实现自动化操作。

在发射光谱分析中,当共存元素的辐射线或分子辐射线不能和待测元素的辐射线相分离时,会引起表观强度的变化。

而对原子吸收光谱分析来说:谱线干扰的几率小,由于谱线仅发生在主线系,而且谱线很窄,线重叠几率较发射光谱要小得多,所以光谱干扰较小。

即便是和邻近线分离得不完全,由于空心阴极灯不发射那种波长的辐射线,所以辐射线干扰少,容易克服。

在大多数情况下,共存元素不对原子吸收光谱分析产生干扰。

在石墨炉原子吸收法中,有时甚至可以用纯标准溶液制作的校正曲线来分析不同试样。

2、灵敏度高。

原子吸收光谱分析法是目前最灵敏的方法之一。

火焰原子吸收法的灵敏度是ppm到ppb级,石墨炉原子吸收法绝对灵敏度可达到10-10~10-14克。

常规分析中大多数元素均能达到ppm数量级。

如果采用特殊手段,例如预富集,还可进行ppb数量级浓度范围测定。

由于该方法的灵敏度高,使分析手续简化可直接测定,缩短分析周期加快测量进程;由于灵敏度高,需要进样量少。

无火焰原子吸收分析的试样用量仅需试液5~100l。

固体直接进样石墨炉原子吸收法仅需~30mg,这对于试样来源困难的分析是极为有利的。

譬如,测定小儿血清中的铅,取样只需10l即可。

3 分析范围广。

发射光谱分析和元素的激发能有关,故对发射谱线处在短波区域的元素难以进行测定。

另外,火焰发射光度分析仅能对元素的一部分加以测定。

例如,钠只有1%左右的原子被激发,其余的原子则以非激发态存在。

在原子吸收光谱分析中,只要使化合物离解成原子就行了,不必激发,所以测定的是大部分原子。

目前应用原子吸收光谱法可测定的元素达73种。

就含量而言,既可测定低含量和主量元素,又可测定微量、痕量甚至超痕量元素;就元素的性质而言,既可测定金属元素、类金属元素,又可间接测定某些非金属元素,也可间接测定有机物;就样品的状态而言,既可测定液态样品,也可测定气态样品,甚至可以直接测定某些固态样品,这是其他分析技术所不能及的。

4、抗干扰能力强。

第三组分的存在,等离子体温度的变动,对原子发射谱线强度影响比较严重。

而原子吸收谱线的强度受温度影响相对说来要小得多。

和发射光谱法不同,不是测定相对于背景的信号强度,所以背景影响小。

在原子吸收光谱分析中,待测元素只需从它的化合物中离解出来,而不必激发,故化学干扰也比发射光谱法少得多。

5、精密度高。

火焰原子吸收法的精密度较好。

在日常的一般低含量测定中,精密度为1~3%。

如果仪器性能好,采用高精度测量方法,精密度为<1%。

无火焰原子吸收法较火焰法的精密度低,目前一般可控制在15%之内。

若采用自动进样技术,则可改善测定的精密度。

火焰法:RSD <1%,石墨炉3~5%。

原子吸收光谱有以下一些不足:
原则上讲,不能多元素同时分析。

测定元素不同,必须更换光源灯,这是它的不便之处。

原子吸收光谱法测定难熔元素的灵敏度还不怎么令人满意。

在可以进行测定的七十多个元素中,比较常用的仅三十多个。

当采用将试样溶液喷雾到火焰的方法实现原子化时,会产生一些变化因素,因此精密度比分光光度法差。

现在还不能测定共振线处于真空紫外区域的元素,如磷、硫等。

标准工作曲线的线性范围窄(一般在一个数量级范围),这给实际分析工作带来不便。

对于某些基体复杂的样品分析,尚存某些干扰问题需要解决。

在高背景低含量样品测定任务中,精密度下降。

如何进一步提高灵敏度和降低干扰,仍是当前和今后原子吸收光谱分析工作者研究的重要课题。

相关文档
最新文档